Canad. J. Math. Vol. 70 (1), 2018 pp. 97-116 http://dx.doi.org/10.4153/CJM-2016-043-9 © Canadian Mathematical Society 2017

A Class of Abstract Linear Representations for Convolution Function Algebras over Homogeneous Spaces of Compact Groups

Arash Ghaani Farashahi

Abstract. This paper introduces a class of abstract linear representations on Banach convolution function algebras over homogeneous spaces of compact groups. Let *G* be a compact group and *H* a closed subgroup of *G*. Let μ be the normalized *G*-invariant measure over the compact homogeneous space *G*/*H* associated with Weil's formula and $1 \le p < \infty$. We then present a structured class of abstract linear representations of the Banach convolution function algebras $L^p(G/H, \mu)$.

1 Introduction

The mathematical theory of Banach convolution algebras plays significant and classical roles in abstract harmonic analysis, representation theory, functional analysis, operator theory, and C^* -algebras, see [1–3, 10, 15, 21, 22] and the references therein. Over the last decades, some new aspects and applications of Banach convolution algebras have achieved significant popularity in time-frequency (Gabor) analysis and coorbit theory, see [4–6, 11] and the references therein.

The following paper introduces the structured class of linear representations over the Banach function algebras related to homogeneous spaces (coset spaces) of compact groups. In a nutshell, homogeneous spaces are group-like structures with many interesting applications in mathematical physics, differential geometry, geometric analysis, and coherent state (covariant) transforms, see [16–20].

Section 2 is devoted to fixing notations and provides a summary of classical harmonic analysis over compact groups and homogeneous spaces (left coset spaces) of compact groups. Let *G* be a compact group and *H* a closed subgroup of *G*. Let μ be the normalized *G*-invariant measure over the homogeneous space *G*/*H* associated with Weil's formula and $1 \le p < \infty$. In section 3 we study abstract harmonic analysis over the Banach function spaces related to homogeneous spaces of compact groups. Then we introduce the abstract notion of generalized convolution and involution for L^p -function spaces over homogeneous spaces of compact groups. We also study properties of these convolutions and involutions. Finally, we shall introduce a class of structured linear representations over function sub-algebras of the Banach convolution function algebras $L^p(G/H, \mu)$ and we address properties of these representations.

Received by the editors July 20, 2016; revised November 4, 2016.

Published electronically February 21, 2017.

AMS subject classification: 43A85, 47A67, 20G05.

Keywords: homogeneous space, linear representation, continuous unitary representation, convolution function algebra, compact group, convolution, involution.

2 Preliminaries and Notations

Let *X* be compact Hausdorff space. By $\mathcal{C}(X)$ we mean the space of all continuous complex valued functions on *X*. If μ is a positive Radon measure on *X*, then for each $1 \le p < \infty$, the Banach space of equivalence classes of μ -measurable complex valued functions $f: X \to \mathbb{C}$ such that

$$\|f\|_{L^{p}(X,\mu)} = \left(\int_{X} |f(x)|^{p} d\mu(x)\right)^{1/p} < \infty$$

is denoted by $L^p(X, \mu)$. It contains $\mathcal{C}(X)$ as a $\|\cdot\|_{L^p(X, \mu)}$ -dense subspace.

Let *G* be a compact group with the probability Haar measure dx. For $p \ge 1$ the notation $L^p(G)$ stands for the Banach function space $L^p(G, dx)$. The standard convolution for $f, g \in L^p(G)$ is defined via

$$f *_G g(x) = \int_G f(y)g(y^{-1}x) \, dy \quad (x \in G)$$

The involution for $f \in L^p(G)$, is defined by $f^{*^G}(x) = \overline{f(x^{-1})}$ for $x \in G$. Then the Banach function space $L^p(G)$ equipped with the above convolution and involution is a Banach *-algebra, that is,

(2.1)
$$\|f *_G g\|_p \le \|f\|_p \|g\|_p,$$

(2.2)
$$(f *_G g)^{*^{\circ}} = g^{*^{\circ}} *_G f^{*^{\circ}},$$

for all $f, g \in L^p(G)$, see [7,15,22] and the references therein.

Any continuous unitary representation (π, \mathcal{H}_{π}) of *G* determines a non-degenerate *-representation of the Banach *-algebra $L^{p}(G)$ on the Hilbert space \mathcal{H}_{π} via the linear map $f \mapsto \pi(f)$ given by the following operator valued integral [7, Theorem 3.9]:

(2.3)
$$\pi(f) = \int_G f(x)\pi(x)dx.$$

It is also shown that each non-degenerate *-representation of the Banach *-algebra $L^{p}(G)$ on a Hilbert space \mathcal{H} arises from a unique continuous unitary representation of *G* on the Hilbert space \mathcal{H} via (2.3)[7, Theorem 3.11].

Let *H* be a closed subgroup of *G* with the probability Haar measure *dh*. The left coset space *G*/*H* is interpreted as a locally compact homogeneous space, and *G* acts on it from the left. The map $q: G \to G/H$ given by $x \mapsto q(x) := xH$ is the surjective canonical map. The classical aspects of abstract harmonic analysis on locally compact homogeneous spaces have been quite well studied by several authors, see [7,15,22] and the references therein. The function space C(G/H) consists of all functions $T_H(f)$, where $f \in C(G)$ and $T_H(f)(xH) = \int_H f(xh) dh$. Let μ be a Radon measure on G/H and $x \in G$. The translation μ_x of μ is defined by $\mu_x(E) = \mu(xE)$ for all Borel subsets *E* of *G*/*H*. The measure μ is called *G*-invariant if $\mu_x = \mu$ for all $x \in G$. The homogeneous space *G*/*H* has a normalized *G*-invariant measure μ that satisfies Weil's formula

(2.4)
$$\int_{G/H} T_H(f)(xH) \, d\mu(xH) = \int_G f(x) \, dx$$

and hence the linear map T_H is norm-decreasing, that is,

$$||T_H(f)||_{L^1(G/H,\mu)} \le ||f||_{L^1(G)},$$

for all $f \in L^1(G)$, see [22, §8.2].

For a function $\varphi \in L^p(G/H, \mu)$ and $z \in G$, the left action of z on φ is defined by $L_z\varphi(xH) = \varphi(z^{-1}xH)$ for $xH \in G/H$. Then it can be readily checked that $L_z: L^p(G/H, \mu) \to L^p(G/H, \mu)$ is a unitary operator.

3 Classical Harmonic Analysis over Function Spaces on Homogeneous Spaces of Compact Groups

Throughout this paper we assume that *G* is a compact group with the probability Haar measure dx, *H* is a closed subgroup of *G* with the probability Haar measure dh, and μ is the normalized *G*-invariant measure on the compact homogeneous space *G*/*H* satisfying (2.4) with respect to the probability Haar measures of *G* and *H*. Henceforth, we may say μ is the normalized *G*-invariant measure over the compact homogeneous space space *G*/*H*, at times.

The following proposition shows that the linear map $T_H: \mathcal{C}(G) \to \mathcal{C}(G/H)$ is uniformly continuous [8, 9, 12–14].

Proposition 3.1 The linear map $T_H: \mathcal{C}(G) \to \mathcal{C}(G/H)$ is uniformly continuous.

The next theorem [13,14] proves that the linear map T_H is norm-decreasing in other L^p -spaces when p > 1.

Theorem 3.2 Let μ be the normalized *G*-invariant measure on *G*/*H*, and $p \ge 1$. The linear map $T_H: \mathbb{C}(G) \to \mathbb{C}(G/H)$ satisfies $||T_H(f)||_{L^p(G/H,\mu)} \le ||f||_{L^p(G)}$ for all $f \in \mathbb{C}(G)$. Hence, it has a unique extension to a norm-decreasing linear map from $L^p(G)$ onto $L^p(G/H, \mu)$.

As an immediate consequence of Theorem 3.2 we deduce the following corollary.

Corollary 3.3 Let μ be the normalized *G*-invariant measure on *G*/*H*, and $p \ge 1$. Let $\varphi \in L^p(G/H, \mu)$ and $\varphi_q := \varphi \circ q$. Then $\varphi_q \in L^p(G)$ with

(3.1)
$$\|\varphi_q\|_{L^p(G)} = \|\varphi\|_{L^p(G/H,\mu)}.$$

Proof Indeed, using Weil's formula, we can write

$$\begin{split} \|\varphi_{q}\|_{L^{p}(G)}^{p} &= \int_{G} |\varphi_{q}(x)|^{p} \, dx = \int_{G/H} T_{H}(|\varphi_{q}|^{p})(xH) \, d\mu(xH) \\ &= \int_{G/H} \left(\int_{H} |\varphi_{q}(xh)|^{p} \, dh \right) \, d\mu(xH), \end{split}$$

and since *H* is compact and *dh* is normalized, we get

$$\begin{split} \int_{G/H} \left(\int_{H} |\varphi_q(xh)|^p \, dh \right) d\mu(xH) &= \int_{G/H} \left(\int_{H} |\varphi(xhH)|^p \, dh \right) d\mu(xH) \\ &= \int_{G/H} \left(\int_{H} |\varphi(xH)|^p \, dh \right) d\mu(xH) \end{split}$$

$$= \int_{G/H} |\varphi(xH)|^p \Big(\int_H dh\Big) d\mu(xH)$$
$$= \int_{G/H} |\varphi(xH)|^p d\mu(xH),$$

which implies (3.1).

The next proposition shows that the linear operator $T_H: L^2(G) \to L^2(G/H, \mu)$ is a partial isometric linear map.

