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Abstract

The multi-agent path finding (MAPF) problem aims to find plans for multiple agents in an
environment within a given time, such that the agents do not collide with each other or obsta-
cles. Motivated by the execution and monitoring of these plans, we study dynamic MAPF
(D-MAPF) problem, which allows changes such as agents entering/leaving the environment
or obstacles being removed/moved. Considering the requirements of real-world applications in
warehouses with the presence of humans, we introduce (1) a general definition for D-MAPF
(applicable to variations of D-MAPF), (2) a new framework to solve D-MAPF (utilizing multi-
shot computation and allowing different methods to solve D-MAPF), and (3) a new answer
set programming-based method to solve D-MAPF (combining advantages of replanning and
repairing methods, with a novel concept of tunnels to specify where agents can move). We have
illustrated the strengths and weaknesses of this method by experimental evaluations, from the
perspectives of computational performance and quality of solutions.

KEYWORDS: multi-agent path finding, answer set programming, multi-shot computation

1 Introduction

The multi-agent path finding (MAPF) problem aims to find plans for multiple agents

in a shared environment such that the agents do not collide with each other or obsta-

cles, subject to constraints on the total/maximum plan length. The dynamic MAPF

(D-MAPF) problem considers the changes that occur in the environment or in the team

during the execution of a MAPF plan (e.g., new agents joining the team, existing agents

leaving the environment, new obstacles being added, existing obstacles being removed or

moved) and aims to find a new plan for agents to reach their goals.

The existing approaches to solving D-MAPF consider different objective functions (e.g.,

minimizing the makespan or the sum of costs) and changes (e.g., team or environment

changes), make different assumptions on entrances and departures of agents (e.g., agents
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immediately or later appear at their initial locations, agents stay or disappear when they

reach their destinations), and investigate different methods to solve D-MAPF.

For instance, Lifelong MAPF (Wan et al. 2018; Li et al. 2021) considers assignment of

new goal locations to the agents who have completed their plans, which can be viewed as

adding a new agent. An incremental version of Conflict-Based Search (CBS) algorithm

was introduced by Wan et al. (2018) such that solutions for new agents are computed

while re-using the solutions for the existing agents and they are adjusted only if needed

at each time step. The idea of Windowed MAPF was used by Li et al. (2021), where the

instance is splitted into a sequence of instances, replanning is done periodically after a

specific number of steps, and the collisions are resolved only for the steps within a given

window.

Online MAPF (Svancara et al. 2019) considers the addition of new agents as a dynamic

change and allows the agents to appear from a garage after some waiting and disappear

from the environment once it reaches its goal. Different methods were introduced for solv-

ing this problem with SAT-based and search-based solvers, and these methods are further

investigated by Morag et al. (2022) in terms of their quality. One of the methods intro-

duced for solving Online MAPF is the Replan-All method that discards the existing plan

and re-solves MAPF for all agents considering the changes. Ma (2021) investigates Online

MAPF problem theoretically, gives complexity results, and provides a classification for

online MAPF algorithms. Ho et al. (2019) consider an online and three-dimensional set-

ting, with heterogeneous agents being added during execution and solves the problem

using modified versions of CBS and Enhanced CBS (ECBS) algorithms.

Different from these studies, in terms of changes, Bogatarkan et al. (2019) consider

leaving agents and changes in obstacles as well. Their Revise-and-Augment method reuses

the existing plan: when a change occurs, the plans of existing agents are revised by

rescheduling their waiting times, while plans are computed for the new agents. Atiq

et al. (2020) consider a similar problem. When a change occurs in the environment, a

minimal subset of agents having conflicts is identified, and replanning is applied to resolve

conflicts.

In this study, we investigate D-MAPF further with the following motivations and

theoretical and practical contributions.

• To be able to study rich variations of D-MAPF mentioned above, on a common

ground, we introduce a rigorous definition for D-MAPF, which is general enough to

cover (1) various changes in the environment and the team of agents over time, (2)

different objective functions on plans, and (3) different assumptions on appearances/

disappearances of agents, and that is not specifically oriented toward a particular method.

