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A Class of Abstract Linear Representations
for Convolution Function Algebras over
Homogeneous Spaces of Compact Groups

Arash Ghaani Farashahi

Abstract. _is paper introduces a class of abstract linear representations on Banach convolution
function algebras over homogeneous spaces of compact groups. Let G be a compact group and H a
closed subgroup ofG. Let µ be the normalizedG-invariantmeasure over the compact homogeneous
space G/H associated with Weil’s formula and 1 ≤ p < ∞. We then present a structured class of
abstract linear representations of the Banach convolution function algebras Lp

(G/H, µ).

1 Introduction

_e mathematical theory of Banach convolution algebras plays signiûcant and clas-
sical roles in abstract harmonic analysis, representation theory, functional analysis,
operator theory, and C∗-algebras, see [1–3, 10, 15, 21, 22] and the references therein.
Over the last decades, some new aspects and applications of Banach convolution al-
gebras have achieved signiûcant popularity in time-frequency (Gabor) analysis and
coorbit theory, see [4–6, 11] and the references therein.

_e following paper introduces the structured class of linear representations over
the Banach function algebras related to homogeneous spaces (coset spaces) of com-
pact groups. In a nutshell, homogeneous spaces are group-like structures with many
interesting applications inmathematical physics, diòerential geometry, geometric an-
alysis, and coherent state (covariant) transforms, see [16–20].

Section 2 is devoted to ûxing notations and provides a summary of classical har-
monic analysis over compact groups and homogeneous spaces (le� coset spaces) of
compact groups. Let G be a compact group and H a closed subgroup of G. Let µ
be the normalized G-invariant measure over the homogeneous space G/H associ-
ated with Weil’s formula and 1 ≤ p < ∞. In section 3 we study abstract harmonic
analysis over the Banach function spaces related to homogeneous spaces of compact
groups. _en we introduce the abstract notion of generalized convolution and invo-
lution for Lp-function spaces over homogeneous spaces of compact groups. We also
study properties of these convolutions and involutions. Finally, we shall introduce
a class of structured linear representations over function sub-algebras of the Banach
convolution function algebras Lp(G/H, µ) and we address properties of these repre-
sentations.
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2 Preliminaries and Notations

Let X be compact Hausdorò space. By C(X) we mean the space of all continuous
complex valued functions on X. If µ is a positive Radon measure on X, then for each
1 ≤ p <∞, the Banach space of equivalence classes of µ-measurable complex valued
functions f ∶X → C such that

∥ f ∥Lp(X ,µ) = (∫
X
∣ f (x)∣pdµ(x)) 1/p <∞

is denoted by Lp(X , µ). It contains C(X) as a ∥ ⋅ ∥Lp(X ,µ)-dense subspace.
Let G be a compact group with the probability Haar measure dx. For p ≥ 1 the

notation Lp(G) stands for the Banach function space Lp(G , dx). _e standard con-
volution for f , g ∈ Lp(G) is deûned via

f ∗G g(x) = ∫
G
f (y)g(y−1x) dy (x ∈ G).

_e involution for f ∈ Lp(G), is deûned by f ∗G (x) = f (x−1) for x ∈ G. _en the
Banach function space Lp(G) equippedwith the above convolution and involution is
a Banach ∗-algebra, that is,

∥ f ∗G g∥p ≤ ∥ f ∥p∥g∥p ,(2.1)

( f ∗G g)∗
G
= g∗

G
∗G f ∗

G
,(2.2)

for all f , g ∈ Lp(G), see [7, 15,22] and the references therein.
Any continuous unitary representation (π,Hπ) ofG determines a non-degenerate

∗-representation of the Banach ∗-algebra Lp(G) on theHilbert spaceHπ via the lin-
ear map f ↦ π( f ) given by the following operator valued integral [7,_eorem 3.9]:

(2.3) π( f ) = ∫
G
f (x)π(x)dx .

It is also shown that each non-degenerate ∗-representation of the Banach ∗-algebra
Lp(G) on a Hilbert spaceH arises from a unique continuous unitary representation
of G on theHilbert spaceH via (2.3)[7,_eorem 3.11].

Let H be a closed subgroup of G with the probability Haar measure dh. _e le�
coset space G/H is interpreted as a locally compact homogeneous space, and G acts
on it from the le�. _e map q∶G → G/H given by x ↦ q(x) ∶= xH is the surjective
canonical map. _e classical aspects of abstract harmonic analysis on locally compact
homogeneous spaces have been quitewell studied by several authors, see [7,15,22] and
the references therein. _e function space C(G/H) consists of all functions TH( f ),
where f ∈ C(G) and TH( f )(xH) = ∫H f (xh) dh. Let µ be a Radon measure on G/H
and x ∈ G. _e translation µx of µ is deûned by µx(E) = µ(xE) for all Borel subsets E
ofG/H. _emeasure µ is calledG-invariant if µx = µ for all x ∈ G. _e homogeneous
space G/H has a normalized G-invariant measure µ that satisûes Weil’s formula

(2.4) ∫
G/H

TH( f )(xH) dµ(xH) = ∫
G
f (x) dx ,

and hence the linear map TH is norm-decreasing, that is,

∥TH( f )∥L1(G/H ,µ) ≤ ∥ f ∥L1(G) ,
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for all f ∈ L1(G), see [22, §8.2].
For a function φ ∈ Lp(G/H, µ) and z ∈ G, the le� action of z on φ is deûned

by Lzφ(xH) = φ(z−1xH) for xH ∈ G/H. _en it can be readily checked that
Lz ∶ Lp(G/H, µ)→ Lp(G/H, µ) is a unitary operator.

3 Classical Harmonic Analysis over Function Spaces on Homoge-
neous Spaces of Compact Groups

_roughout this paperwe assume thatG is a compact groupwith the probabilityHaar
measure dx, H is a closed subgroup of G with the probability Haar measure dh, and
µ is the normalized G-invariant measure on the compact homogeneous space G/H
satisfying (2.4)with respect to the probabilityHaarmeasures ofG andH. Henceforth,
wemay say µ is the normalizedG-invariant measure over the compact homogeneous
space G/H, at times.

_e following proposition shows that the linear map TH ∶C(G)→ C(G/H) is uni-
formly continuous [8,9, 12–14].

Proposition 3.1 _e linear map TH ∶C(G)→ C(G/H) is uniformly continuous.

_enext theorem [13,14] proves that the linearmapTH isnorm-decreasing in other
Lp-spaces when p > 1.

_eorem 3.2 Let µ be the normalized G-invariant measure on G/H, and p ≥ 1.
_e linear map TH ∶C(G) → C(G/H) satisûes ∥TH( f )∥Lp(G/H ,µ) ≤ ∥ f ∥Lp(G) for all
f ∈ C(G). Hence, it has a unique extension to a norm-decreasing linear map from
Lp(G) onto Lp(G/H, µ).

As an immediate consequence of_eorem 3.2 we deduce the following corollary.