Proposition 3.4 Let μ be the normalized G-invariant measure on G/H. Then

 $T_H: L^2(G) \to L^2(G/H, \mu)$

is a partial isometric linear map.

The following corollaries are straightforward consequences of Proposition 3.4. Let $\mathcal{J}^2(G, H) := \{f \in L^2(G) : T_H(f) = 0\}$ and let $\mathcal{J}^2(G, H)^{\perp}$ be the orthogonal complement of the closed subspace $\mathcal{J}^2(G, H)$ in $L^2(G)$.

Corollary 3.5 Let $P_{\mathcal{J}^2(G,H)}$ and $P_{\mathcal{J}^2(G,H)^{\perp}}$ be the orthogonal projections onto the closed subspaces $\mathcal{J}^2(G,H)$ and $\mathcal{J}^2(G,H)^{\perp}$ respectively. Then for each $f \in L^2(G)$ and for almost everywhere $x \in G$ we have

$$P_{\mathcal{J}^{2}(G,H)^{\perp}}(f)(x) = T_{H}(f)(xH), \qquad P_{\mathcal{J}^{2}(G,H)}(f)(x) = f(x) - T_{H}(f)(xH).$$

Corollary 3.6 Let μ be the normalized *G*-invariant measure on *G*/*H*.

- (i) $\mathcal{J}^2(G,H)^{\perp} = \{\psi_q = \psi \circ q : \psi \in L^2(G/H,\mu)\}.$
- (ii) For $f \in \mathcal{J}^2(G, H)^{\perp}$ and $h \in H$, we have $R_h f = f$.
- (iii) For $\psi \in L^2(G/H, \mu)$, we have $\|\psi_q\|_{L^2(G)} = \|\psi\|_{L^2(G/H, \mu)}$.
- (iv) For $f, g \in \mathcal{J}^2(G, H)^{\perp}$, we have $\langle T_H(f), T_H(g) \rangle_{L^2(G/H, \mu)} = \langle f, g \rangle_{L^2(G)}$.

Remark 3.7. Invoking Corollary 3.6, one can regard the Hilbert space $L^2(G/H, \mu)$ as a closed subspace of $L^2(G)$, *i.e.*, the closed subspace consists of all $f \in L^2(G)$ that satisfy $R_h f = f$ for all $h \in H$. Then Theorem 3.2 and Proposition 3.4 guarantee that the linear map $T_H: L^2(G) \to L^2(G/H, \mu) \subset L^2(G)$ is an orthogonal projection onto $L^2(G/H, \mu)$.

4 Banach Convolution Algebras over Homogeneous Spaces of Compact Groups

In this section we present the abstract structure of function *-algebras over homogeneous space (left coset spaces) of compact groups.

Let $\mathcal{C}(G:H) := \{f \in \mathcal{C}(G) : R_h f = f \forall h \in H\}$. Then one can define

$$A(G:H) := \{ f \in \mathcal{C}(G) : L_h f = f \text{ for } h \in H \},\$$

$$A(G/H) := \{ \varphi \in \mathcal{C}(G/H) : L_h \varphi = \varphi \text{ for } h \in H \}.$$

For $1 \le p < \infty$, we define

$$A^{p}(G:H) := \{ f \in L^{p}(G) : L_{h}f = f \text{ for } h \in H \},\$$

$$A^{p}(G/H, \mu) := \{ \varphi \in L^{p}(G/H, \mu) : L_{h}\varphi = \varphi \text{ for } h \in H \},\$$

where $L_z f(x) \coloneqq f(z^{-1}x)$ and $R_z f(x) \coloneqq f(xz)$, for $z, x \in G$. It is easy to see that $A^p(G/H, \mu)$ is the topological closure of A(G/H) in

 $L^p(G/H,\mu)$

and hence it is a closed linear subspace of $L^{p}(G/H, \mu)$. One can also readily check that $A^{p}(G:H)$ is the topological closure of A(G:H) in $L^{p}(G)$ and hence it is a closed linear subspace of $L^{p}(G)$.

Remark 4.1. Let *G* be a compact group and let *H* be a closed normal subgroup of *G*. Let μ be the normalized *G*-invariant measure over the left coset space G/H and $1 \le p \le \infty$. Let $\varphi \in C(G/H)$ and $t \in H$. Then, for $xH \in G/H$, we have $t^{-1}xH = xH$. Hence we can write $L_t\varphi(xH) = \varphi(t^{-1}xH) = \varphi(xH)$. Thus we deduce that $\varphi \in A(G/H)$. Therefore, A(G/H) = C(G/H) and also $A^p(G/H, \mu) = L^p(G/H, \mu)$ if *H* is normal in *G*.

We continue by listing some basic observations.

Proposition 4.2 Let μ be the normalized G-invariant measure on G/H. Then

- (i) T_H maps $\mathcal{C}(G:H)$ onto $\mathcal{C}(G/H)$.
- (ii) T_H maps A(G:H) onto A(G/H).
- (iii) T_H maps $A^p(G:H)$ onto $A^p(G/H, \mu)$.

Proof (i) This is straightforward.

(ii) Let $f \in A(G:H)$, $x \in G$, and $t \in H$. Then we have

$$L_t T_H(f)(xH) = T_H(f)(t^{-1}xH) = \int_H f(t^{-1}xh) \, dh = \int_H f(xh) \, dh = T_H(f)(xH),$$

which implies that $T_H(f) \in A(G/H)$. Let $\psi \in A(G/H)$. Then $\psi_q \in A(G:H)$ and $T_H(\psi_q) = \psi$. Hence, we deduce that T_H maps A(G:H) onto A(G/H).

(iii) Using (i) and since A(G:H) is dense $L^p(G:H)$ and A(G/H) is dense in

$$A^p(G/H)$$

as well, we conclude that T_H maps $A^p(G:H)$ onto $A^p(G/H, \mu)$.

Proposition 4.3 Let G be a compact group and H be a closed subgroup of G. Let μ be the normalized G-invariant measure on G/H and $f, g \in L^1(G)$.

(i) For almost everywhere $x \in G$ we have

$$T_{H}(f *_{G} g)(xH) = \int_{G/H} \left(\int_{H} f(yt) \left(\int_{H} g(t^{-1}y^{-1}xh) \, dh \right) \, dt \right) \, d\mu(yH).$$

(ii) For $g \in A^1(G : H)$ and almost everywhere $x \in G$ we have

$$T_H(f *_G g)(xH) = \int_{G/H} T_H(f)(yH) T_H(g)(y^{-1}xH) \, d\mu(yH).$$

Proof (i) Let $f, g \in L^1(G)$ and $x \in G$. We can write

$$T_{H}(f *_{G} g)(xH) = \int_{H} f *_{G} g(xh) dh = \int_{H} \left(\int_{G} f(y)g(y^{-1}xh) dy \right) dh.$$

Then, using Weil's formula, we get

$$T_{H}(f *_{G} g)(xH) = \int_{H} \left(\int_{G} f(y)g(y^{-1}xh) \, dy \right) dh$$

= $\int_{H} \left(\int_{G/H} \left(\int_{H} f(yt)g((yt)^{-1}xh) \, dt \right) d\mu(yH) \right) dh$
= $\int_{H} \left(\int_{G/H} \left(\int_{H} f(yt)g(t^{-1}y^{-1}xh) \, dt \right) d\mu(yH) \right) dh$
= $\int_{G/H} \left(\int_{H} f(yt) \left(\int_{H} g(t^{-1}y^{-1}xh) \, dh \right) dt \right) d\mu(yH).$

(ii) Now suppose that $g \in A^1(G:H)$. Thus $L_tg = g$ for all $t \in H$. Then using (i) and the fact that *H* is compact, we have

$$\begin{split} T_{H}(f *_{G} g)(xH) &= \int_{G/H} \Big(\int_{H} f(yt) \Big(\int_{H} g(t^{-1}y^{-1}xh) \, dh \Big) \, dt \Big) \, d\mu(yH) \\ &= \int_{G/H} \Big(\int_{H} f(yt) \Big(\int_{H} g(y^{-1}xh) \, dh \Big) \, dt \Big) \, d\mu(yH) \\ &= \int_{G/H} \Big(\int_{H} f(yt) \, dt \Big) \Big(\int_{H} g(y^{-1}xh) \, dh \Big) \, d\mu(yH) \\ &= \int_{G/H} T_{H}(f)(yH) T_{H}(g)(y^{-1}xH) \, d\mu(yH). \end{split}$$

For $\psi \in \mathcal{C}(G/H)$, let $J\psi: G/H \to \mathbb{C}$ be given by $J\psi(xH) := \int_H \psi(hxH) dh$, for all $xH \in G/H$. Then $J: \mathcal{C}(G/H) \to \mathcal{C}(G/H)$ given by $\psi \mapsto J\psi$ is a linear operator.

Remark 4.4. Let *G* be a compact group and let *H* be a closed normal subgroup of *G*. Then for all $x \in G$ and $h \in H$, we have hxH = xH. Hence, for $\psi \in C(G/H)$ we get

$$J\psi(xH) = \int_{H} \psi(h^{-1}xH) \, dh = \int_{H} \psi(xH) \, dh = \psi(xH).$$

Thus we deduce that the linear operator $J: C(G/H) \to C(G/H)$ is the identity operator if *H* is normal in *G*.

The following theorem presents basic properties of the linear operator J in the framework of abstract harmonic analysis.

Theorem 4.5 Let μ be the normalized *G*-invariant measure over *G*/*H*.