• We introduce a new framework to solve D-MAPF, which is general and flexible

enough to allow different replanning and/or repairing methods. With the motivation

of a modular architecture and efficient computations, our framework utilizes multi-shot

computation (Gebser et al. 2019) based on answer set programming (ASP) (Gelfond

and Lifschitz 1991; Lifschitz 2008). Recall that multi-shot solving allows changes to the

input ASP program in time, by introducing an external control to the ASP system. The

external control allows operations, such as adding and grounding new programs, assigning

truth values of some atoms, and solving the updated program, while the ASP system is

running. Our earlier studies (Bogatarkan et al . 2019) utilize single-shot computation.
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• We design and implement the Replan-All and Revise-and-Augment methods using

multi-shot ASP, and integrate them in the general D-MAPF framework. We empirically

observe that multi-shot Replan-All is computationally more efficient but sometimes dra-

matic changes in the paths of the existing agents occur in the recomputed plans. Such

changes are not desired from the perspective of real-world applications. For instance, in a

warehouse where robots collaborate with human workers, changes in the routes of robots

might be unexpected, distracting, unsafe, and inefficient for human workers.

• We introduce a new method for D-MAPF, called Revise-and-Augment-in-Tunnels,

which combines the advantages of these two methods. Unlike revise-augment, this method

does not require that every existing agent follow their existing paths while revising their

plans. Instead, (1) it creates a “tunnel” for each existing agent that consists of the agent’s

existing path and the neighboring locations within a specified “width,” and (2) it allows

every existing agent to follow a path within their own tunnel while it revises their plans.

So the existing agents do not have to follow their previously computed paths. While

revising the plans of existing agents within their tunnels, (3) the Revise-and-Augment-

in-Tunnels method computes plans for the new agents and augments these plans with

the revised plans, respecting the collision constraints. Note that as the tunnel width

gets larger (resp. smaller), the Revise-and-Augment-in-Tunnels method gets closer to

the Replan-All method (resp. the Revise-and-Augment method).

• We implement the Revise-and-Augment-in-Tunnels method using multi-shot ASP

and integrate it into our D-MAPF framework. We design and perform experiments to

better understand the strengths and the weaknesses of this new method, considering

computational performance (in time) and quality of solutions (in terms of plan changes).

2 Preliminaries: paths, traversals, plans

We introduce a more general definition for MAPF problem, compared to the earlier

definitions (Erdem et al. 2013; Stern et al. 2019), so that it allows us to explicitly state our

assumptions and consider different cost functions depending on the particular application.

Let us first introduce the relevant concepts and notations. Consider an undirected

graph G= (V, E). A path P = 〈v0, . . . , vn〉 in G is a sequence of vertices vi ∈ V such

that, for every 〈vi, vi+ 1〉 in P , there exists an edge {vi, vi+ 1} ∈E.

Let A be a set of agents. Every agent ai ∈A is characterized by an initial location

initi ∈ V , a goal location goali ∈ V , and a joining time joini (joini ≥ 0).

For every agent ai and every path Pi, a traversal rPi
ai

of path Pi by agent ai is char-

acterized by a starting time xi (xi ≥ 0), an ending time yi (yi ≥ xi), and a function fi
that maps every integer t (xi ≤ t≤ yi) to a vertex in Pi, such that, for every vk, vk + 1

in Pi and, for every t, if fi(t) = vk then fi(t+ 1) = vk or fi(t+ 1) = vk + 1. We denote by

PA the collection of paths for every agent in A, and by rPA the collection of traversals

rPi
ai

= 〈xi, yi, fi〉 of every agent ai ∈A.

For two agents ai, aj with traversals rPi
ai

= 〈xi, yi, fi〉 and r
Pj
aj = 〈xj , yj , fj〉, we say that

ai and aj collide at a vertex at time t, if for some t where max(xi, xj)≤ t≤ min(yi, yj),

fi(t) = fj(t). We say that ai and aj collide at an edge between times t and t+ 1, if for

some t where max(xi, xj)≤ t < min(yi, yj), fi(t) = fj(t+ 1) and fi(t+ 1) = fj(t). These

types of collisions are called vertex conflicts and swapping conflicts , respectively.
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Fig. 1. A general MAPF problem definition.

Using these concepts, we introduce a MAPF problem definition, as in Figure 1. A

MAPF instance is characterized by the quintuple 〈A, G, O, cost, τ〉, and its solution

(called a MAPF plan) with a collection rPA of traversals.

Remarks: appearances/disappearances. This MAPF definition is more general than

the earlier definitions, as it allows us to explicitly state our assumptions about the

appearances/disappearances of agents at their goal/initial locations.