Corollary 3.3 Let µ be the normalized G-invariant measure on G/H, and p ≥ 1. Let
φ ∈ Lp(G/H, µ) and φq ∶= φ ○ q. _en φq ∈ Lp(G) with

(3.1) ∥φq∥Lp(G) = ∥φ∥Lp(G/H ,µ) .

Proof Indeed, using Weil’s formula, we can write

∥φq∥pLp(G) = ∫G
∣φq(x)∣p dx = ∫

G/H
TH(∣φq ∣p)(xH) dµ(xH)

= ∫
G/H
(∫

H
∣φq(xh)∣p dh) dµ(xH),

and since H is compact and dh is normalized, we get

∫
G/H
(∫

H
∣φq(xh)∣p dh) dµ(xH) = ∫

G/H
(∫

H
∣φ(xhH)∣p dh) dµ(xH)

= ∫
G/H
(∫

H
∣φ(xH)∣p dh) dµ(xH)
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= ∫
G/H
∣φ(xH)∣p(∫

H
dh)dµ(xH)

= ∫
G/H
∣φ(xH)∣p dµ(xH),

which implies (3.1).

_e next proposition shows that the linear operator TH ∶ L2(G)→ L2(G/H, µ) is a
partial isometric linear map.

Proposition 3.4 Let µ be the normalized G-invariant measure on G/H. _en

TH ∶ L2(G)→ L2(G/H, µ)

is a partial isometric linear map.

_e following corollaries are straightforward consequences of Proposition 3.4. Let
J2(G ,H) ∶= { f ∈ L2(G) ∶ TH( f ) = 0} and let J2(G ,H)⊥ be the orthogonal comple-
ment of the closed subspace J2(G ,H) in L2(G).

Corollary 3.5 Let PJ2(G ,H) and PJ2(G ,H)⊥ be the orthogonal projections onto the
closed subspaces J2(G ,H) and J2(G ,H)⊥ respectively. _en for each f ∈ L2(G) and
for almost everywhere x ∈ G we have

PJ2(G ,H)⊥( f )(x) = TH( f )(xH), PJ2(G ,H)( f )(x) = f (x) − TH( f )(xH).

Corollary 3.6 Let µ be the normalized G-invariant measure on G/H.
(i) J2(G ,H)⊥ = {ψq = ψ ○ q ∶ ψ ∈ L2(G/H, µ)}.
(ii) For f ∈ J2(G ,H)⊥ and h ∈ H, we have Rh f = f .
(iii) For ψ ∈ L2(G/H, µ), we have ∥ψq∥L2(G) = ∥ψ∥L2(G/H ,µ).
(iv) For f , g ∈ J2(G ,H)⊥, we have ⟨TH( f ), TH(g)⟩L2(G/H ,µ) = ⟨ f , g⟩L2(G).

Remark 3.7. Invoking Corollary 3.6, one can regard theHilbert space L2(G/H, µ) as
a closed subspace of L2(G), i.e., the closed subspace consists of all f ∈ L2(G) that
satisfy Rh f = f for all h ∈ H. _en _eorem 3.2 and Proposition 3.4 guarantee that
the linear map TH ∶ L2(G) → L2(G/H, µ) ⊂ L2(G) is an orthogonal projection onto
L2(G/H, µ).

4 Banach Convolution Algebras over Homogeneous Spaces of
Compact Groups

In this section we present the abstract structure of function ∗-algebras over homoge-
neous space (le� coset spaces) of compact groups.

Let C(G ∶ H) ∶= { f ∈ C(G) ∶ Rh f = f ∀h ∈ H}. _en one can deûne

A(G ∶ H) ∶= { f ∈ C(G) ∶ Lh f = f for h ∈ H},
A(G/H) ∶= {φ ∈ C(G/H) ∶ Lhφ = φ for h ∈ H}.
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For 1 ≤ p <∞, we deûne

Ap(G ∶ H) ∶= { f ∈ Lp(G) ∶ Lh f = f for h ∈ H},
Ap(G/H, µ) ∶= {φ ∈ Lp(G/H, µ) ∶ Lhφ = φ for h ∈ H},

where Lz f (x) ∶= f (z−1x) and Rz f (x) ∶= f (xz), for z, x ∈ G.
It is easy to see that Ap(G/H, µ) is the topological closure of A(G/H) in

Lp(G/H, µ)

and hence it is a closed linear subspace of Lp(G/H, µ). One can also readily check
that Ap(G ∶H) is the topological closure of A(G ∶H) in Lp(G) and hence it is a closed
linear subspace of Lp(G).

Remark 4.1. LetG be a compact group and letH be a closednormal subgroupofG. Let
µ be thenormalizedG-invariantmeasure over the le� coset spaceG/H and 1 ≤ p ≤∞.
Let φ ∈ C(G/H) and t ∈ H. _en, for xH ∈ G/H,we have t−1xH = xH. Hencewe can
write Ltφ(xH) = φ(t−1xH) = φ(xH). _us we deduce that φ ∈ A(G/H). _erefore,
A(G/H) = C(G/H) and also Ap(G/H, µ) = Lp(G/H, µ) if H is normal in G.

We continue by listing some basic observations.

Proposition 4.2 Let µ be the normalized G-invariant measure on G/H. _en
(i) TH maps C(G ∶H) onto C(G/H).
(ii) TH maps A(G ∶H) onto A(G/H).
(iii) TH maps Ap(G ∶H) onto Ap(G/H, µ).

Proof (i) _is is straightforward.
(ii) Let f ∈ A(G ∶H), x ∈ G, and t ∈ H. _en we have

LtTH( f )(xH) = TH( f )(t−1xH) = ∫
H
f (t−1xh) dh = ∫

H
f (xh) dh = TH( f )(xH),

which implies that TH( f ) ∈ A(G/H). Let ψ ∈ A(G/H). _en ψq ∈ A(G ∶H) and
TH(ψq) = ψ. Hence, we deduce that TH maps A(G ∶H) onto A(G/H).

(iii) Using (i) and since A(G ∶H) is dense Lp(G ∶H) and A(G/H) is dense in

Ap(G/H)

as well, we conclude that TH maps Ap(G ∶H) onto Ap(G/H, µ).

Proposition 4.3 Let G be a compact group and H be a closed subgroup of G. Let µ
be the normalized G-invariant measure on G/H and f , g ∈ L1(G).
(i) For almost everywhere x ∈ G we have

TH( f ∗G g)(xH) = ∫
G/H
(∫

H
f (yt)(∫

H
g(t−1 y−1xh) dh) dt) dµ(yH).

(ii) For g ∈ A1(G ∶ H) and almost everywhere x ∈ G we have

TH( f ∗G g)(xH) = ∫
G/H

TH( f )(yH)TH(g)(y−1xH) dµ(yH).
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Proof (i) Let f , g ∈ L1(G) and x ∈ G. We can write

TH( f ∗G g)(xH) = ∫
H
f ∗G g(xh) dh = ∫

H
(∫

G
f (y)g(y−1xh) dy) dh.

