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Abstract

Let < / , ) 0 o be nonnegative real numbers with generating function f(x) = l.f^x". Assume/(JC)
has the following properties: it has a finite nonzero radius of convergence xo with its only
singularity on the circle of convergence at x = xo and /(xo) converges to yo; y =/(*) satisfies
an analytic identity F(x,y) = 0 near (xo,yo); F,w(xo,yo)=O, 0<i<k and Fym(xo,yo) ^ 0 .
There are constants y, a positive rational, and c such tha t / ,~wo " n'(l+y\ Furthermore, we
show (i) in all cases how to determine y and c from/Cx) and (ii) in certain cases how to determine
them from F(x,y).
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0

Bender (1974) in his expository article and Harary, Robinson and Schwenk (1975)
present similar methods of determining the asymptotic behavior of a sequence
</n)«>o of nonnegative real numbers satisfying the following conditions.

Let f(x) =^n9Ofnx" be the generating function for (./„}„>(,• Assume f(x) has
a finite nonzero radius of convergence x0 with its only singularity on the circle of
convergence at x = x0 and furthermore that f(x0) converges to y0. Assume also
that there is a function F(x,y) analytic near (x0,y0) such that

(i) F{x,f(x)) s 0 near x0,
(ii) F(xo,yo) =0 , Fy(x0, y0) = 0, Fyy(x0,y0) # 0.

(Often as in Harary, Robinson and Schwenk (1975), one can use F to show the
only singularity of/ on its circle of convergence is at x = x0.)

Bender (1974) shows that if Fx(x0,y0) # 0 then

where the partial derivatives are evaluated at (xo,yo). Harary, Robinson and

The research for this paper was done while the second author was visiting Michigan State
University and the writing while the second author was visiting the University of Sydney.
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Schwenk (1975) show that if

then

where b\\2 is the value of the above limit. They also discuss a case where

for some c which they indicate how to compute. Both results are generalizations
of methods of Polya (1937).

Recently Plotkin and Rosenthal found naturally occurring examples where
instead of (ii) above holding we have for k = 4

(h)' Fy(j)(xo,yo)=0 (OHj^k-l),
^(*)(*o>J'o)?tO>

where FyU) is d-'F/dy3. These raise the question: Do results similar to those in
Bender (1974) and Harary, Robinson, and Schwenk (1975) hold for jfc>2?

In Section 2 we derive results similar to those in Bender (1974) in that we read
off the asymptotic behavior of </n>B?0 from information on F for certain cases
in which k > 2. In Section 3 we obtain results similar to those in Harary, Robinson
and Schwenk (1975). But here we are able to read off the asymptotic behavior of
</,>„£„ from the information o n / f o r all cases in which k>2. Section 1 contains
the necessary preliminaries for what follows.

1

Let </„>„£<) be nonnegative real numbers and le t / (x) = £„£„/„ JC". Assume
f{x) has a finite nonzero radius of convergence x0 with its only singularity on the
circle of convergence at x = x0 and that / (x0) converges to y0. Assume there is a
function F(x,y) analytic near (xo,yo) such that

(i) F{x,f{x)) = 0 near x0,
(ii) F,U)(x0,y0) = 0 (0 < i < k-1),

We generalize the proof of Bender (1974), p. 505. By the Weierstrass preparation
theorem (see, for example, Hormander (1966), p. 144) near (xo,yo)

F(x,y) = U(x,y)P(x,y)

where
(a) U(x,y) is analytic, nonvanishing near (xo,yo); and
(b) P(x,y) is a function which is a monic polynomial of degree k in (y—y0) such
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that for eachy"<A: the coefficient Pj(x) of (y—yo)
J is a function vanishing at

and analytic near x0. P{x,y) is called a Weierstrass polynomial.
From the factorization of F and (i) and (a)

P{x,f(x)) = O nearx0.

Hence f(x) —y0 can be expressed as a fractional power series (see, for example,
Walker (1950), p. 98)

where
(i) rt is an increasing sequence of rational numbers and
(ii) ft{x) is analytic nonvanishing near x = x0.