For instance, consider the following two possible behaviors of agents once they reach

their goals: (1) every agent waits at its goal until the traversals of all agents are completed

(as in our earlier studies), or (2) every agent disappears from the environment (as in

Svancara et al. (2019)). Both cases can be covered with this MAPF definition. Suppose

that reachi (xi ≤ reachi ≤ yi) denotes the time step at which an agent ai reaches its goal.

If we assume that the agent ai disappears when it reaches its goal, then yi = reachi. If

we assume that the agent ai waits at goal until all traversals end, then reachi is the time

step where the agent reaches its goal and stays there.

Similarly, consider the following two different behaviors of agents at their initial loca-

tion: (1) every agent appears at their initial locations, at the time step the agent joins the

team (as in our earlier studies), or (2) the agents that are joining the team are allowed to

wait outside the environment until their initial locations are unoccupied (as in Svancara

et al. (2019)). In the former case, for agent ai, the starting time xi of its traversal is the

same as its joining time joini. In the latter case, for agent ai, the joining time joini is

the time at which the agent joins the team, and the starting time xi of its traversal is

the time at which the agent enters the environment.

Remarks: cost functions. Furthermore, this definition of MAPF also allows different cost

functions depending on the needs of the particular application.
For an agent ai with traversal rPi

ai
= 〈xi, yi, fi〉 and for a time step t, let us first define

the cost of waiting (costiw(t)), and the cost of moving to another vertex (costim(t)):

• costiw(t) =

{
1 if fi(t) = fi(t + 1) for xi ≤ t < yi

0 otherwise
• costim(t) =

{
1 if fi(t) �= fi(t+ 1) for xi ≤ t < yi

0 otherwise
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Then we can define the length of its traversal and the cost of its traversal rPi
ai

= 〈xi, yi, fi〉
(considering the completion of the task, not the waiting afterward):

• costiL(r
Pi
ai
) =

∑yi

t= xi
costiw(t) + costim(t) • costiT (r

Pi
ai
) =

∑reachi

t= xi
costiw(t) + costim(t)

When the distance traveled by an agent ai is more important than the time spent by

the agent, we can consider the cost of its path Pi: cost
i
P (r

Pi
ai
) =

∑yi

t= xi
costim(t) = |Pi|.

Now the sum of costs of a MAPF plan rPA (i.e., the total time spent by all of the agents

until they reach their goals), and the makespan of a MAPF plan rPA (i.e., the time step

where all agents in A reach their goals) are defined as follows:

• costSOC(r
P
A) =

∑
ai ∈A costiT (r

Pi
ai
) • costM (rPA) =max(costiT (r

Pi
ai
)).

The total distance costSOP (r
P
A) traveled by the agents (that is the sum of path lengths

of a MAPF plan rPA) is defined similarly, by adding up costiP .

For more details, please see Appendix A of the supplementary material accompanying

the paper at TPLP archive.

3 D-MAPF: problem definition

Consider a given MAPF instance 〈A, G, O, cost, τ〉, and its solution (a MAPF plan)

rPA. D-MAPF considers changes in the environment or in the team while such a given

MAPF plan is being executed. We describe these changes by means of events, defined as

follows.

An event e at a time t (t≥ 0) is characterized by a tuple 〈At↑, At↓, Ot↑, Ot↓, t〉, where
• At↑ (resp. At↓) denotes the set of agents leaving (resp. joining) at time t,

• Ot↑ (resp. Ot↓) denotes the set of obstacles removed (resp. added) at time t.

A sequence C = 〈e0, e1, . . . , em〉 of events leads to changes if, for every ek ∈C, at least

one of the sets At↑, At↓, Ot↑, Ot↓ is nonempty.

Given a sequence C = 〈e0, e1, . . . , em〉 of events, the set AC
t of agents who are present

in the environment at time t is defined as follows:

AC
t =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A if t= 0, and e0 occurs at some time z > 0

(A \At↑)∪At↓ if t= 0, and e0 occurs at time 0

AC
t−1 if t > 0, and no event ei(i > 0) in C occurs at time t

(AC
t−1 \At↑)∪At↓ if t > 0, and some event ei(i > 0) in C occurs at time t

Given a sequence of events C = 〈e0, e1, . . . , em〉, the set OC
t of vertices covered by the

obstacles present in the environment at time t is defined in a similar way.

Let us denote by AC
≤ t the set of agents that were present in the environment before

or at some time t, as a sequence C of events takes place.