- (i) For each $1 \le p < \infty$ and $\psi \in \mathcal{C}(G/H)$ we have $\|J\psi\|_{L^p(G/H,\mu)} \le \|\psi\|_{L^p(G/H,\mu)}$.
- (ii) J maps $\mathcal{C}(G/H)$ onto A(G/H).
- (iii) J is a projection onto A(G/H).

Proof (i) Let $1 \le p < \infty$ and $\psi \in \mathcal{C}(G/H)$. Using compactness of *H* we get

$$\begin{split} \|J\psi\|_{L^{p}(G/H,\mu)}^{p} &= \int_{G/H} |J\psi(xH)|^{p} \, d\mu(xH) = \int_{G/H} \left| \int_{H} \psi(hxH) \, dh \right|^{p} d\mu(xH) \\ &\leq \int_{G/H} \int_{H} |\psi(hxH)|^{p} \, dh \, d\mu(xH). \end{split}$$

Again using compactness of *H* and replacing *x* by $h^{-1}x$, we get

$$\begin{split} \int_{G/H} \int_{H} |\psi(hxH)|^{p} \, d\mu(xH) \, dh &= \int_{H} \Big(\int_{G/H} |\psi(hxH)|^{p} \, d\mu(xH) \Big) \, dh \\ &= \int_{H} \Big(\int_{G/H} |\psi(xH)|^{p} \, d\mu(h^{-1}xH) \Big) \, dh \\ &= \int_{H} \Big(\int_{G/H} |\psi(xH)|^{p} \, d\mu(xH) \Big) \, dh \\ &= \|\psi\|_{L^{p}(G/H,\mu)}^{p}. \end{split}$$

(ii) Let $\psi \in \mathcal{C}(G/H)$ and $t \in H$. Then we have

$$L_t J \psi(xH) = J \psi(t^{-1}xH) = \int_H \psi(ht^{-1}xH) \, dh = \int_H \psi(hxH) = J \psi(xH),$$

for all $x \in G$. This implies that $J\psi \in A(G/H)$. Now suppose that $\psi \in A(G/H)$. Then we have $J\psi(xH) = \int_H \psi(hxH) dh = \int_H \psi(xH) dh = \psi(xH)$, for all $x \in G$. Thus $J\psi = \psi$. Hence, we deduce that J maps $\mathbb{C}(G/H)$ onto A(G/H).

(iii) Let $\psi \in \mathcal{C}(G/H)$ and $x \in G$. Then using the fact that $J\psi \in A(G/H)$, we have

$$J(J\psi)(xH) = \int_{H} J\psi(hxH) \, dh = \int_{H} J\psi(xH) \, dh = J\psi(xH),$$

which implies that $J(J\psi) = J\psi$. Hence, we deduce that $J \circ J = J$. Also, since the range of the linear operator *J* is precisely A(G/H), we conclude that *J* is a linear projection onto A(G/H).

Then we deduce the following consequences.

Corollary 4.6 Let μ be the normalized *G*-invariant measure on *G*/*H* and $1 \le p < \infty$.

(i) The linear operator $J: \mathcal{C}(G/H) \to A(G/H)$ has a unique extension to a bounded linear operator $J_p: L^p(G/H, \mu) \to A^p(G/H, \mu)$, satisfying

$$\|J_{p}\psi\|_{L^{p}(G/H,\mu)} \leq \|\psi\|_{L^{p}(G/H,\mu)}.$$

- (ii) The linear operator J_p maps $L^p(G/H, \mu)$ onto $A^p(G/H, \mu)$.
- (iii) The linear operator J_p is a projection onto $A^p(G/H)$.

Remark 4.7. Let *G* be a compact group and let *H* be a closed normal subgroup of *G*. Let $1 \le p < \infty$. Then the extended linear operator $J_p: L^p(G/H, \mu) \to A^p(G/H, \mu)$ is the identity operator.

Definition 4.8 Let *G* be a compact group, *H* a closed subgroup of *G*, and μ the normalized *G*-invariant measure over *G*/*H*. For $\varphi, \psi \in \mathcal{C}(G/H)$, let $\varphi *_{G/H} \psi : G/H \rightarrow \mathbb{C}$ be given by

(4.1)
$$\varphi *_{G/H} \psi(xH) = \int_{G/H} \varphi(yH) J \psi(y^{-1}xH) d\mu(yH),$$

for all $xH \in G/H$.

,

Remark 4.9. Let *G* be a compact group and *H* a closed normal subgroup of *G*. And let $\varphi, \psi \in \mathcal{C}(G/H)$ and $x \in G$. Invoking Remark 4.4, the linear map *J* is the identity operator and hence we have

$$\begin{split} \varphi *_{G/H} \psi(xH) &= \int_{G/H} \varphi(yH) J \psi(y^{-1}xH) \, d\mu(yH) \\ &= \int_{G/H} \varphi(yH) \psi(y^{-1}xH) \, d\mu(yH) \\ &= \int_{G/H} \varphi(yH) \psi(y^{-1}HxH) \, d\mu(yH) \\ &= \int_{G/H} \varphi(yH) \psi((yH)^{-1}xH) \, d\mu(yH), \end{split}$$

for all $xH \in G/H$. Hence, we deduce that the convolution defined by (4.1) coincides with the canonical convolution over the quotient group G/H if H is normal in G, see [1, 22].

The following results state interesting properties of the convolution $*_{G/H}$.

Proposition 4.10 Let μ be the normalized *G*-invariant measure over *G*/*H*; let $\varphi, \psi \in C(G/H)$. Then we have

- (i) $(\varphi *_{G/H} \psi)_q = \varphi_q *_G \psi_q$,
- (ii) $\varphi *_{G/H} \psi = T_H(\varphi_q *_G \psi_q),$
- (iii) $L_z(\varphi *_{G/H} \psi) = (L_z \varphi) *_{G/H} \psi.$

Proof (i) Let $x \in G$. Then using Weil's formula, we have

$$\begin{split} \varphi_q *_G \psi_q(x) &= \int_G \varphi_q(y)\psi_q(y^{-1}x) \, dy = \int_G \varphi(yH)\psi(y^{-1}xH) \, dy \\ &= \int_{G/H} \Big(\int_H \varphi(yhH)\psi((yh)^{-1}xH) \, dh \Big) \, d\mu(yH) \\ &= \int_{G/H} \Big(\int_H \varphi(yH)\psi(h^{-1}y^{-1}xH) \, dh \Big) \, d\mu(yH) \\ &= \int_{G/H} \varphi(yH) \Big(\int_H \psi(h^{-1}y^{-1}xH) \, dh \Big) \, d\mu(yH) \\ &= \int_{G/H} \varphi(yH) J\psi(y^{-1}xH) \, d\mu(yH) = \varphi *_{G/H} \psi(xH) \end{split}$$

which implies that $(\varphi *_{G/H} \psi)_q = \varphi_q *_G \psi_q$.

(ii) Let $x \in G$. Invoking the definition of $*_G$ and since *H* is compact, we can write

$$T_{H}(\varphi_{q} \ast_{G} \psi_{q})(xH) = \int_{H} \varphi_{q} \ast_{G} \psi_{q}(xh) dh = \int_{H} \left(\int_{G} \varphi_{q}(y) \psi_{q}(y^{-1}xh) dy \right) dh$$
$$= \int_{H} \left(\int_{G} \varphi(yH) \psi(y^{-1}xhH) dy \right) dh$$
$$= \int_{H} \left(\int_{G} \varphi(yH) \psi(y^{-1}xH) dy \right) dh = \int_{G} \varphi(yH) \psi(y^{-1}xH) dy,$$

Thus, using (i), we get

$$T_H(\varphi_q *_G \psi_q)(xH) = \int_G \varphi(yH)\psi(y^{-1}xH) \, dy = \varphi_q *_G \psi_q(x)$$
$$= (\varphi *_{G/H} \psi)_q(x) = \varphi *_{G/H} \psi(xH),$$

implying that $\varphi *_{G/H} \psi = T_H(\varphi_q *_G \psi_q)$.

(iii) Let $z \in G$. Then we can write

$$L_{z}(\varphi *_{G/H} \psi)(xH) = \varphi *_{G/H} \psi(z^{-1}xH) = \int_{G/H} \varphi(yH) J\psi(y^{-1}z^{-1}xH) d\mu(yH)$$
$$= \int_{G/H} \varphi(yH) J\psi((zy)^{-1}xH) d\mu(yH).$$

Replacing *y* by $z^{-1}y$ and using the fact that μ is *G*-invariant, we get

$$\begin{split} \int_{G/H} \varphi(yH) J\psi((zy)^{-1}xH) \, d\mu(yH) &= \int_{G/H} \varphi(z^{-1}yH) J\psi(y^{-1}xH) \, d\mu(z^{-1}yH) \\ &= \int_{G/H} \varphi(z^{-1}yH) J\psi(y^{-1}xH) \, d\mu(yH) \\ &= \int_{G/H} L_z \varphi(yH) J\psi(y^{-1}xH) \, d\mu(yH) \\ &= (L_z \varphi) *_{G/H} \psi(xH). \end{split}$$

Proposition 4.11 Let μ be the normalized *G*-invariant measure over *G*/*H*; let $f, g \in C(G)$ with $f \in C(G:H)$. Then we have $T_H(f *_G g) = T_H(f) *_{G/H} T_H(g)$. In particular, for all $\varphi \in C(G/H)$ and $g \in C(G)$, we have $T_H(\varphi_q *_G g) = \varphi *_{G/H} T_H(g)$.