_en, using Weil’s formula, we get

TH( f ∗G g)(xH) = ∫
H
(∫

G
f (y)g(y−1xh) dy) dh

= ∫
H
(∫

G/H
(∫

H
f (yt)g((yt)−1xh) dt) dµ(yH)) dh

= ∫
H
(∫

G/H
(∫

H
f (yt)g(t−1 y−1xh) dt) dµ(yH)) dh

= ∫
G/H
(∫

H
f (yt)(∫

H
g(t−1 y−1xh) dh) dt) dµ(yH).

(ii) Now suppose that g ∈ A1(G ∶H). _us Lt g = g for all t ∈ H. _en using (i) and
the fact that H is compact, we have

TH( f ∗G g)(xH) = ∫
G/H
(∫

H
f (yt)(∫

H
g(t−1 y−1xh) dh) dt) dµ(yH)

= ∫
G/H
(∫

H
f (yt)(∫

H
g(y−1xh) dh) dt) dµ(yH)

= ∫
G/H
(∫

H
f (yt) dt)(∫

H
g(y−1xh) dh) dµ(yH)

= ∫
G/H

TH( f )(yH)TH(g)(y−1xH) dµ(yH).

For ψ ∈ C(G/H), let Jψ∶G/H → C be given by Jψ(xH) ∶= ∫H ψ(hxH) dh, for all
xH ∈ G/H. _en J∶C(G/H)→ C(G/H) given by ψ ↦ Jψ is a linear operator.

Remark 4.4. Let G be a compact group and let H be a closed normal subgroup of G.
_en for all x ∈ G and h ∈ H, we have hxH = xH. Hence, for ψ ∈ C(G/H) we get

Jψ(xH) = ∫
H
ψ(h−1xH) dh = ∫

H
ψ(xH) dh = ψ(xH).

_uswe deduce that the linear operator J∶C(G/H)→ C(G/H) is the identity operator
if H is normal in G.

_e following theorem presents basic properties of the linear operator J in the
framework of abstract harmonic analysis.

_eorem 4.5 Let µ be the normalized G-invariant measure over G/H.
(i) For each 1 ≤ p <∞ and ψ ∈ C(G/H) we have ∥Jψ∥Lp(G/H ,µ) ≤ ∥ψ∥Lp(G/H ,µ).
(ii) J maps C(G/H) onto A(G/H).
(iii) J is a projection onto A(G/H).

Proof (i) Let 1 ≤ p <∞ and ψ ∈ C(G/H). Using compactness of H we get

∥Jψ∥pLp(G/H ,µ) = ∫G/H
∣Jψ(xH)∣p dµ(xH) = ∫

G/H
∣∫

H
ψ(hxH) dh∣ p dµ(xH)

≤ ∫
G/H

∫
H
∣ψ(hxH)∣pdh dµ(xH).
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Again using compactness of H and replacing x by h−1x, we get

∫
G/H

∫
H
∣ψ(hxH)∣p dµ(xH) dh = ∫

H
(∫

G/H
∣ψ(hxH)∣p dµ(xH)) dh

= ∫
H
(∫

G/H
∣ψ(xH)∣p dµ(h−1xH)) dh

= ∫
H
(∫

G/H
∣ψ(xH)∣p dµ(xH)) dh

= ∥ψ∥pLp(G/H ,µ) .

(ii) Let ψ ∈ C(G/H) and t ∈ H. _en we have

Lt Jψ(xH) = Jψ(t−1xH) = ∫
H
ψ(ht−1xH) dh = ∫

H
ψ(hxH) = Jψ(xH),

for all x ∈ G. _is implies that Jψ ∈ A(G/H). Now suppose that ψ ∈ A(G/H). _en
we have Jψ(xH) = ∫H ψ(hxH) dh = ∫H ψ(xH) dh = ψ(xH), for all x ∈ G. _us
Jψ = ψ. Hence, we deduce that J maps C(G/H) onto A(G/H).

(iii) Let ψ ∈ C(G/H) and x ∈ G. _en using the fact that Jψ ∈ A(G/H), we have

J(Jψ)(xH) = ∫
H

Jψ(hxH) dh = ∫
H

Jψ(xH) dh = Jψ(xH),

which implies that J(Jψ) = Jψ. Hence, we deduce that J ○ J = J. Also, since the range
of the linear operator J is precisely A(G/H), we conclude that J is a linear projection
onto A(G/H).

_en we deduce the following consequences.

Corollary 4.6 Let µ be the normalizedG-invariantmeasure onG/H and 1 ≤ p <∞.
(i) _e linear operator J∶C(G/H) → A(G/H) has a unique extension to a bounded

linear operator Jp ∶ Lp(G/H, µ)→ Ap(G/H, µ), satisfying

∥Jpψ∥Lp(G/H ,µ) ≤ ∥ψ∥Lp(G/H ,µ) .

(ii) _e linear operator Jp maps Lp(G/H, µ) onto Ap(G/H, µ).
(iii) _e linear operator Jp is a projection onto Ap(G/H).

Remark 4.7. Let G be a compact group and let H be a closed normal subgroup of G.
Let 1 ≤ p < ∞. _en the extended linear operator Jp ∶ Lp(G/H, µ) → Ap(G/H, µ) is
the identity operator.

Deûnition 4.8 Let G be a compact group, H a closed subgroup of G, and µ the
normalizedG-invariantmeasure overG/H. For φ,ψ ∈ C(G/H), let φ∗G/Hψ∶G/H →
C be given by

(4.1) φ ∗G/H ψ(xH) = ∫
G/H

φ(yH)Jψ(y−1xH) dµ(yH),

for all xH ∈ G/H.
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Remark 4.9. Let G be a compact group and H a closed normal subgroup of G. And
let φ,ψ ∈ C(G/H) and x ∈ G. Invoking Remark 4.4, the linear map J is the identity
operator and hence we have

φ ∗G/H ψ(xH) = ∫
G/H

φ(yH)Jψ(y−1xH) dµ(yH)

= ∫
G/H

φ(yH)ψ(y−1xH) dµ(yH)

= ∫
G/H

φ(yH)ψ(y−1HxH) dµ(yH)

= ∫
G/H

φ(yH)ψ((yH)−1xH) dµ(yH),

for all xH ∈ G/H. Hence, we deduce that the convolution deûned by (4.1) coincides
with the canonical convolution over the quotient group G/H if H is normal in G, see
[1,22].

_e following results state interesting properties of the convolution ∗G/H .

Proposition 4.10 Let µ be the normalized G-invariant measure over G/H; let φ,ψ ∈
C(G/H). _en we have

(i) (φ ∗G/H ψ)q = φq ∗G ψq ,
(ii) φ ∗G/H ψ = TH(φq ∗G ψq),
(iii) Lz(φ ∗G/H ψ) = (Lzφ) ∗G/H ψ.