We say that a sequence C = 〈e0, e1, . . . , em〉 of events is valid if the following hold:

(i) for the event e0 = 〈At↑, At↓, Ot↑, Ot↓, t〉,
• At↑ ⊆A, (i.e., leaving agents are present in the environment initially),

• At↓ ∩A= ∅ (i.e., joining agents are not already in the environment),
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D-MAPF Problem
Input:

• A MAPF instance 〈A, G, O, cost, τ〉 and its solution rPA.
• A function cost′ that maps a set of traversals to a nonnegative integer.
• A positive integer τ ′ (an upper bound on the value).
• A valid sequence C of events.
• A positive integer α (an upper bound on the ending times of traversals)

Output: For every agent ai ∈AC
≤ α,

• a path P ′
i = vi,0, . . . , vi,li of length li where vi,0 = initi and vi,li = goali, and

• a traversal r
P ′

i
ai

= 〈xi, yi, fi〉, where xi ≥ joini, such that

— xi=0 if ai ∈ A,
— fi(t) /∈ OC

t for all t (xi ≤ t≤ yi) (i.e., no collisions with an obstacle), and

— for every other agent aj ∈AC
≤ α with r

P ′
j

aj
= 〈xj , yj , fj〉 where xj ≥ joinj and yj ≤α,

and for every t where ai, aj ∈AC
t , the agents ai and aj have neither a vertex conflict

at time t nor a swapping conflict between times t and t + 1,

such that cost′(rP
′

AC
≤ α

)≤ τ ′.

cost′

Fig. 2. A general definition for D-MAPF problem.

• Ot↑ ⊆O, (i.e., removed obstacles are in the environment initially),

• Ot↓ ∩ (O \Ot↑) = ∅ (i.e., new obstacles are different from the obstacles that are

already in the environment), and

(ii) for every event ek = 〈At↑, At↓, Ot↑, Ot↓, t〉 (0< k≤m),

• At↑ ⊆AC
t−1 (i.e., agents leaving at time t are present there at time t−1),

• At↓ ∩AC
≤ t−1 = ∅ (i.e., agents joining at time t have never been in the environment

previously (with the same id)),

• Ot↑ ⊆OC
t−1 (i.e., obstacles removed at time t are in the environment at time t−1),

• Ot↓ ∩ (OC
t−1 \Ot↑) = ∅ (i.e., new obstacles added at time t are not already present

in the environment), and

(iii) for every two events ek = 〈At↑, At↓, Ot↑, Ot↓, t〉 and ek + 1 = 〈Az↑, Az↓, Oz↑, Oz↓, z〉
(0≤ k <m),

• t < z (i.e., event ek occurs before event ek + 1).

Note that, for every event ek = 〈At↑, At↓, Ot↑, Ot↓, t〉 in a valid event sequence C, (1)

for every agent ai ∈At↓, t= joini, and (2) for every agent aj ∈At↑, t= yj .

Based on the concepts and notation defined above, we introduce a general definition

for the D-MAPF problem, as in Figure 2.

Remarks. Our D-MAPF definition can be easily extended to include different con-

straints, as needed by applications. For instance, during the applications of our studies

at warehouses with mobile robots, we have observed the need for another constraint

that prevents conflicts due to robots following each other too closely. For those stud-

ies, we have defined following conflicts as follows, and extended the D-MAPF definition

accordingly: For two agents ai, aj with traversals rPi
ai

= 〈xi, yi, fi〉 and r
Pj
aj = 〈xj , yj , fj〉,

respectively, a following conflict occurs between ai and aj between times t and t+ 1,

where max(xi, xj)≤ t < min(yi, yj), if fi(t) = fj(t+ 1).
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Solve MAPF

Execute

Solve D-MAPF

Replanning
Revise and Augment

in Tunnels
Revise and Augment

method

method?

Fig. 3. Overall architecture of a general framework for D-MAPF.

4 A general framework for solving D-MAPF problems

Overall architecture. We introduce a general framework for D-MAPF problems, based

on multi-shot computation, and utilizing one of specified methods to solve D-MAPF.

Figure 3 shows an overall architecture of this framework, considering online execution of

the computed plans.

In an online execution, the changes that will occur in the environment are not known

before the start of the execution. To detect the changes, we consider the environment

being monitored by a central agent. When this central agent detects a change in the

environment during the execution of a computed plan, a new plan is computed, and the

agents start executing the new plan.