Proof Let $f, g \in \mathcal{C}(G)$ with $f \in \mathcal{C}(G:H)$. Then using Proposition 4.3, for $x \in G$, we get

$$\begin{split} T_{H}(f *_{G} g)(xH) &= \int_{G/H} \left(\int_{H} f(yt) \Big(\int_{H} g(t^{-1}y^{-1}xh) \, dh \Big) \, dt \Big) \, d\mu(yH) \\ &= \int_{G/H} f(y) \Big(\int_{H} \Big(\int_{H} g(t^{-1}y^{-1}xh) \, dh \Big) \, dt \Big) \, d\mu(yH) \\ &= \int_{G/H} T_{H}(f)(yH) \Big(\int_{H} \Big(\int_{H} g(t^{-1}y^{-1}xh) \, dh \Big) \, dt \Big) \, d\mu(yH) \\ &= \int_{G/H} T_{H}(f)(yH) \Big(\int_{H} T_{H}(g)(t^{-1}y^{-1}xH) \, dt \Big) \, d\mu(yH) \\ &= \int_{G/H} T_{H}(f)(yH) J(T_{H}(g))(y^{-1}xH) \, d\mu(yH) \\ &= T_{H}(f) *_{G/H} T_{H}(g)(xH). \end{split}$$

Now let $\varphi \in \mathcal{C}(G/H)$. Then $f := \varphi_q \in \mathcal{C}(G:H)$. Thus we get

$$T_H(\varphi_q *_G g) = T_H(\varphi_q) *_{G/H} T_H(g) = \varphi *_{G/H} T_H(g).$$

Remark 4.12. Let *H* be a closed normal subgroup of a compact group *G*. Let μ be the normalized *G*-invariant measure over *G*/*H*. Then μ is a Haar measure over the

105

quotient group G/H. Then using Proposition 4.3, for $x \in G$ and $f, g \in \mathcal{C}(G)$, we can write

$$\begin{split} T_{H}(f *_{G} g)(xH) &= \int_{G/H} \left(\int_{H} f(yt) \left(\int_{H} g(t^{-1}y^{-1}xh) \, dh \right) \, dt \right) \, d\mu(yH) \\ &= \int_{G/H} \left(\int_{H} f(yt) \, dt \right) \left(\int_{H} g(y^{-1}xh) \, dh \right) \, d\mu(yH) \\ &= \int_{G/H} T_{H}(f)(xH) \, T_{H}(g)(y^{-1}xH) \, d\mu(yH) \\ &= T_{H}(f) *_{G/H} T_{H}(g). \end{split}$$

This property of convolution over quotient groups has appeared in [22] as well.

Henceforth, we call $\varphi *_{G/H} \psi$ the *convolution* of φ and ψ . It is easy to check that the map $*_{G/H}$: $\mathbb{C}(G/H) \times \mathbb{C}(G/H) \to \mathbb{C}(G/H)$ given by $(\varphi, \psi) \mapsto \varphi *_{G/H} \psi$ is bilinear. Also, it can be readily seen that the linear space $\mathbb{C}(G/H)$ with respect to $*_{G/H}$ as multiplication is an associative algebra. It should be mentioned that the associativity of the convolution $*_{G/H}$ follows from Proposition 4.10 (i) and (ii).

The next result shows that the associative algebra $\mathcal{C}(G/H)$ with respect to the norm $\|\cdot\|_{L^p(G/H,\mu)}$ is a normed algebra, for all $1 \le p < \infty$.

Theorem 4.13 Let μ be the normalized *G*-invariant measure on *G*/*H* and $1 \le p < \infty$. Then, for all $\varphi, \psi \in C(G/H)$, we have

$$\|\varphi *_{G/H} \psi\|_{L^{p}(G/H,\mu)} \leq \|\varphi\|_{L^{p}(G/H,\mu)} \|\psi\|_{L^{p}(G/H,\mu)}$$

Proof Let $\varphi, \psi \in C(G/H)$ and $1 \le p < \infty$. Then, using (2.1), (3.1), and Proposition 4.10, we have

$$\begin{aligned} \|\varphi *_{G/H} \psi\|_{L^{p}(G/H,\mu)} &= \|(\varphi *_{G/H} \psi)_{q}\|_{L^{p}(G)} = \|\varphi_{q} *_{G} \psi_{q}\|_{L^{p}(G)} \\ &\leq \|\varphi_{q}\|_{L^{p}(G)} \|\psi_{q}\|_{L^{p}(G)} = \|\varphi\|_{L^{p}(G/H,\mu)} \|\psi\|_{L^{p}(G/H,\mu)}. \end{aligned}$$

Then we can present the following interesting result.

Theorem 4.14 Let μ be the normalized *G*-invariant measure on *G*/H and $1 \le p < \infty$. The convolution map $*_{G/H}: \mathbb{C}(G/H) \times \mathbb{C}(G/H) \to \mathbb{C}(G/H)$ given by (4.1) has a unique extension to $*_{G/H}^{p}: L^{p}(G/H, \mu) \times L^{p}(G/H, \mu) \to L^{p}(G/H, \mu)$, in which the Banach function space $L^{p}(G/H, \mu)$ equipped with the extended convolution is a Banach algebra.

Proof Invoking density of $\mathcal{C}(G/H)$ in $L^p(G/H, \mu)$ and continuity of the convolution $*_{G/H}$ via Theorem 4.13, one can uniquely extend the convolution map

$$*_{G/H}: \mathcal{C}(G/H) \times \mathcal{C}(G/H) \to \mathcal{C}(G/H)$$

given by (4.1) to the convolution map

$$*^{p}_{G/H}: L^{p}(G/H, \mu) \times L^{p}(G/H, \mu) \to L^{p}(G/H, \mu)$$

such that

$$\|\varphi *_{G/H} \psi\|_{L^p(G/H,\mu)} \leq \|\varphi\|_{L^p(G/H,\mu)} \|\psi\|_{L^p(G/H,\mu)},$$

for all $\varphi, \psi \in L^p(G/H, \mu)$, which equivalently implies that the Banach function space $L^p(G/H, \mu)$ equipped with the extended convolution is a Banach convolution function algebra.

We deduce the following corollary concerning the explicit construction of $*_{G/H}^p$.

Corollary 4.15 Let μ be the normalized *G*-invariant measure on G/H and $1 \le p < \infty$. Then, for all $\varphi, \psi \in L^p(G/H, \mu)$, we have

$$\varphi *_{G/H}^p \psi(xH) = \int_{G/H} \varphi(yH) J_p \psi(y^{-1}xH) \, d\mu(yH),$$

for almost everywhere $xH \in G/H$.

The next result lists some of the properties of the convolution $*_{G/H}^p$.

Proposition 4.16 Let μ be the normalized *G*-invariant measure over *G*/*H*. Also, let $\varphi, \psi \in L^p(G/H, \mu)$. Then we have

- (i) $(\varphi *_{G/H}^p \psi)_q = \varphi_q *_G \psi_q$,
- (ii) $\varphi *_{G/H}^{p} \psi = T_{H}(\varphi_{q} *_{G} \psi_{q}),$
- (iii) $L_z(\varphi *^p_{G/H} \psi) = (L_z \varphi) *^p_{G/H} \psi.$

Then we have the following corollary concerning the subspaces $A^p(G/H, \mu)$.

Corollary 4.17 Let μ be the normalized *G*-invariant measure on *G*/*H* and $1 \le p < \infty$. Then $A^p(G/H, \mu)$ is a right ideal of the Banach function algebra $L^p(G/H, \mu)$. In particular, $A^p(G/H, \mu)$ is a Banach function sub-algebra of $L^p(G/H, \mu)$

Remark 4.18. Let *G* be a compact group and *H* a closed normal subgroup of *G*. Let μ be the normalized *G*-invariant measure on *G*/*H* and $1 \le p < \infty$. Then automatically μ is precisely a Haar measure of the compact quotient group *G*/*H*. Also, let $\varphi, \psi \in L^p(G/H, \mu)$. Invoking Remark 4.7 and Remark 4.9, the linear map J_p is the identity operator and hence we have

$$\varphi *_{G/H}^p \psi(xH) = \int_{G/H} \varphi(yH) \psi(y^{-1}HxH) \, d\mu(yH),$$

for almost everywhere $xH \in G/H$. Thus we deduce that the extended convolution $*_{G/H}^{p}$ coincides with the canonical convolution over the quotient group G/H if H is normal in G.

Definition 4.19 Let G be a compact group and H a closed subgroup of G. For $\varphi \in \mathbb{C}(G/H)$, let $\varphi^{*_{G/H}}: G/H \to \mathbb{C}$ be given by

(4.2)
$$\varphi^{*_{G/H}}(xH) = \int_H \overline{\varphi(h^{-1}x^{-1}H)} \, dh,$$

for all $xH \in G/H$.

Let xH = yH for $x, y \in G$. Then we have y = xt for some $t \in H$. Hence we can write

$$\int_{H} \overline{\varphi(h^{-1}x^{-1}H)} \, dh = \int_{H} \overline{\varphi(h^{-1}t^{-1}x^{-1}H)} \, dh = \int_{H} \overline{\varphi(h^{-1}y^{-1}H)} \, dh$$

which implies that $\varphi^{*_{G/H}}(xH) = \varphi^{*_{G/H}}(yH)$. This guarantees that $\varphi^{*_{G/H}}$ is a well-defined function over G/H.