(The branch of (1—(x/xo))r' we are using may be chosen to be the one for which
(1 —(x/xo))

r< is real for x real, near to and less than x0.)
Thus/(x) can be expressed as

where
(i) st is an increasing sequence of rational numbers and

(ii) Oj are nonzero.
By a special case of a theorem of Darboux (see Bender (1974), Theorem 4) we

have

where
(i) sp is the least noninteger amongst the Sj's; and

(ii) F is the classical gamma function.
(We know some rt, and hence some sit is nonintegral a s / h a s a singularity at x0.
Furthermore, as / (x 0 ) converges all rt are positive.)

Alternately we have

where r9 is the least noninteger amongst the rt's.
To generalize the results in Bender (1974) and Harary, Robinson and Schwenk

(1975) it suffices to indicate how to find sp and how to compute ap. This will be
done by examining more carefully how the fractional power series is obtained
using the method of Newton polygons.
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2

Let n} be the order of the zero at x = x0 ofpfo), the coefficient of (y—yo)
J in

the Weierstrass polynomial P(x,y). Say p/x) = 'Zi>njPji(x-xoy where pJnj =£ 0
(if pj(x) = 0, we let nt = + oo). Let nk = 0.

Since

0 = J W ( x ) ) =(/(*)-*>)*+*Z Pj(x)(f(x)-yoy,
j = o

in order that the lowest degree term in (x—x0) cancels when we substitute
£a;(l-(x/x0))Si for f(x)-y0 we must have that two of the {w.+Wj |0 < / < k)
are equal and all others are at least as large. Thus st = (nil—nh)/(i2 — i1) for
some 0 < i! < i2 < k. So st is expressible as a rational number with denominator

We have shown:

LEMMA 2.1. IfP(x,f(x)) = 0 near x0 where P(x,y) is a function which is a monic
polynomial of degree k in iy—y0), then the denominator of the lowest degree term
in a fractional power series expansion off(x) about x0 can be taken to be at most k.

In fact from the above representation of st we see that the denominator is A: if
and only if n0 —kSi and n,+«i > kslf 0<i<k, if and only if nt ^ (1 —i/k)no,
0<i<k. The «,'s are determined by P(x,y) as follows:

LEMMA 2.2. n, is the least p such that

COROLLARY 2.3. j , = no/k if and only if

«> P = «o>

am/
(ii) For 0<i<k andp<(l—i/k)n0

P (p) <o(̂ n> Jo) = 0 .

Even though P(x,y) cannot be effectively obtained from F{x,y), F yields
significant information about P.

PROPOSITION 2.4. st = no/k if and only if

(i) f (P)(X y )\~®' p<n°'
{ # 0. P = n0,
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and
(ii) For 0<i<k andp<(l—i/k)no

PROOF. Assume st = no/k. By Leibniz's rule for derivatives of products we can
express Fx(P)]>iii(x0,y0) in terms of Px^>yu)(x0,y0) for q^p,j^i and U and its
derivatives. Inspection then shows (i) and (ii) of 2.4 hold as (i) and (ii) of 2.3 hold.
(We use the fact that (1 — i/k)n0 is decreasing in /.)

Conversely (i) and (ii) of 2.4 imply (i) and (ii) of 2.3. If (i) of 2.3 fails, then we
have

J = 0) p<n>0>
# 0 , p = n'o,

where n'o # n0; and hence by what we have just proved the analogous statement
will be true for Fxipi(x0,y0). If (i) of 2.3 holds but (ii) of 2.3 fails, let j 0 be the
least integer for which it fails and let r be the least integer for which

•Px<r>)i<'<o»(*o>.yo) 5^ 0 .

Inspection of .?,<.•>,( i«»>(xo>J'o) expressed in terms of

Pxe),(j)(x0,y0), q < r,j < i0 and U

and its derivatives shows it is also nonzero.