Our algorithm takes a MAPF instance 〈A,G, O, cost, τ〉 and a method to solve

D-MAPF as input.

1. Initially, a MAPF solution is computed for this instance, starting from time 0,

shown with the “Solve MAPF” block.

2. Then, the computed solution rPA is executed step by step until a change is detected

by the central agent at time time′. This execution process is shown with the

“Execute” block.

3. The instance 〈A, G, O, cost, τ〉 and its solution rPA being executed are the

inputs for the next step, “Solve D-MAPF,” as well as a sequence of events

C = 〈e0, e1, . . . , em〉, the cost function cost′ and its upper bound τ ′. In this part,

D-MAPF problem is solved using the method specified at the beginning of the

algorithm.
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4. Once a D-MAPF solution rP
AC

≤ α

is found and the current instance is updated as

<AC
≤ α, G, OC

≤ α, cost
′, τ ′ >, the execution continues from time step time′ with the

“Execute” block. The execution continues until the end of the computed plan.

Multi-shot solving. For the solving processes “Solve MAPF” and “Solve D-MAPF”

blocks, we utilize multi-shot ASP (Gebser et al. 2019).

Multi-shot solving aims to handle continuously changing logic programs. A multi-shot

ASP program is able to grow and be updated with the changing knowledge to solve a

problem. A multi-shot ASP program considers a program splitted into multiple parts.

The inclusion of these subprograms into the solving process is maintained by a controller

program from the outside. The subprograms generally serve different purposes and can

be grouped as: static parts that are grounded once and not changed throughout the

program (usually called the base program), cumulative parts that can be added multiple

times with different parameter values, such as time step in dynamic domains (usually

called the step program), and volatile parts that are added for a step and removed in

the next step, checking whether the stopping condition is satisfied (usually called the

check program). Enabling and disabling rules in the check program at different steps is

done with external atoms, through the outside controller program.

In our algorithm for solving D-MAPF problem, the base program contains the MAPF

instance and the initial step of the traversal. The step program has a parameter t,

denoting the time step of the plan, and it generates the plan recursively for time step t

and adds the collision constraints for time t. The check program also has a parameter t

and an external atom called query for enabling/disabling the rules in this program. This

program verifies whether every agent reached their goals at time t. These programs are

depicted on the left side of Figure 4 and explained in more detail in Appendix B of the

supplementary material accompanying the paper at TPLP archive.

Solving MAPF, using multi-shot ASP. “Solve MAPF” procedure utilizes the programs

and solves the problem following these steps:

1. The controller program starts with time step t = 0, grounds the base program

and check(0) program, assigns the external atom query(0) and solves the current

program, if the solver does not return a value (SAT or UNSAT), continues with

step 2. Otherwise the computation ends.

2. Time step value t is increased by 1, the external atom query(t-1) is released and

step(t) and check(t) are grounded, the external atom query(t) is assigned and

the current program is solved.

3. If the solver returns a value or the makespan limit is reached, solving ends and the

solution is returned, otherwise step 2 is repeated.

The solution found in “Solve MAPF” is passed to the “Execute” block and executed

step by step until a change is detected by the central agent and D-MAPF is solved. The

visualization of these steps of solving can be found in Figure B1 in Appendix B of the

supplementary material accompanying the paper at TPLP archive.

Solving D-MAPF, using multi-shot ASP. “Solve D-MAPF” has a similar procedure as

described above for “Solve MAPF” but has additional parts for maintaining the new

agents. D-MAPF solving uses the existing ground program of MAPF, with the same
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Fig. 4. The multi-shot ASP programs used for solving MAPF and D-MAPF.

controller program. There is an additional program, called newAgent, for each of the three

methods, presented on the right side of Figure 4. This program has four parameters: the

agent a, its initial position i, its goal position g, and the starting time of its traversal k. If

multiple agents are added at the same time step, then there will be a different newAgent

program for each agent.

5 A new method for D-MAPF: Revise-and-Augment-in-Tunnels

In this study, we consider the following two existing approaches to solve D-MAPF prob-

lems. The Replan-All method (as in Svancara et al. (2019)) discards the existing MAPF

plan and re-solves MAPF for all agents considering the changes in the team. The Revise-

and-Augment method (as in Bogatarkan et al. (2019)), on the other hand, reuses the

existing plan: when a change occurs, the plans of existing agents are revised by reschedul-

ing their waiting times, while plans are computed for the newly joining agents. In this

approach, while revising plans, the order of vertices that the agent visits in the MAPF

solution is preserved in the D-MAPF solution for every existing agent.