Proof (i) Let x ∈ G. _en using Weil’s formula, we have

φq ∗G ψq(x) = ∫
G
φq(y)ψq(y−1x) dy = ∫

G
φ(yH)ψ(y−1xH) dy

= ∫
G/H
(∫

H
φ(yhH)ψ((yh)−1xH) dh) dµ(yH)

= ∫
G/H
(∫

H
φ(yH)ψ(h−1 y−1xH) dh) dµ(yH)

= ∫
G/H

φ(yH)(∫
H
ψ(h−1 y−1xH) dh) dµ(yH)

= ∫
G/H

φ(yH)Jψ(y−1xH) dµ(yH) = φ ∗G/H ψ(xH),

which implies that (φ ∗G/H ψ)q = φq ∗G ψq .
(ii) Let x ∈ G. Invoking the deûnition of ∗G and since H is compact, we can write

TH(φq ∗G ψq)(xH) = ∫
H
φq ∗G ψq(xh) dh = ∫

H
(∫

G
φq(y)ψq(y−1xh) dy) dh

= ∫
H
(∫

G
φ(yH)ψ(y−1xhH) dy) dh

= ∫
H
(∫

G
φ(yH)ψ(y−1xH) dy) dh = ∫

G
φ(yH)ψ(y−1xH) dy,
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_us, using (i), we get

TH(φq ∗G ψq)(xH) = ∫
G
φ(yH)ψ(y−1xH) dy = φq ∗G ψq(x)

= (φ ∗G/H ψ)q(x) = φ ∗G/H ψ(xH),

implying that φ ∗G/H ψ = TH(φq ∗G ψq).
(iii) Let z ∈ G. _en we can write

Lz(φ ∗G/H ψ)(xH) = φ ∗G/H ψ(z−1xH) = ∫
G/H

φ(yH)Jψ(y−1z−1xH) dµ(yH)

= ∫
G/H

φ(yH)Jψ((zy)−1xH) dµ(yH).

Replacing y by z−1 y and using the fact that µ is G-invariant, we get

∫
G/H

φ(yH)Jψ((zy)−1xH) dµ(yH) = ∫
G/H

φ(z−1 yH)Jψ(y−1xH) dµ(z−1 yH)

= ∫
G/H

φ(z−1 yH)Jψ(y−1xH) dµ(yH)

= ∫
G/H

Lzφ(yH)Jψ(y−1xH) dµ(yH)

= (Lzφ) ∗G/H ψ(xH).

Proposition 4.11 Let µ be the normalized G-invariant measure over G/H; let f , g ∈
C(G)with f ∈ C(G ∶H). _enwe have TH( f ∗G g) = TH( f )∗G/HTH(g). In particular,
for all φ ∈ C(G/H) and g ∈ C(G), we have TH(φq ∗G g) = φ ∗G/H TH(g).

Proof Let f , g ∈ C(G) with f ∈ C(G ∶H). _en using Proposition 4.3, for x ∈ G, we
get

TH( f ∗G g)(xH) = ∫
G/H
(∫

H
f (yt)(∫

H
g(t−1 y−1xh) dh) dt) dµ(yH)

= ∫
G/H

f (y)(∫
H
(∫

H
g(t−1 y−1xh) dh) dt) dµ(yH)

= ∫
G/H

TH( f )(yH)(∫
H
(∫

H
g(t−1 y−1xh) dh) dt) dµ(yH)

= ∫
G/H

TH( f )(yH)(∫
H
TH(g)(t−1 y−1xH) dt) dµ(yH)

= ∫
G/H

TH( f )(yH)J(TH(g))(y−1xH) dµ(yH)

= TH( f ) ∗G/H TH(g)(xH).

Now let φ ∈ C(G/H). _en f ∶= φq ∈ C(G ∶H). _us we get

TH(φq ∗G g) = TH(φq) ∗G/H TH(g) = φ ∗G/H TH(g).

Remark 4.12. Let H be a closed normal subgroup of a compact group G. Let µ be
the normalized G-invariant measure over G/H. _en µ is a Haar measure over the
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quotient group G/H. _en using Proposition 4.3, for x ∈ G and f , g ∈ C(G), we can
write

TH( f ∗G g)(xH) = ∫
G/H
(∫

H
f (yt)(∫

H
g(t−1 y−1xh) dh) dt) dµ(yH)

= ∫
G/H
(∫

H
f (yt) dt)(∫

H
g(y−1xh) dh) dµ(yH)

= ∫
G/H

TH( f )(xH)TH(g)(y−1xH)dµ(yH)

= TH( f ) ∗G/H TH(g).

_is property of convolution over quotient groups has appeared in [22] as well.

Henceforth,we call φ∗G/H ψ the convolution of φ and ψ. It is easy to check that the
map ∗G/H ∶C(G/H) × C(G/H) → C(G/H) given by (φ,ψ) ↦ φ ∗G/H ψ is bilinear.
Also, it can be readily seen that the linear space C(G/H) with respect to ∗G/H as
multiplication is an associative algebra. It should bementioned that the associativity
of the convolution ∗G/H follows from Proposition 4.10 (i) and (ii).

_enext result shows that the associative algebraC(G/H)with respect to thenorm
∥ ⋅ ∥Lp(G/H ,µ) is a normed algebra, for all 1 ≤ p <∞.

_eorem 4.13 Let µ be the normalizedG-invariantmeasure on G/H and 1 ≤ p <∞.
_en, for all φ,ψ ∈ C(G/H), we have

∥φ ∗G/H ψ∥Lp(G/H ,µ) ≤ ∥φ∥Lp(G/H ,µ)∥ψ∥Lp(G/H ,µ) .

Proof Let φ,ψ ∈ C(G/H) and 1 ≤ p < ∞. _en, using (2.1), (3.1), and Proposi-
tion 4.10, we have

∥φ ∗G/H ψ∥Lp(G/H ,µ) = ∥(φ ∗G/H ψ)q∥Lp(G) = ∥φq ∗G ψq∥Lp(G)

≤ ∥φq∥Lp(G)∥ψq∥Lp(G) = ∥φ∥Lp(G/H ,µ)∥ψ∥Lp(G/H ,µ) .

_en we can present the following interesting result.

_eorem 4.14 Let µ be the normalizedG-invariantmeasure on G/H and 1 ≤ p <∞.
_e convolution map ∗G/H ∶C(G/H)×C(G/H)→ C(G/H) given by (4.1) has a unique
extension to ∗p

G/H ∶ L
p(G/H, µ) × Lp(G/H, µ) → Lp(G/H, µ), in which the Banach

function space Lp(G/H, µ) equippedwith the extended convolution is aBanach algebra.

Proof Invoking density of C(G/H) in Lp(G/H, µ) and continuity of the convolu-
tion ∗G/H via_eorem 4.13, one can uniquely extend the convolution map

∗G/H ∶C(G/H) × C(G/H)→ C(G/H)

given by (4.1) to the convolution map

∗p
G/H ∶ L

p(G/H, µ) × Lp(G/H, µ)→ Lp(G/H, µ)

such that
∥φ ∗G/H ψ∥Lp(G/H ,µ) ≤ ∥φ∥Lp(G/H ,µ)∥ψ∥Lp(G/H ,µ) ,
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for all φ,ψ ∈ Lp(G/H, µ), which equivalently implies that the Banach function space
Lp(G/H, µ) equipped with the extended convolution is a Banach convolution func-
tion algebra.