Henceforth we call $\varphi^{*_{G/H}}$ an involution of φ . It is easy to check that the map

$$*_{G/H}: \mathcal{C}(G/H) \to \mathcal{C}(G/H)$$

given by $\varphi \mapsto \varphi^{*_{G/H}}$ is conjugate linear.

Remark 4.20. Let *G* be a compact group and *H* a closed normal subgroup of *G*. Let $\varphi \in C(G/H)$ and $x \in G$. Then, for all $x \in G$ and $h \in H$, we have hxH = xH. Hence for $\psi \in C(G/H)$, we get

$$\varphi^{*_{G/H}}(xH) = \int_{H} \overline{\varphi(h^{-1}x^{-1}H)} \, dh = \int_{H} \overline{\varphi(x^{-1}H)} \, dh = \overline{\varphi(x^{-1}H)}.$$

Thus, we deduce that the involution defined by (4.2) coincides with the canonical involution over the compact quotient group G/H if H is normal in G.

Proposition 4.21 Let $\varphi \in C(G/H)$, $1 \le p < \infty$, and let μ be the normalized *G*-invariant measure on G/H. Then we have

- (i) $\varphi^{*^{G/H}*^{G/H}} = J\varphi$,
- (ii) $\varphi^{*_{G/H}} = T_H(\varphi_q^{*_G}),$
- (iii) $\|\varphi^{*_{G/H}}\|_{L^{p}(G/H,\mu)} \leq \|\varphi\|_{L^{p}(G/H,\mu)}.$

Proof (i) Let $x \in G$ and $h \in H$. Then we have

$$\overline{\varphi^{*_{G/H}}(h^{-1}x^{-1}H)} = \int_{H} \varphi(t^{-1}xhH) dt = \int_{H} \varphi(t^{-1}xH) dt.$$

Thus we get

$$\varphi^{*^{G/H}*^{G/H}}(xH) = \int_{H} \overline{\varphi^{*_{G/H}}(h^{-1}x^{-1}H)} \, dh = \int_{H} \varphi(t^{-1}xH) \, dt = J\varphi(xH).$$

(ii) Let $x \in G$. Then we have

$$T_H(\varphi_q^{*_G})(xH) = \int_H \varphi_q^{*_G}(xh) \, dh$$
$$= \int_H \overline{\varphi_q(h^{-1}x^{-1})} \, dh = \int_H \overline{\varphi(h^{-1}x^{-1}H)} \, dh = \varphi^{*_G/H}(xH).$$

(iii) Using (ii), compactness of *H*, and Weil's formula, we have

$$\begin{split} \|\varphi^{*_{G/H}}\|_{L^{p}(G/H,\mu)} &= \int_{G/H} |\varphi^{*_{G/H}}(xH)|^{p} d\mu(xH) \\ &= \int_{G/H} |T_{H}(\varphi_{q}^{*_{G}})(xH)|^{p} d\mu(xH) \\ &\leq \int_{G/H} T_{H}(|\varphi_{q}^{*_{G}}|^{p})(xH) d\mu(xH) \\ &= \int_{G} |\varphi_{q}^{*_{G}}(x)|^{p} dx = \|\varphi_{q}\|_{L^{p}(G)} = \|\varphi\|_{L^{p}(G/H,\mu)}. \end{split}$$

Corollary 4.22 Let $\varphi \in A(G/H)$, $1 \le p < \infty$, and let μ be the normalized G-invariant measure on G/H. Then we have

 $\begin{array}{ll} (i) & \varphi^{*^{G/H}*^{G/H}} = \varphi, \\ (ii) & \|\varphi^{*_{G/H}}\|_{L^p(G/H,\mu)} = \|\varphi\|_{L^p(G/H,\mu)}, \\ (iii) & (\varphi^{*_{G/H}})_q = \varphi_q^{*_G}. \end{array}$

Then we can deduce the following result.

Proposition 4.23 Let $\varphi, \psi \in C(G/H)$. Then we have

$$(\varphi *_{G/H} \psi)^{*^{G/H}} = \psi^{*^{G/H}} *_{G/H} \varphi^{*^{G/H}}.$$

Proof Using Propositions 4.10, 4.21, and (2.2) we have

$$(\varphi *_{G/H} \psi)^{*^{G/H}} = T_H((\varphi *_{G/H} \psi)_q^{*^G}) = T_H((\varphi_q *_G \psi_q)^{*^G}) = T_H(\psi_q^{*^G} *_G \varphi_q^{*^G}).$$

Since $\varphi_q^{*^G} \in A(G:H)$, using Proposition 4.3, we can write

$$T_{H}(\psi_{q}^{*^{G}} *_{G} \varphi_{q}^{*^{G}})(xH) = \int_{G/H} T_{H}(\psi_{q}^{*^{G}})(yH) T_{H}(\varphi_{q}^{*^{G}})(y^{-1}xH) d\mu(yH)$$

= $\int_{G/H} T_{H}(\psi_{q}^{*^{G}})(yH) J T_{H}(\varphi_{q}^{*^{G}})(y^{-1}xH) d\mu(yH)$
= $T_{H}(\psi_{q}^{*^{G}}) *_{G/H} T_{H}(\varphi_{q}^{*^{G}})(xH) = \psi^{*^{G/H}} *_{G/H} \varphi^{*^{G/H}}(xH),$

for $x \in G$, which completes the proof.

Then we can summarize our recent results as follows.

Corollary 4.24 Let μ be the normalized *G*-invariant measure over the homogeneous space G/H and $p \ge 1$. The normed space $(A(G/H), \|\cdot\|_{L^p(G/H,\mu)})$ equipped with the convolution $*_{G/H}$ and the involution $*_{G/H}$ is a normed *-algebra.

The following proposition presents properties of involution over L^p -spaces.

Proposition 4.25 Let μ be the normalized *G*-invariant measure on *G*/*H* and $1 \le p < \infty$. The involution map $*^{G/H}$: $\mathbb{C}(G/H) \to \mathbb{C}(G/H)$ given by (4.2) has a unique extension to $*^{G/H}$: $L^p(G/H, \mu) \to L^p(G/H, \mu)$ which, for all $\varphi \in L^p(G/H, \mu)$, satisfies

- (i) $\varphi^{*^{G/H}*^{G/H}} = J_p \varphi$,
- (ii) $\varphi^{*_{G/H}} = T_H(\varphi_q^{*_G}),$
- (iii) $\|\varphi^{*_{G/H}}\|_{L^{p}(G/H,\mu)} \leq \|\varphi\|_{L^{p}(G/H,\mu)}.$

Proof Let $\varphi \in L^p(G/H, \mu)$. Invoking the density of $\mathcal{C}(G/H)$ in $L^p(G/H, \mu)$, let $\{\varphi_n\} \in \mathcal{C}(G/H)$ with $\varphi = \lim_n \varphi_n$. Then we define $\varphi^{*^{G/H}} := \lim_n \varphi_n^{*^{G/H}}$. Then $*^{*^{G/H}}: L^p(G/H, \mu) \to L^p(G/H, \mu)$ is well defined and satisfies (i)–(iii).

Corollary 4.26 Let μ be a *G*-invariant measure on *G*/*H* and $1 \le p < \infty$. Then we have $\varphi^{*_{G/H}}(xH) = \int_{H} \overline{\varphi(h^{-1}x^{-1}H)} dh$, for almost all $x \in G$.

Corollary 4.27 Let μ be the normalized G-invariant measure on G/H and $\varphi \in A^p(G/H, \mu)$ with $1 \le p < \infty$. Then we have

- (i) $\varphi^{*^{G/H}*^{G/H}} = \varphi$,
- (ii) $\|\varphi^{*_{G/H}}\|_{L^{p}(G/H,\mu)} = \|\varphi\|_{L^{p}(G/H,\mu)},$

(iii)
$$(\varphi^{*G/H})_q = \varphi_q^{*G}$$
.

The next result summarizes our recent results in terms of the Banach *-algebras.

Theorem 4.28 Let μ be the normalized *G*-invariant measure on *G*/*H* and $1 \le p < \infty$. The Banach function algebra $A^p(G/H, \mu)$ equipped with the extended involution is a Banach function *-algebra.

We finish this section by the following interesting observations.

Proposition 4.29 Let μ be the normalized *G*-invariant measure over the compact homogeneous space G/H, $p \ge 1$ and $\varphi \in L^p(G/H, \mu)$. Then

(4.3)
$$(\varphi^{*^{G/H}})_q = ((J_p \varphi)_q)^{*^\circ}$$

Proof Let μ be the normalized *G*-invariant measure over the compact homogeneous space G/H and $\varphi \in L^p(G/H, \mu)$. Then for $x \in G$, we have

$$((J_p \varphi)_q)^{*^{G}}(x) = \overline{(J_p \varphi)_q(x^{-1})} = \overline{J_p \varphi(x^{-1}H)}$$
$$= \left(\int_H \varphi(hx^{-1}H) dh\right)^- = \int_H \overline{\varphi(hx^{-1}H)} dh$$
$$= \int_H \overline{\varphi(h^{-1}x^{-1}H)} dh = \varphi^{*^{G/H}}(xH) = (\varphi^{*^{G/H}})_q(x),$$

which completes the proof.

Corollary 4.30 Let μ be the normalized *G*-invariant measure over the compact homogeneous space G/H, $p \ge 1$, and $\varphi \in A^p(G/H, \mu)$. Then, $(\varphi^{*^{G/H}})_q = \varphi_a^{*^G}$.