We also introduce a new approach (called Revise-and-Augment-in-Tunnels) to solve

D-MAPF problems, which combines the advantages of Replan-All and Revise-and-

Augment methods. Revise-and-Augment-in-Tunnels aims to reuse the previously com-

puted plans in the spirit of Revise-and-Augment, but in a more relaxed way in the spirit

of Replan-All. While revising plans, instead of requiring that every existing agent fol-

low their existing paths only, Revise-and-Augment-in-Tunnels allows each agent to visit
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Fig. 5. Tunnels with widths 0 (left), 1 (middle), and 2 (right).

some other vertices neighboring their path. Note that, unlike Revise-and-Augment, this

method allows the agents to visit the vertices of their paths in a different order.

Intuitively, each existing agent is allowed to follow some path in a “tunnel” of a specified

“width.” Such a tunnel consists of the vertices included in the agent’s existing path, the

neighboring vertices within a Manhattan distance of “width” from the path, and the edges

of the graph that connect these vertices. Figure 5 shows sample tunnels with different

width values for a sample agent. Note that a tunnel with a zero width contains only the

path of the agent and the edges between them.

Formally, the tunnel Tw
i of an agent ai with respect to its path Pi in G, with width

w≥ 0, is the induced subgraph of the set {u : v ∈ Pi, u∈ V, 0≤ dM (u, v)≤w} of vertices,

where dM denotes the Manhattan distance.

For every agent ai ∈A with a path Pi, Revise-and-Augment-in-Tunnels considers the

following tunnel constraints while revising plans: every vertex vi,j visited by ai in the

revised plan should be in Tw
i , and, for every 〈vi,j , vi,j+1〉 followed by ai in the revised

plan, there exists an edge {vi,j , vi,j+1} in Tw
i .

Note that, essentially, Revise-and-Augment-in-Tunnels solves D-MAPF extended with

such tunnel constraints.

Remarks. To better understand the difference between Revise-and-Augment and Revise-

and-Augment-in-Tunnels with tunnel width 0, consider the following example: An agent

ai has a path Pi = 〈A, B, C, D〉 and its traversal rPi
ai

with fi = 〈A, A, B, C, C, D〉. At
time t= 1, new agents join the environment, and the traversal for ai will be revised

using Revise-and-Augment-in-Tunnels with tunnel width 0. Agent ai can have a possible

revised traversal r
P ′

i
ai with fi = 〈A, A, B, C, B, C, D〉 (if the edges are undirected). This

revised traversal is not possible to obtain with the Revise-and-Augment method, since

the order of vertices in the path is not allowed to change.

6 Three multi-shot ASP methods for D-MAPF: Replan-All,
Revise-and-Augment, and Revise-and-Augment-in-Tunnels

Replan-All, using multi-shot ASP. If the method used for solving D-MAPF is replanning,

then only the newAgent program and the programs from “Solve MAPF” are used with
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Fig. 6. The multi-shot ASP program used for solving D-MAPF with Revise-and-Augment.

the following steps, assuming we have an existing ground program until some makespan

m, and the time of change k:

1. For every agent a added at time k, a newAgent program for the agent a, its initial

and goal locations i and g and the starting time k is grounded. This program

recursively computes a plan for the agent starting from time k until time m and

adds the collision constraints for the agent and the goal condition for the agent.

2. Once all the newAgent programs are grounded for time k, the cumulative ground

program containing old and new agents is solved.

3. If the solver returns a solution, it is passed to the execution. Otherwise, the algo-

rithm tries to find a solution with a makespan m + 1. This is done with the same

steps in “Solve MAPF.” However, instead of starting from t = 0, the procedure

starts from t=m since the time steps from 0 to m are already grounded for the old

and new agents. Therefore, only steps 2 and 3 in “Solve MAPF” are used.

Since the program does not have any knowledge about the already executed part of

the plan, we need to make sure that the existing agents’ location at time k is the same

in the new plan, to avoid them jumping to a disconnected location in the next step. For

this purpose, we use the controller program and utilize assumptions of multi-shot clingo.