We deduce the following corollary concerning the explicit construction of ∗p
G/H .

Corollary 4.15 Let µ be the normalizedG-invariantmeasure onG/H and 1 ≤ p <∞.
_en, for all φ,ψ ∈ Lp(G/H, µ), we have

φ ∗p
G/H ψ(xH) = ∫

G/H
φ(yH)Jpψ(y−1xH) dµ(yH),

for almost everywhere xH ∈ G/H.

_e next result lists some of the properties of the convolution ∗p
G/H .

Proposition 4.16 Let µ be the normalized G-invariant measure over G/H. Also, let
φ,ψ ∈ Lp(G/H, µ). _en we have
(i) (φ ∗p

G/H ψ)q = φq ∗G ψq ,
(ii) φ ∗p

G/H ψ = TH(φq ∗G ψq),
(iii) Lz(φ ∗p

G/H ψ) = (Lzφ) ∗p
G/H ψ.

_en we have the following corollary concerning the subspaces Ap(G/H, µ).

Corollary 4.17 Let µ be the normalized G-invariant measure on G/H and 1 ≤ p <
∞. _en Ap(G/H, µ) is a right ideal of the Banach function algebra Lp(G/H, µ). In
particular, Ap(G/H, µ) is a Banach function sub-algebra of Lp(G/H, µ)

Remark 4.18. Let G be a compact group and H a closed normal subgroup of G. Let µ
be the normalized G-invariant measure on G/H and 1 ≤ p < ∞. _en automatically
µ is precisely a Haar measure of the compact quotient group G/H. Also, let φ,ψ ∈
Lp(G/H, µ). Invoking Remark 4.7 and Remark 4.9, the linear map Jp is the identity
operator and hence we have

φ ∗p
G/H ψ(xH) = ∫

G/H
φ(yH)ψ(y−1HxH) dµ(yH),

for almost everywhere xH ∈ G/H. _us we deduce that the extended convolution
∗p

G/H coincides with the canonical convolution over the quotient group G/H if H is
normal in G.

Deûnition 4.19 Let G be a compact group and H a closed subgroup of G. For
φ ∈ C(G/H), let φ∗G/H ∶G/H → C be given by

(4.2) φ∗G/H(xH) = ∫
H
φ(h−1x−1H) dh,

for all xH ∈ G/H.
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Let xH = yH for x , y ∈ G. _en we have y = xt for some t ∈ H. Hence we can
write

∫
H
φ(h−1x−1H) dh = ∫

H
φ(h−1 t−1x−1H) dh = ∫

H
φ(h−1 y−1H) dh,

which implies that φ∗G/H(xH) = φ∗G/H(yH). _is guarantees that φ∗G/H is a well-
deûned function over G/H.

Henceforth we call φ∗G/H an involution of φ. It is easy to check that themap
∗G/H ∶C(G/H)→ C(G/H)

given by φ ↦ φ∗G/H is conjugate linear.

Remark 4.20. Let G be a compact group and H a closed normal subgroup of G. Let
φ ∈ C(G/H) and x ∈ G. _en, for all x ∈ G and h ∈ H, we have hxH = xH. Hence for
ψ ∈ C(G/H), we get

φ∗G/H(xH) = ∫
H
φ(h−1x−1H) dh = ∫

H
φ(x−1H) dh = φ(x−1H).

_us, we deduce that the involution deûned by (4.2) coincides with the canonical
involution over the compact quotient group G/H if H is normal in G.

Proposition 4.21 Let φ ∈ C(G/H), 1 ≤ p < ∞, and let µ be the normalized G-
invariant measure on G/H. _en we have
(i) φ∗

G/H
∗

G/H = Jφ,
(ii) φ∗G/H = TH(φ∗G

q ),
(iii) ∥φ∗G/H∥Lp(G/H ,µ) ≤ ∥φ∥Lp(G/H ,µ).

Proof (i) Let x ∈ G and h ∈ H. _en we have

φ∗G/H(h−1x−1H) = ∫
H
φ(t−1xhH) dt = ∫

H
φ(t−1xH) dt.

_us we get

φ∗
G/H

∗
G/H
(xH) = ∫

H
φ∗G/H(h−1x−1H) dh = ∫

H
φ(t−1xH) dt = Jφ(xH).

(ii) Let x ∈ G. _en we have

TH(φ∗G
q )(xH) = ∫

H
φ∗G

q (xh) dh

= ∫
H
φq(h−1x−1) dh = ∫

H
φ(h−1x−1H) dh = φ∗G/H(xH).

(iii) Using (ii), compactness of H, andWeil’s formula, we have

∥φ∗G/H∥Lp(G/H ,µ) = ∫
G/H
∣φ∗G/H(xH)∣p dµ(xH)

= ∫
G/H
∣TH(φ∗G

q )(xH)∣p dµ(xH)

≤ ∫
G/H

TH(∣φ∗G
q ∣p)(xH) dµ(xH)

= ∫
G
∣φ∗G

q (x)∣p dx = ∥φq∥Lp(G) = ∥φ∥Lp(G/H ,µ) .
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Corollary 4.22 Let φ ∈ A(G/H), 1 ≤ p <∞, and let µ be the normalizedG-invariant
measure on G/H. _en we have

(i) φ∗
G/H

∗
G/H = φ,

(ii) ∥φ∗G/H∥Lp(G/H ,µ) = ∥φ∥Lp(G/H ,µ),
(iii) (φ∗G/H)q = φ∗G

q .

_en we can deduce the following result.

Proposition 4.23 Let φ,ψ ∈ C(G/H). _en we have

(φ ∗G/H ψ)∗
G/H

= ψ∗
G/H

∗G/H φ∗
G/H

.

Proof Using Propositions 4.10, 4.21, and (2.2) we have

(φ ∗G/H ψ)∗
G/H

= TH((φ ∗G/H ψ)∗
G

q ) = TH((φq ∗G ψq)∗
G
) = TH(ψ∗

G

q ∗G φ∗
G

q ).

Since φ∗
G

q ∈ A(G ∶H), using Proposition 4.3, we can write

TH(ψ∗
G

q ∗G φ∗
G

q )(xH) = ∫
G/H

TH(ψ∗
G

q )(yH)TH(φ∗
G

q )(y−1xH) dµ(yH)

= ∫
G/H

TH(ψ∗
G

q )(yH)JTH(φ∗
G

q )(y−1xH) dµ(yH)

= TH(ψ∗
G

q ) ∗G/H TH(φ∗
G

q )(xH) = ψ∗
G/H

∗G/H φ∗
G/H
(xH),

for x ∈ G, which completes the proof.