5 Abstract Representations of Convolution Function Algebras over Homogeneous Spaces of Compact Groups

In this section we present a classical study for a class of abstract linear representations on Banach convolution function algebras over homogeneous spaces of compact groups. It is still assumed that *G* is a compact group and *H* is a closed subgroup of *G*. Also, μ is the normalized *G*-invariant measure over the compact homogeneous space *G*/*H* associated with Weil's formula and $1 \le p < \infty$. We then introduce a class of structured abstract linear representations of the Banach function sub-algebras of $L^p(G/H, \mu)$.

For a continuous unitary representation (π, \mathcal{H}_{π}) of *G*, define

(5.1)
$$T_H^{\pi} \coloneqq \int_H \pi(h) \, dh$$

where the operator valued integral (5.1) is considered in the weak sense. In other words, $\langle T_H^{\pi}\zeta,\xi\rangle = \int_H \langle \pi(h)\zeta,\xi\rangle dh$, for $\zeta,\xi \in \mathcal{H}_{\pi}$. The function $h \mapsto \langle \pi(h)\zeta,\xi\rangle$ is bounded and continuous on H and H is compact. Thus the right integral is the ordinary integral of a function in $L^1(H)$. Hence, T_H^{π} is a bounded operator on \mathcal{H}_{π} with $||T_H^{\pi}|| \leq 1$.

Let $\mathcal{K}_{\pi}^{H} := \{\zeta \in \mathcal{H}_{\pi} : \pi(h)\zeta = \zeta \text{ for all } h \in H\}$. Then \mathcal{K}_{π}^{H} is a closed subspace of \mathcal{H}_{π} and we have $\mathcal{R}(T_{H}^{\pi}) = \mathcal{K}_{\pi}^{H}$, where $\mathcal{R}(T_{H}^{\pi}) = \{T_{H}^{\pi}\zeta : \zeta \in \mathcal{H}_{\pi}\}$.

Next we present basic properties of the linear operator T_H^{π} .

Proposition 5.1 Let (π, \mathcal{H}_{π}) be a continuous unitary representation of G with $T_{H}^{\pi} \neq 0$. Then

- (i) The linear operator T_H^{π} is a partial isometric (orthogonal) projection;
- (ii) The linear operator T_H^{π} is the identity operator if and only if $\pi(h) = I$ for all $h \in H$.

Proof (i) Using compactness of *H*, it can be easily checked that $(T_H^{\pi})^* = T_H^{\pi}$. As well, we achieve that

$$T_H^{\pi}T_H^{\pi} = \left(\int_H \pi(h) \, dh\right) \left(\int_H \pi(t) \, dt\right) = \int_H \pi(h) \left(\int_H \pi(t) \, dt\right) \, dh$$
$$= \int_H \left(\int_H \pi(h) \pi(t) \, dt\right) \, dh = \int_H \left(\int_H \pi(ht) \, dt\right) \, dh = \int_H T_H^{\pi} dt = T_H^{\pi}.$$

(ii) Let $\pi(h) = I$ for all $h \in H$. Thus, it is straightforward to see that $T_H^{\pi} = I$. Conversely, assume that $T_H^{\pi} = I$. Then for $t \in H$, we can write

$$\pi(t) = \pi(t)I = \pi(t)T_{H}^{\pi} = \pi(t)\left(\int_{H} \pi(h)dh\right) = \int_{H} \pi(t)\pi(h)dh$$
$$= \int_{H} \pi(th)dh = \int_{H} \pi(h)dh = T_{H}^{\pi} = I.$$

Let $\pi: G \to \mathcal{U}(\mathcal{H}_{\pi})$ be a continuous unitary representation of *G* on the Hilbert space \mathcal{H}_{π} with $T_{H}^{\pi} \neq 0$. For $xH \in G/H$, define $\Gamma_{\pi}(xH) := \pi(x)T_{H}^{\pi}$. Thus, we have

$$\langle \zeta, \Gamma_{\pi}(xH)\xi \rangle = \langle \zeta, \pi(x)T_{H}^{\pi}\xi \rangle_{2}$$

for all $\zeta, \xi \in \mathcal{H}_{\pi}$.

Then we have

$$\Gamma_{\pi}(xH) = \pi(x) \int_{H} \pi(h) dh = \int_{H} \pi(x)\pi(h) dh = \int_{H} \pi(xh) dh.$$

For $\varphi \in L^1(G/H, \mu)$, define the linear operator $\Gamma_{\pi}(\varphi)$ on \mathcal{H}_{π} via

(5.2)
$$\Gamma_{\pi}(\varphi) \coloneqq \int_{G/H} \varphi(xH) \Gamma_{\pi}(xH) \, d\mu(xH),$$

The operator-valued integral (5.2) is also considered in the weak sense, *i.e.*,

$$\langle \Gamma_{\pi}(\varphi)\zeta,\xi\rangle = \int_{G/H} \varphi(xH)\langle \Gamma_{\pi}(xH)\zeta,\xi\rangle d\mu(xH),$$

for all $\zeta, \xi \in \mathcal{H}_{\pi}$.

In other words, for the continuous unitary representation (π, \mathcal{H}_{π}) of G with $T_{H}^{\pi} \neq 0$ and $\zeta, \xi \in \mathcal{H}_{\pi}$, we have $\langle \Gamma_{\pi}(\varphi)\zeta, \xi \rangle = \int_{G/H} \varphi(xH) \langle \pi(x) T_{H}^{\pi}\zeta, \xi \rangle d\mu(xH)$.

Thus for $\zeta, \xi \in \mathcal{H}_{\pi}$, we get

$$\begin{split} |\langle \Gamma_{\pi}(\varphi)\zeta,\xi\rangle| &= \Big|\int_{G/H} \varphi(xH)\langle \pi(x)T_{H}^{\pi}\zeta,\xi\rangle \,d\mu(xH)\Big| \\ &\leq \int_{G/H} |\varphi(xH)||\langle \pi(x)T_{H}^{\pi}\zeta,\xi\rangle| \,d\mu(xH) \\ &\leq \int_{G/H} |\varphi(xH)|||\pi(x)T_{H}^{\pi}\zeta|||\xi|| \,d\mu(xH) \\ &= \int_{G/H} |\varphi(xH)|||T_{H}^{\pi}\zeta||||\xi|| \,d\mu(xH) \\ &\leq \int_{G/H} |\varphi(xH)|||\zeta|||\xi|| \,d\mu(xH) = \|\zeta\|||\xi||\|\varphi\|_{L^{1}(G/H,\mu)}. \end{split}$$

Therefore, $\Gamma_{\pi}(\varphi)$ is a bounded linear operator on \mathcal{H}_{π} satisfying

(5.3)
$$\|\Gamma_{\pi}(\varphi)\| \leq \|\varphi\|_{L^{1}(G/H,\mu)}.$$

The next results present basic properties of the linear operators $\Gamma_{\pi}(\varphi)$ with $\varphi \in L^1(G/H, \mu)$.

Proposition 5.2 Let μ be the normalized *G*-invariant measure on the compact homogeneous space G/H. Let $(\pi, \mathfrak{H}_{\pi})$ be a continuous unitary representation of *G* with $T_{H}^{\pi} \neq 0$, $f \in L^{1}(G)$, and $\varphi \in L^{1}(G/H, \mu)$. Then

(i)
$$\Gamma_{\pi}(T_{H}(f)) = \pi(f)T_{H}^{\pi}$$
,
(ii) $\Gamma_{\pi}(T_{H}(f))T_{H}^{\pi} = \Gamma_{\pi}(T_{H}(f))$,
(iii) If $\pi(R_{h}f) = \pi(f)$ for all $h \in H$, we have $\Gamma_{\pi}(T_{H}(f)) = \pi(f)$,
(iv) $\Gamma_{\pi}(\varphi) = \pi(\varphi_{q})$.

Proof (i) Let $\zeta, \xi \in \mathcal{H}_{\pi}$. Invoking the definition of the linear operator $\Gamma_{\pi}(T_H(f))$ and using Weil's formula in the weak sense, we can write

$$\begin{split} \langle \Gamma_{\pi}(T_{H}(f))\zeta,\xi\rangle &= \int_{G/H} T_{H}(f)(xH)\langle \Gamma_{\pi}(xH)\zeta,\xi\rangle \,d\mu(xH) \\ &= \int_{G/H} T_{H}(f)(xH)\langle \pi(x)T_{H}^{\pi}\zeta,\xi\rangle \,\mu(xH) \\ &= \int_{G/H} T_{H}(f.g_{\zeta,\xi})(xH) \,d\mu(xH) \\ &= \int_{G} f(x)\langle \pi(x)T_{H}^{\pi}\zeta,\xi\rangle \,dx \\ &= \left\langle \left(\int_{G} f(x)\pi(x) \,dx\right)T_{H}^{\pi}\zeta,\xi\right\rangle = \langle \pi(f)T_{H}^{\pi}\zeta,\xi\rangle, \end{split}$$

where $g_{\zeta,\xi}: G \to \mathbb{C}$ is given by $g_{\zeta,\xi}(x) := \langle \pi(x) T_H^{\pi} \zeta, \xi \rangle$ for $x \in G$. Since $\zeta, \xi \in \mathcal{H}_{\pi}$ was arbitrary, we deduce that $\Gamma_{\pi}(T_H(f)) = \pi(f) T_H^{\pi}$.