In the case where st =no/k is not an integer it remains to compute a1. If we
substitute/(x) for y in the power series expansion of F(x,y) about (xo,yo), by
2.4 the lowest power of (x—x0) obtained is (x-xo)"°. Since F{x,f(x)) = 0 near
x0, we have by computing the coefficient of (x—xo)

n that

(1 —j/k) n0 is an integer, l < ; < f c- l >

where the derivatives are evaluated at (x0, y0).
It remains to solve this equation for at. In general we cannot determine which

solution is the desired one. However, if there is only one solution for which
ajri—sj is positive real, we may conclude

r-BM-(l+J,)
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For example:

THEOREM 2.5. Let </„>„£ 0 be nonnegative real numbers such that
(O/C*) —Yji^of**" nas a finite nonzero radius of convergence x0 with its only

singularity on the circle of convergence at x = x0.
(ii)/(*o) converges to y0.
(iii) There is a function F(x,y) analytic near (x0, y0) and relatively prime integers

M0 and k such that

(a) F(x,f(x)) = 0 near x0,

{b) F,(j)(x0, _y0) <, , „' . ,

1=0,
(c)

&0 = n0

(d) FxlP)yuixo,yQ)=0,

then

where at is the solution of

* 1 «

0! k ! ( x ) " °)
n0!

JMC/I /Aa? a1IT{—nQlk') is positive real.

PROOF. AS A: and n0 are relatively prime (l-j/k)n0 is not an integer for
1 <y < it— 1. Thus (*) reduces to the above equation.

As in Section 2 we know s1 is a positive rational number expressible with
denominator <&. Say J 1 =m/n in reduced form. st is characterized by

LEMMA 3.1.

lim -f-
0, 0<p/q<m/n,

oo, p/q>m/n,

finite, nonzero, p/q = m/n,

where p,q are positive integers. In particular if p=m and q=n the limit is
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PROOF. This may be proven by using the expansion of/(x)—y0 as

to obtain a similar fractional power series expansion of

To determine if st is nonintegral and in that case to obtain the asymptotic
behavior of <C/i,>n55O

 o n e m a y proceed as follows:
Step 1. Compute Fy(ki(x0, yQ) until we find the least k for which it is nonzero.

This gives the maximum possible denominator for sl.
Step 2. Compute

lim —-l(J(x)-y0)
*->x0- ax

for each nonnegative integer / until either (i) the value is finite nonzero or (ii) the
value is infinite. In case (i) we have sl is integral. We return to this case later.
In case (ii) st lies strictly between /— 1 and /.

Step 3. There are only finitely many rational numbers between /—I and / with
denominator < k. Find out for which one, m/n, of these

lim
x-*xo~ UX

is finite nonzero. This is s t . at is a solution of

- ^ = Km -£((/(
(-xo)

m x~Xo-dxm

As in Section 2, since/B~(a1/r( — s1))xo"x~(1+Sl ) , ax must be the unique solution
such that ajr(—sx) is positive real.

Observe in Step 2, if st turns out to be an integer /, then at is determined by

In the case where st is an integer we call the above three steps Stage 1.
Now let us assume for the sake of induction that st, ...,st are integers and that

we have found au ...,at. We show how to determine whether st+1 is an integer
and how to find at+l.
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Let

and let </(*) =/(*)-£(*).

LEMMA 3.2. st+l can be written with a denominator ^k.

PROOF. Let P(x, y) be the Weierstrass polynomial of degree k in (y—y0) obtained
in Section 1. Since P(x,f{x)) = 0 near x0 we have P(x,g(x)+L(x)) = 0 near x0.
Since sl,...,s, are integers, by the binomial expansion of (g(x)+L(x))J we can
obtain a similar function Q(x,y) which is a monic polynomial of degree k in
(y—y0) and such that Q(x,g(x)) = 0 near x0. We are now done by 2.1.

LEMMA 3.3.

lim -f-
dP

0, 0<p/q<m/n,

oo, p/q>m/n,

finite, nonzero, p/q = m/n,

where p, q are integers. In particular if p =m, q = n the limit is

PROOF. This is proven just as in 3.1.

Stage/+1
Step 1. Compute

lim —-{g{x)-y0)
x-x0- dxl

for each nonnegative integer l>s, until either (i) the value is finite, nonzero or
(ii) the value is infinite. In case (i) st+1 is integral and we can find at+l from

! ,. dl , . . .
= hm -—l(g(x)-y0).

dl(-xoy

In case (ii) st+l lies strictly between /—I and /.
Step 2. This is just like Step 3 of Stage 1 except we use g{x) throughout instead

off(x) and we are determining s,+1 and at+1 instead of st and a t .
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