_en we can summarize our recent results as follows.

Corollary 4.24 Let µ be the normalized G-invariant measure over the homogeneous
space G/H and p ≥ 1. _e normed space (A(G/H), ∥ ⋅ ∥Lp(G/H ,µ)) equipped with the
convolution ∗G/H and the involution ∗G/H is a normed ∗-algebra.

_e following proposition presents properties of involution over Lp-spaces.

Proposition 4.25 Let µ be the normalized G-invariant measure on G/H and
1 ≤ p < ∞. _e involution map ∗

G/H ∶C(G/H) → C(G/H) given by (4.2) has a unique
extension to ∗

G/H ∶ Lp(G/H, µ)→ Lp(G/H, µ) which, for all φ ∈ Lp(G/H, µ), satisûes
(i) φ∗

G/H
∗

G/H = Jpφ,
(ii) φ∗G/H = TH(φ∗G

q ),
(iii) ∥φ∗G/H∥Lp(G/H ,µ) ≤ ∥φ∥Lp(G/H ,µ).

Proof Let φ ∈ Lp(G/H, µ). Invoking the density of C(G/H) in Lp(G/H, µ), let
{φn} ∈ C(G/H) with φ = limn φn . _en we deûne φ∗

G/H ∶= limn φ∗
G/H

n . _en
∗

G/H ∶ Lp(G/H, µ)→ Lp(G/H, µ) is well deûned and satisûes (i)–(iii).
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Corollary 4.26 Let µ be a G-invariant measure on G/H and 1 ≤ p < ∞. _en we
have φ∗G/H(xH) = ∫H φ(h−1x−1H) dh, for almost all x ∈ G.

Corollary 4.27 Let µ be the normalized G-invariant measure on G/H and φ ∈
Ap(G/H, µ) with 1 ≤ p <∞. _en we have

(i) φ∗
G/H

∗
G/H = φ,

(ii) ∥φ∗G/H∥Lp(G/H ,µ) = ∥φ∥Lp(G/H ,µ),
(iii) (φ∗G/H)q = φ∗G

q .

_e next result summarizes our recent results in terms of the Banach ∗-algebras.

_eorem 4.28 Let µ be the normalizedG-invariantmeasure on G/H and 1 ≤ p <∞.
_e Banach function algebra Ap(G/H, µ) equipped with the extended involution is a
Banach function ∗-algebra.

We ûnish this section by the following interesting observations.

Proposition 4.29 Let µ be the normalized G-invariant measure over the compact
homogeneous space G/H, p ≥ 1 and φ ∈ Lp(G/H, µ). _en

(4.3) (φ∗
G/H
)q = ((Jpφ)q)

∗
G

.

Proof Let µ be thenormalizedG-invariantmeasure over the compacthomogeneous
space G/H and φ ∈ Lp(G/H, µ). _en for x ∈ G, we have

((Jpφ)q)∗
G
(x) = (Jpφ)q(x−1) = Jpφ(x−1H)

= (∫
H
φ(hx−1H) dh)

−

= ∫
H
φ(hx−1H) dh

= ∫
H
φ(h−1x−1H) dh = φ∗

G/H
(xH) = (φ∗

G/H
)q(x),

which completes the proof.

Corollary 4.30 Let µ be the normalized G-invariant measure over the compact ho-
mogeneous space G/H, p ≥ 1, and φ ∈ Ap(G/H, µ). _en, (φ∗G/H)q = φ∗

G

q .

5 Abstract Representations of Convolution Function Algebras over
Homogeneous Spaces of Compact Groups

In this section we present a classical study for a class of abstract linear representa-
tions on Banach convolution function algebras over homogeneous spaces of compact
groups. It is still assumed that G is a compact group and H is a closed subgroup of
G. Also, µ is the normalized G-invariant measure over the compact homogeneous
space G/H associated with Weil’s formula and 1 ≤ p < ∞. We then introduce a class
of structured abstract linear representations of the Banach function sub-algebras of
Lp(G/H, µ).
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For a continuous unitary representation (π,Hπ) of G, deûne

(5.1) Tπ
H ∶= ∫

H
π(h) dh,

where the operator valued integral (5.1) is considered in the weak sense. In other
words, ⟨Tπ

Hζ , ξ⟩ = ∫H⟨π(h)ζ , ξ⟩ dh, for ζ , ξ ∈ Hπ . _e function h ↦ ⟨π(h)ζ , ξ⟩
is bounded and continuous on H and H is compact. _us the right integral is the
ordinary integral of a function in L1(H). Hence, Tπ

H is a bounded operator on Hπ
with ∥Tπ

H∥ ≤ 1.
Let KH

π ∶= {ζ ∈ Hπ ∶ π(h)ζ = ζ for all h ∈ H}. _en KH
π is a closed subspace of

Hπ and we have R(Tπ
H) =KH

π , where R(Tπ
H) = {Tπ

Hζ ∶ ζ ∈Hπ}.
Next we present basic properties of the linear operator Tπ

H .

Proposition 5.1 Let (π,Hπ) be a continuous unitary representation ofG withTπ
H /= 0.

_en
(i) _e linear operator Tπ

H is a partial isometric (orthogonal) projection;
(ii) _e linear operator Tπ

H is the identity operator if and only if π(h) = I for all h ∈ H.

Proof (i) Using compactness of H, it can be easily checked that (Tπ
H)∗ = Tπ

H . As
well, we achieve that

Tπ
HTπ

H = (∫
H
π(h) dh)(∫

H
π(t) dt) = ∫

H
π(h)(∫

H
π(t) dt) dh

= ∫
H
(∫

H
π(h)π(t) dt) dh = ∫

H
(∫

H
π(ht) dt) dh = ∫

H
Tπ

Hdt = Tπ
H .

(ii) Let π(h) = I for all h ∈ H. _us, it is straightforward to see that Tπ
H = I.

Conversely, assume that Tπ
H = I. _en for t ∈ H, we can write

π(t) = π(t)I = π(t)Tπ
H = π(t)(∫

H
π(h)dh) = ∫

H
π(t)π(h) dh

= ∫
H
π(th) dh = ∫

H
π(h) dh = Tπ

H = I.

Let π∶G → U(Hπ) be a continuous unitary representation of G on the Hilbert
spaceHπ with Tπ

H /= 0. For xH ∈ G/H, deûne Γπ(xH) ∶= π(x)Tπ
H . _us, we have

⟨ζ , Γπ(xH)ξ⟩ = ⟨ζ , π(x)Tπ
H ξ⟩,

for all ζ , ξ ∈Hπ .
_en we have

Γπ(xH) = π(x)∫
H
π(h) dh = ∫

H
π(x)π(h) dh = ∫

H
π(xh) dh.