(ii) Let $f \in L^1(G)$. Then using (i), and since T_H^{π} is a projection, we get

$$\Gamma_{\pi}(T_{H}(f))T_{H}^{\pi} = \pi(f)T_{H}^{\pi}T_{H}^{\pi} = \pi(f)T_{H}^{\pi} = \Gamma_{\pi}(T_{H}(f)).$$

(iii) Let
$$f \in L^1(G)$$
 with $\pi(R_h f) = \pi(f)$ for all $h \in H$. Then using (i), we get

$$\Gamma_{\pi}(T_{H}(f)) = \pi(f)T_{H}^{\pi} = \pi(f)\Big(\int_{H} \pi(h)dh\Big) = \int_{H} \pi(f)\pi(h)dh$$
$$= \int_{H} \pi(f)\pi(h^{-1})dh = \int_{H} \pi(R_{h}f)dh = \int_{H} \pi(f)dh = \pi(f)$$

(iv) Let $\varphi \in L^1(G/H, \mu)$. Then we have $\varphi_q \in L^1(G:H)$. Hence, $R_h \varphi_q = \varphi_q$ for all $h \in H$. Thus, we get $\pi(R_h \varphi_q) = \pi(\varphi_q)$ for all $h \in H$. Therefore, using (iii), we can write $\Gamma_{\pi}(\varphi) = \Gamma_{\pi}(T_H(\varphi_q)) = \pi(\varphi_q)$.

The next proposition presents the connection of Γ_{π} with $*^{^{G/H}}$.

Proposition 5.3 Let μ be the normalized *G*-invariant measure on *G*/*H*. Let (π, \mathcal{H}_{π}) be a continuous unitary representation of *G* with $T_H^{\pi} \neq 0$ and $p \geq 1$. Then for $\varphi \in L^p(G/H, \mu)$, we have

(5.4)
$$\Gamma_{\pi}(\varphi^{*^{G/H}}) = \Gamma_{\pi}(J_{\rho}\varphi)^{*}.$$

Proof Let $\varphi \in L^p(G/H, \mu)$. Then using (4.3), we have

$$\Gamma_{\pi}(\varphi^{*^{G/H}}) = \pi((\varphi^{*^{G/H}})_q) = \pi(((J_p\varphi)_q)^{*^G}) = \pi((J_p\varphi)_q)^* = \Gamma_{\pi}(J_p\varphi)^*.$$

The following result presents an interesting commutation relation of Γ_{π} with J and T_{H}^{π} .

Proposition 5.4 Let μ be the normalized *G*-invariant measure on the compact homogeneous space G/H. Let (π, \mathcal{H}_{π}) be a continuous unitary representation of *G* with $T_{H}^{\pi} \neq 0$ and $p \geq 1$. Then $\Gamma_{\pi} \circ J_{p} = T_{H}^{\pi} \circ \Gamma_{\pi}$.

Proof Let $\varphi \in L^p(G/H, \mu)$. Then we have

$$\Gamma_{\pi}(J_{p}\varphi) = \Gamma_{\pi}\left(\int_{H} L_{h}\varphi \,dh\right) = \int_{H} \Gamma_{\pi}(L_{h}\varphi) \,dh = \int_{H} \pi(h)\Gamma_{\pi}(\varphi) \,dh$$
$$= \left(\int_{H} \pi(h) \,dh\right)\Gamma_{\pi}(\varphi) = T_{H}^{\pi}\Gamma_{\pi}(\varphi).$$

The following theorem shows that the map $\varphi \mapsto \Gamma_{\pi}(\varphi)$, defines a representation of the Banach algebra $L^{p}(G/H, \mu)$.

Theorem 5.5 Let μ be the normalized *G*-invariant measure on *G*/*H* and $p \ge 1$. Also let (π, \mathcal{H}_{π}) be a continuous unitary representation of *G* with $T_{H}^{\pi} \ne 0$. Then $\Gamma_{\pi}: L^{p}(G/H, \mu) \rightarrow \mathcal{B}(\mathcal{H}_{\pi})$ given by $\varphi \mapsto \Gamma_{\pi}(\varphi)$ is a bounded linear representation of the Banach algebra $L^{p}(G/H, \mu)$ on the Hilbert space \mathcal{H}_{π} satisfying

(5.5)
$$\bigcap_{\varphi \in L^1(G/H,\mu)} \ker(\Gamma_{\pi}(\varphi)) = \ker T_H^{\pi}$$

Proof Let (π, \mathcal{H}_{π}) be a continuous unitary representation of *G* with $T_{H}^{\pi} \neq 0$. It is easy to see that the map $\varphi \mapsto \Gamma_{\pi}(\varphi)$ is linear. Also, the linear map $\Gamma_{\pi}: L^{p}(G/H, \mu) \rightarrow \mathcal{B}(\mathcal{H}_{\pi})$ is bounded. Indeed, using (5.3) for $\varphi \in L^{p}(G/H, \mu)$, we can write

$$\|\Gamma_{\pi}(\varphi)\| \leq \|\varphi\|_{L^{1}(G/H,\mu)} \leq \|\varphi\|_{L^{p}(G/H,\mu)}.$$

https://doi.org/10.4153/CJM-2016-043-9 Published online by Cambridge University Press

Let $\varphi, \psi \in L^p(G/H, \mu)$. Then we have

$$\Gamma_{\pi}(\varphi *_{G/H}^{p} \psi) = \pi((\varphi *_{G/H}^{p} \psi)_{q}) = \pi(\varphi_{q} *_{G} \psi_{q})$$
$$= \pi(\varphi_{q})\pi(\psi_{q}) = \Gamma_{\pi}(\varphi)\Gamma_{\pi}(\psi),$$

which shows that the map $\Gamma_{\pi}: L^{p}(G/H, \mu) \to \mathcal{B}(\mathcal{H}_{\pi})$ is a bounded linear representation. Let $\zeta \in \ker T_{H}^{\pi}$ and let $\varphi \in L^{p}(G/H, \mu)$ be arbitrary. Also, let $f \in L^{p}(G)$ with $\varphi = T_{H}(f)$. Then we have $\Gamma_{\pi}(\varphi)\zeta = \Gamma_{\pi}(T_{H}(f))\zeta = \pi(f)T_{H}^{\pi}\zeta = 0$, which implies that $\zeta \in \ker(\Gamma_{\pi}(\varphi))$. Hence, $\ker T_{H}^{\pi} \subseteq \bigcap_{\varphi \in L^{p}(G/H, \mu)} \ker(\Gamma_{\pi}(\varphi))$. Conversely, let $\zeta \in \bigcap_{\varphi \in L^{p}(G/H, \mu)} \ker(\Gamma_{\pi}(\varphi))$. Then $\Gamma_{\pi}(\varphi)\zeta = 0$, for all $\varphi \in L^{p}(G/H, \mu)$. Thus for $f \in L^{p}(G)$, we can write $\pi(f)T_{H}^{\pi}\zeta = \Gamma_{\pi}(T_{H}(f))\zeta = 0$. Therefore, $\pi(f)T_{H}^{\pi}\zeta = 0$, for all $f \in L^{p}(G)$. Since the *-representation $\pi: L^{p}(G) \to \mathcal{B}(\mathcal{H}_{\pi})$ is non-degenerate, we get $T_{H}^{\pi}\zeta = 0$ and hence $\zeta \in \ker T_{H}^{\pi}$. This implies that $\bigcap_{\varphi \in L^{1}(G/H, \mu)} \ker(\Gamma_{\pi}(\varphi)) \subseteq \ker T_{H}^{\pi}$. Thus, we conclude (5.5).

The next corollary presents a criterion that guarantees the representation

$$\Gamma_{\pi}: L^{p}(G/H, \mu) \to \mathcal{B}(\mathcal{H}_{\pi})$$

to be non-degenerate.

Corollary 5.6 Let μ be the normalized *G*-invariant measure on *G*/*H* and $p \ge 1$. And let (π, \mathcal{H}_{π}) be a continuous unitary representation of *G* with $T_{H}^{\pi} \neq 0$. Then

$$\Gamma_{\pi}: L^{p}(G/H, \mu) \to \mathcal{B}(\mathcal{H}_{\pi})$$

given by $\varphi \mapsto \Gamma_{\pi}(\varphi)$ is a non-degenerate representation of the Banach algebra $L^{p}(G/H, \mu)$ on the Hilbert space \mathcal{H}_{π} if and only if $\pi(h) = I$ for all $h \in H$. In this case we have $\Gamma_{\pi}(L_{h}\varphi) = \Gamma_{\pi}(\varphi)$, for all $h \in H$ and $\varphi \in L^{p}(G/H, \mu)$.

Proof Invoking (5.5), the representation $\Gamma_{\pi}: L^{p}(G/H, \mu) \to \mathcal{B}(\mathcal{H}_{\pi})$ given by $\varphi \mapsto \Gamma_{\pi}(\varphi)$ is non-degenerate if and only if the linear operator T_{H}^{π} is injective. Since T_{H}^{π} is an orthogonal projection, we deduce that T_{H}^{π} is injective if and only if $T_{H}^{\pi} = I$. Then Proposition 5.1 guarantees that T_{H}^{π} is injective if and only if $\pi(h) = I$ for all $h \in H$. Therefore, we conclude that the representation $\Gamma_{\pi}: L^{p}(G/H, \mu) \to \mathcal{B}(\mathcal{H}_{\pi})$ given by $\varphi \mapsto \Gamma_{\pi}(\varphi)$ is non-degenerate if and only if $\pi(h) = I$ for all $h \in H$. In this case, for $h \in H$ and $\varphi \in L^{p}(G/H, \mu)$, we can write

$$\Gamma_{\pi}(L_h\varphi) = \pi((L_h\varphi)_a) = \pi(L_h\varphi_a) = \pi(h)\pi(\varphi_a) = \pi(\varphi_a) = \Gamma_{\pi}(\varphi),$$

which completes the proof.

The following theorem shows that the map $\varphi \mapsto \Gamma_{\pi}(\varphi)$ defines a representation of the Banach *-algebra $A^{p}(G/H, \mu)$.

Theorem 5.7 Let μ be the normalized *G*-invariant measure over *G*/*H* and $p \ge 1$; let (π, \mathcal{H}_{π}) be a continuous unitary representation of *G* with $T_{H}^{\pi} \neq 0$. Then

$$\Gamma_{\pi}: A^{p}(G/H, \mu) \to \mathcal{B}(\mathcal{H}_{\pi})$$

given by $\varphi \mapsto \Gamma_{\pi}(\varphi)$ is a bounded *-representation of the Banach *-algebra $A^{p}(G/H, \mu)$ on the Hilbert space \mathcal{H}_{π} .

Proof Let (π, \mathcal{H}_{π}) be a continuous unitary representation of G with $T_{H}^{\pi} \neq 0$. Then using Theorem 5.5, the mapping $\Gamma_{\pi}: L^{p}(G/H, \mu) \to \mathcal{B}(\mathcal{H}_{\pi})$ given by $\varphi \mapsto \Gamma_{\pi}(\varphi)$ is a bounded representation of the Banach algebra $L^{p}(G/H, \mu)$ on the Hilbert space \mathcal{H}_{π} . Thus, the restriction of Γ_{π} to the closed sub-algebra $A^{p}(G/H, \mu)$ of $L^{p}(G/H, \mu)$ is also a bounded representation of the Banach *-algebra $A^{p}(G/H, \mu)$ on the Hilbert space \mathcal{H}_{π} . Now let $\varphi \in A^{p}(G/H, \mu)$. Then we have $J_{p}\varphi = \varphi$. Thus, using (5.4), we get

$$\Gamma_{\pi}(\varphi^{*^{G/H}}) = \Gamma_{\pi}(J_{p}\varphi)^{*} = \Gamma_{\pi}(\varphi)^{*},$$

which guarantees that $\Gamma_{\pi}: A^{p}(G/H, \mu) \to \mathcal{B}(\mathcal{H}_{\pi})$ given by $\varphi \mapsto \Gamma_{\pi}(\varphi)$ is a bounded *-representation of the Banach *-algebra $A^{p}(G/H, \mu)$ on the Hilbert space \mathcal{H}_{π} .

The next result also presents a criterion which guarantees the representation

$$\Gamma_{\pi}: A^{p}(G/H, \mu) \to \mathcal{B}(\mathcal{H}_{\pi})$$

to be non-degenerate.

Corollary 5.8 Let μ be the normalized *G*-invariant measure on *G*/*H* and $p \ge 1$. Let (π, \mathcal{H}_{π}) be a continuous unitary representation of *G* with $T_{H}^{\pi} \neq 0$. Then

$$\Gamma_{\pi}: A^{p}(G/H, \mu) \to \mathcal{B}(\mathcal{H}_{\pi})$$

given by $\varphi \mapsto \Gamma_{\pi}(\varphi)$ is a non-degenerate *-representation of the Banach *-algebra $A^{p}(G/H, \mu)$ on the Hilbert space \mathcal{H}_{π} if and only if $\pi(h) = I$ for all $h \in H$.

Proof By Theorem 5.7, the map $\Gamma_{\pi}: A^{p}(G/H, \mu) \to \mathcal{B}(\mathcal{H}_{\pi})$ given by $\varphi \mapsto \Gamma_{\pi}(\varphi)$ is a *-representation of the Banach *-algebra $A^{p}(G/H, \mu)$ on the Hilbert space \mathcal{H}_{π} . Then using (5.5), we can write

$$\ker T_{H}^{\pi} = \bigcap_{\varphi \in L^{p}(G/H,\mu)} \ker(\Gamma_{\pi}(\varphi)) \subseteq \bigcap_{\varphi \in A^{p}(G/H,\mu)} \ker(\Gamma_{\pi}(\varphi)).$$

Thus, if the *-representation $\Gamma_{\pi}: A^{p}(G/H, \mu) \to \mathcal{B}(\mathcal{H}_{\pi})$ is non-degenerate, then we deduce that ker $T_{H}^{\pi} = \{0\}$ and hence T_{H}^{π} is injective. Therefore, $\pi(h) = I$ for all $h \in H$. Conversely, suppose that $\pi(h) = I$ for all $h \in H$. Then $T_{H}^{\pi} = I$ and hence ker $T_{H}^{\pi} = \{0\}$. Now let $\zeta \in \bigcap_{\varphi \in A^{p}(G/H, \mu)} \ker(\Gamma_{\pi}(\varphi))$. Thus, using Proposition 5.4 for $\varphi \in L^{p}(G/H, \mu)$, we can write $\Gamma_{\pi}(\varphi)\zeta = T_{H}^{\pi}\Gamma_{\pi}(\varphi)\zeta = \Gamma_{\pi}(J_{p}\varphi)\zeta = 0$, since $J_{p}\varphi \in A^{p}(G/H, \mu)$. Thus, $\Gamma_{\pi}(\varphi)\zeta = 0$, for all $\varphi \in L^{p}(G/H, \mu)$. Using Corollary 5.6, the representation $\Gamma_{\pi}: L^{p}(G/H, \mu) \to \mathcal{B}(\mathcal{H}_{\pi})$ is non-degenerate and hence we conclude that $\zeta = 0$, which completes the proof.

Acknowledgement The author would like to express his deepest gratitude to Prof. Hans G. Feichtinger for his valuable comments.

References

- A. Derighetti, À propos des convoluteurs d'un groupe quotient. Bull. Sci. Math. (2) 107(1983), no. 1, 3–23.
- [2] _____, Convolution operators on groups. Lecture Notes of the Unione Matematica Italiana, 11. Springer, Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20656-6
- [3] J. Dixmier, C*-algebras. North-Holland Mathematical Library, 15. North-Holland, Amsterdam, 1977.

- [4] H. G. Feichtinger, On a class of convolution algebras of functions. Ann. Inst. Fourier (Grenoble) 27(1977), no. 3, 135–162.
- [5] _____, Banach convolution algebras of functions. II. Monatsh. Math. 87(1979), no. 3, 181–207. http://dx.doi.org/10.1007/BF01303075
- [6] _____, On a new Segal algebra. Monatsh. Math. 92(1981), no. 4, 269–289. http://dx.doi.org/10.1007/BF01320058
- [7] G. B. Folland, A course in abstract harmonic analysis. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.
- [8] A. Ghaani Farashahi, Abstract non-commutative harmonic analysis of coherent state transforms. Ph.D. thesis, Ferdowsi University of Mashhad, 2012.
- [9] _____, Convolution and involution on function spaces of homogeneous spaces. Bull. Malays. Math. Sci. Soc. (2) 36(2013) no. 4, 1109–1122.
- [10] _____, Abstract harmonic analysis of relative convolutions over canonical homogeneous spaces of semidirect product groups. J. Aust. Math. Soc. 101(2016), no. 2, 171–187, http://dx.doi.org/10.1017/S1446788715000798
- [11] ______, Abstract harmonic analysis of wave-packet transforms over locally compact abelian groups. Banach J. Math. Anal. 11(2017), no. 1, 50–71. http://dx.doi.org/10.1215/17358787-3721281
- [12] _____, Abstract operator-valued Fourier transforms over homogeneous spaces of compact groups. Groups, Geometry, Dynamics, to appear.
- [13] _____, Abstract convolution function algebras over homogeneous spaces of compact groups. Illinois J. Math., to appear.
- [14] _____, Abstract Plancherel (trace) formulas over homogeneous spaces of compact groups. Can. Math. Bull. to appear. http://dx.doi.org/10.4153/CMB-2016-037-6
- [15] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. 1-2, 1963, 1970.
- [16] V. Kisil, Relative convolutions. I. Properties and applications. Adv. Math. 147(1999), no. 1, 35–73. http://dx.doi.org/10.1006/aima.1999.1833
- [17] _____, Erlangen program at large: an overview. Trends Math., Birkhäuser/Springer, Basel, 2012, pp. 1–94. http://dx.doi.org/10.1007/978-3-0348-0417-2_1
- [18] _____, Geometry of Möbius transformations. Elliptic, parabolic and hyperbolic actions of SL₂(ℝ). Imperial College Press, London, 2012. http://dx.doi.org/=10.1142/p835
- [19] _____, Operator covariant transform and local principle. J. Phys. A 45(2012), no. 24, pp. 244022, 10. http://dx.doi.org/10.1088/1751-8113/45/24/244022
- [20] _____, Calculus of operators: covariant transform and relative convolutions. Banach J. Math. Anal. 8(2014), no. 2, 156–184. http://dx.doi.org/10.15352/bjma/1396640061
- [21] G. J. Murphy, C*-algebras and operator theory. Academic Press, Boston, MA, 1990.
- [22] H. Reiter and J. D. Stegeman, *Classical harmonic analysis and locally compact groups*. Second edition. London Mathematical Society Monographs, 22. Oxford University Press, New York, 2000.

Numerical Harmonic Analysis Group (NuHAG), Faculty of Mathematics, University of Vienna e-mail: arash.ghaani.farashahi@univie.ac.at ghaanifarashahi@hotmail.com