For φ ∈ L1(G/H, µ), deûne the linear operator Γπ(φ) on Hπ via

(5.2) Γπ(φ) ∶= ∫
G/H

φ(xH)Γπ(xH) dµ(xH),

_e operator-valued integral (5.2) is also considered in the weak sense, i.e.,

⟨Γπ(φ)ζ , ξ⟩ = ∫
G/H

φ(xH)⟨Γπ(xH)ζ , ξ⟩ dµ(xH),

for all ζ , ξ ∈Hπ .
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In other words, for the continuous unitary representation (π,Hπ) of G with Tπ
H /=

0 and ζ , ξ ∈Hπ , we have ⟨Γπ(φ)ζ , ξ⟩ = ∫G/H φ(xH)⟨π(x)Tπ
Hζ , ξ⟩ dµ(xH).

_us for ζ , ξ ∈Hπ , we get

∣⟨Γπ(φ)ζ , ξ⟩∣ = ∣∫
G/H

φ(xH)⟨π(x)Tπ
Hζ , ξ⟩ dµ(xH)∣

≤ ∫
G/H
∣φ(xH)∣∣⟨π(x)Tπ

Hζ , ξ⟩∣ dµ(xH)

≤ ∫
G/H
∣φ(xH)∣∥π(x)Tπ

Hζ∥∥ξ∥ dµ(xH)

= ∫
G/H
∣φ(xH)∣∥Tπ

Hζ∥∥ξ∥ dµ(xH)

≤ ∫
G/H
∣φ(xH)∣∥ζ∥∥ξ∥ dµ(xH) = ∥ζ∥∥ξ∥∥φ∥L1(G/H ,µ) .

_erefore, Γπ(φ) is a bounded linear operator on Hπ satisfying

(5.3) ∥Γπ(φ)∥ ≤ ∥φ∥L1(G/H ,µ) .

_e next results present basic properties of the linear operators Γπ(φ) with φ ∈
L1(G/H, µ).

Proposition 5.2 Let µ be the normalized G-invariant measure on the compact ho-
mogeneous space G/H. Let (π,Hπ) be a continuous unitary representation of G with
Tπ

H /= 0, f ∈ L1(G), and φ ∈ L1(G/H, µ). _en
(i) Γπ(TH( f )) = π( f )Tπ

H ,
(ii) Γπ(TH( f ))Tπ

H = Γπ(TH( f )),
(iii) If π(Rh f ) = π( f ) for all h ∈ H, we have Γπ(TH( f )) = π( f ),
(iv) Γπ(φ) = π(φq).

Proof (i) Let ζ , ξ ∈ Hπ . Invoking the deûnition of the linear operator Γπ(TH( f ))
and using Weil’s formula in the weak sense, we can write

⟨Γπ(TH( f ))ζ , ξ⟩ = ∫
G/H

TH( f )(xH)⟨Γπ(xH)ζ , ξ⟩ dµ(xH)

= ∫
G/H

TH( f )(xH)⟨π(x)Tπ
Hζ , ξ⟩ µ(xH)

= ∫
G/H

TH( f .gζ ,ξ)(xH) dµ(xH)

= ∫
G
f (x)⟨π(x)Tπ

Hζ , ξ⟩ dx

= ⟨(∫
G
f (x)π(x) dx)Tπ

Hζ , ξ⟩ = ⟨π( f )Tπ
Hζ , ξ⟩,

where gζ ,ξ ∶G → C is given by gζ ,ξ(x) ∶= ⟨π(x)Tπ
Hζ , ξ⟩ for x ∈ G. Since ζ , ξ ∈Hπ was

arbitrary, we deduce that Γπ(TH( f )) = π( f )Tπ
H .

(ii) Let f ∈ L1(G). _en using (i), and since Tπ
H is a projection, we get

Γπ(TH( f ))Tπ
H = π( f )Tπ

HTπ
H = π( f )Tπ

H = Γπ(TH( f )).
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(iii) Let f ∈ L1(G) with π(Rh f ) = π( f ) for all h ∈ H. _en using (i), we get

Γπ(TH( f )) = π( f )Tπ
H = π( f )(∫

H
π(h)dh) = ∫

H
π( f )π(h) dh

= ∫
H
π( f )π(h−1) dh = ∫

H
π(Rh f ) dh = ∫

H
π( f ) dh = π( f ).

(iv) Let φ ∈ L1(G/H, µ). _en we have φq ∈ L1(G ∶H). Hence, Rhφq = φq for all
h ∈ H. _us, we get π(Rhφq) = π(φq) for all h ∈ H. _erefore, using (iii), we can
write Γπ(φ) = Γπ(TH(φq)) = π(φq).

_e next proposition presents the connection of Γπ with ∗
G/H

.

Proposition 5.3 Let µ be the normalized G-invariant measure on G/H. Let (π,Hπ)
be a continuous unitary representation of G with Tπ

H /= 0 and p ≥ 1. _en for φ ∈
Lp(G/H, µ), we have

(5.4) Γπ(φ∗
G/H
) = Γπ(Jpφ)∗ .

Proof Let φ ∈ Lp(G/H, µ). _en using (4.3), we have

Γπ(φ∗
G/H
) = π((φ∗

G/H
)q) = π(((Jpφ)q)∗

G
) = π((Jpφ)q)∗ = Γπ(Jpφ)∗ .

_e following result presents an interesting commutation relation of Γπ with J
and Tπ

H .

Proposition 5.4 Let µ be the normalized G-invariant measure on the compact ho-
mogeneous space G/H. Let (π,Hπ) be a continuous unitary representation of G with
Tπ

H /= 0 and p ≥ 1. _en Γπ ○ Jp = Tπ
H ○ Γπ .

Proof Let φ ∈ Lp(G/H, µ). _en we have

Γπ(Jpφ) = Γπ(∫
H
Lhφ dh) = ∫

H
Γπ(Lhφ) dh = ∫

H
π(h)Γπ(φ) dh

= (∫
H
π(h) dh)Γπ(φ) = Tπ

HΓπ(φ).

_e following theorem shows that themap φ ↦ Γπ(φ), deûnes a representation of
the Banach algebra Lp(G/H, µ).

_eorem 5.5 Let µ be the normalized G-invariant measure on G/H and p ≥ 1.
Also let (π,Hπ) be a continuous unitary representation of G with Tπ

H /= 0. _en
Γπ ∶ Lp(G/H, µ) → B(Hπ) given by φ ↦ Γπ(φ) is a bounded linear representation
of the Banach algebra Lp(G/H, µ) on the Hilbert spaceHπ satisfying
(5.5) ⋂

φ∈L1(G/H ,µ)
ker(Γπ(φ)) = kerTπ

H .

Proof Let (π,Hπ) be a continuous unitary representation of G with Tπ
H /= 0. It is

easy to see that themap φ ↦ Γπ(φ) is linear. Also, the linear map Γπ ∶ Lp(G/H, µ) →
B(Hπ) is bounded. Indeed, using (5.3) for φ ∈ Lp(G/H, µ), we can write

∥Γπ(φ)∥ ≤ ∥φ∥L1(G/H ,µ) ≤ ∥φ∥Lp(G/H ,µ) .
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Let φ,ψ ∈ Lp(G/H, µ). _en we have

Γπ(φ ∗p
G/H ψ) = π((φ ∗p

G/H ψ)q) = π(φq ∗G ψq)
= π(φq)π(ψq) = Γπ(φ)Γπ(ψ),

which shows that the map Γπ ∶ Lp(G/H, µ) → B(Hπ) is a bounded linear represen-
tation. Let ζ ∈ kerTπ

H and let φ ∈ Lp(G/H, µ) be arbitrary. Also, let f ∈ Lp(G)
with φ = TH( f ). _en we have Γπ(φ)ζ = Γπ(TH( f ))ζ = π( f )Tπ

Hζ = 0, which im-
plies that ζ ∈ ker(Γπ(φ)). Hence, kerTπ

H ⊆ ⋂φ∈Lp(G/H ,µ) ker(Γπ(φ)). Conversely,
let ζ ∈ ⋂φ∈Lp(G/H ,µ) ker(Γπ(φ)). _en Γπ(φ)ζ = 0, for all φ ∈ Lp(G/H, µ). _us for
f ∈ Lp(G),we canwrite π( f )Tπ

Hζ = Γπ(TH( f ))ζ = 0. _erefore, π( f )Tπ
Hζ = 0, for all

f ∈ Lp(G). Since the ∗-representation π∶ Lp(G)→ B(Hπ) is non-degenerate, we get
Tπ

Hζ = 0 and hence ζ ∈ kerTπ
H . _is implies that ⋂φ∈L1(G/H ,µ) ker(Γπ(φ)) ⊆ kerTπ

H .
_us, we conclude (5.5).

_e next corollary presents a criterion that guarantees the representation

Γπ ∶ Lp(G/H, µ)→ B(Hπ)
to be non-degenerate.

Corollary 5.6 Let µ be the normalizedG-invariant measure on G/H and p ≥ 1. And
let (π,Hπ) be a continuous unitary representation of G with Tπ

H /= 0. _en

Γπ ∶ Lp(G/H, µ)→ B(Hπ)
given by φ ↦ Γπ(φ) is a non-degenerate representation of the Banach algebra
Lp(G/H, µ) on the Hilbert space Hπ if and only if π(h) = I for all h ∈ H. In this
case we have Γπ(Lhφ) = Γπ(φ), for all h ∈ H and φ ∈ Lp(G/H, µ).

Proof Invoking (5.5), the representation Γπ ∶ Lp(G/H, µ) → B(Hπ) given by φ ↦
Γπ(φ) is non-degenerate if and only if the linear operator Tπ

H is injective. Since Tπ
H is

an orthogonal projection, we deduce that Tπ
H is injective if and only if Tπ

H = I. _en
Proposition 5.1 guarantees that Tπ

H is injective if and only if π(h) = I for all h ∈ H.
_erefore, we conclude that the representation Γπ ∶ Lp(G/H, µ) → B(Hπ) given by
φ ↦ Γπ(φ) is non-degenerate if and only if π(h) = I for all h ∈ H. In this case, for
h ∈ H and φ ∈ Lp(G/H, µ), we can write

Γπ(Lhφ) = π((Lhφ)q) = π(Lhφq) = π(h)π(φq) = π(φq) = Γπ(φ),
which completes the proof.

_e following theorem shows that themap φ ↦ Γπ(φ) deûnes a representation of
the Banach ∗-algebra Ap(G/H, µ).

_eorem 5.7 Let µ be the normalized G-invariant measure over G/H and p ≥ 1; let
(π,Hπ) be a continuous unitary representation of G with Tπ

H /= 0. _en

Γπ ∶Ap(G/H, µ)→ B(Hπ)
given by φ ↦ Γπ(φ) is a bounded∗-representation of the Banach∗-algebra Ap(G/H, µ)
on the Hilbert spaceHπ .
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Proof Let (π,Hπ) be a continuous unitary representation of G with Tπ
H /= 0. _en

using _eorem 5.5, themapping Γπ ∶ Lp(G/H, µ) → B(Hπ) given by φ ↦ Γπ(φ) is a
bounded representation of the Banach algebra Lp(G/H, µ) on theHilbert spaceHπ .
_us, the restriction of Γπ to the closed sub-algebra Ap(G/H, µ) of Lp(G/H, µ) is
also a bounded representation of the Banach ∗-algebra Ap(G/H, µ) on the Hilbert
spaceHπ . Now let φ ∈ Ap(G/H, µ). _en we have Jpφ = φ. _us, using (5.4), we get

Γπ(φ∗
G/H
) = Γπ(Jpφ)∗ = Γπ(φ)∗ ,

which guarantees that Γπ ∶Ap(G/H, µ) → B(Hπ) given by φ ↦ Γπ(φ) is a bounded
∗-representation of the Banach ∗-algebra Ap(G/H, µ) on theHilbert spaceHπ .

_e next result also presents a criterion which guarantees the representation

Γπ ∶Ap(G/H, µ)→ B(Hπ)
to be non-degenerate.

Corollary 5.8 Let µ be the normalized G-invariant measure on G/H and p ≥ 1. Let
(π,Hπ) be a continuous unitary representation of G with Tπ

H /= 0. _en

Γπ ∶Ap(G/H, µ)→ B(Hπ)
given by φ ↦ Γπ(φ) is a non-degenerate ∗-representation of the Banach ∗-algebra
Ap(G/H, µ) on the Hilbert spaceHπ if and only if π(h) = I for all h ∈ H.

Proof By_eorem 5.7, themap Γπ ∶Ap(G/H, µ)→ B(Hπ) given by φ ↦ Γπ(φ) is a
∗-representation of the Banach ∗-algebra Ap(G/H, µ) on theHilbert spaceHπ . _en
using (5.5), we can write

kerTπ
H = ⋂

φ∈Lp(G/H ,µ)
ker(Γπ(φ)) ⊆ ⋂

φ∈Ap(G/H ,µ)
ker(Γπ(φ)).

_us, if the ∗-representation Γπ ∶Ap(G/H, µ) → B(Hπ) is non-degenerate, then we
deduce that kerTπ

H = {0} and hence Tπ
H is injective. _erefore, π(h) = I for all

h ∈ H. Conversely, suppose that π(h) = I for all h ∈ H. _en Tπ
H = I and hence

kerTπ
H = {0}. Now let ζ ∈ ⋂φ∈Ap(G/H ,µ) ker(Γπ(φ)). _us, using Proposition 5.4 for

φ ∈ Lp(G/H, µ), we can write Γπ(φ)ζ = Tπ
HΓπ(φ)ζ = Γπ(Jpφ)ζ = 0, since Jpφ ∈

Ap(G/H, µ). _us, Γπ(φ)ζ = 0, for all φ ∈ Lp(G/H, µ). Using Corollary 5.6, the
representation Γπ ∶ Lp(G/H, µ) → B(Hπ) is non-degenerate and hence we conclude
that ζ = 0, which completes the proof.
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