We set the truth value of each plan atom in the already executed part of the existing

solution to true, making sure that those atoms are included in the answer set in the

new solution. This is done after every change in the environment, before starting the

procedure of solving D-MAPF.

Revise-and-Augment, using multi-shot ASP. When solving D-MAPF with Revise-and-

Augment, in addition to the newAgent program and the programs from “Solve MAPF,”

we have an additional program called path_constraints (shown in Figure 6 and

explained in more detail in Appendix B of the supplementary material accompanying

the paper at TPLP archive). It has two parameters: one of them is the time step t

that the constraints are being grounded for, and the other one is k, the time step of

the last change. This program contains an external atom, called path_query(t,k) for

adding and removing the constraints at each step. When a change is observed during the

execution, in addition to the assumptions explained above, we add additional atoms to

the clingo control, to be used with the path_constraints program. These atoms add
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the knowledge about the order of atoms in the existing paths for the agents and which

agents are the relevant ones for preserving the paths. Detailed explanation about these

atoms and how they are used in the program can be found in Appendix B. Once the

relevant knowledge is added, the following steps are used for computing the revised and

augmented solution:

1. newAgent programs are grounded same as step 1 of Replan-All.

2. If there is a path_query assigned from earlier, it is released. The

path_constraints program with parameters m and k is grounded, and its

path_query atom is assigned with the same parameters.

3. The cumulative program, with all agents and relevant path constraints, is solved.

4. If the solver returns a solution, it is passed to the execution. Otherwise, the algo-

rithm tries to find a solution with a makespan m + 1. This is done similarly with

“Solve MAPF” but has additional steps for preserving the paths.

(a) Similar to Replan-All, solving procedure starts with t=m from step 2 of “Solve

MAPF.” Then t value is increased by 1, the external atom query(t-1) is

released, step(t) and check(t) are grounded, and query(t) is assigned.

(b) Previously used path_query is released, the path_constraints(t,k) program

is grounded and path_query(t,k) is assigned. The program containing current

step and the constraints for path is solved.

(c) If the solver returns a value or the makespan limit is reached, solving ends and

the solution is returned, otherwise steps (a) and (b) are repeated.

Revise-and-Augment-in-Tunnels, using multi-shot ASP. To solve D-MAPF with this

method utilizing multi-shot ASP, one of the following two approaches can be considered.

In the first approach, tunnels are constructed at the plan generation part. In step and

newAgent programs, we update the choice rules for moving to an adjacent vertex:

plan(A,t,Y): edge(X,Y), tunnel(A,Y)1 :- plan(A,t-1,X), agent(A).

1. Initially, when grounding the base program for MAPF, all vertices in the environ-

ment are added as part of the tunnel of the agents, with external tunnel(A,X)

atoms from the controller program, meaning that vertex X is in the tunnel of agent

A. Then, the controller follows the same steps from “Solve MAPF.”

2. Once a change in the environment occurs, the paths of the existing agents are

extracted from the solution, and the tunnels are computed according to the width

value. The tunnel of an existing agent is only computed once, at the first time step

when it becomes an old agent after a change in the environment. The external

tunnel atoms that represent the locations outside of the tunnel of an agent are

released. This disables the plan generation rules containing the vertices outside of

the tunnel of the agent.

3. After this point, solving process continues the same way with replanning, and, after

every change, the tunnels of the agents that become old agents in that time step

are updated before moving on with the newAgent program.

In the second approach, the locations that are outside an agent’s tunnel are considered

as forbidden locations for that agent. Accordingly, constraints are added to ensure that
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no agent visits their forbidden locations in its plan. The procedure for adding these

constraints is similar to changes done for the Revise-and-Augment method.

1. The forbidden locations are extracted from the existing solution and added as

forbidden(A,X) atoms to the program by the controller similar to the path_order

atoms in Revise-and-Augment.

2. After a change in the environment, a program called forbidden_locations con-

taining the constraint of not visiting forbidden vertices is added for every existing

agent, if it is not already added before for that agent.

3. The forbidden locations of an agent do not change over time; therefore, there are

no query atoms in this program, and it is not added and removed at each step.

7 Experimental evaluations

We evaluate the performance and usefulness of our methods by comparing them with

each other, in terms of computation time and quality of solutions. We implement our

framework using multi-shot ASP with clingo 5.8.0 and Python 3.8.10.

Investigating the computational performance of multi-shot ASP-based D-MAPF methods.

With the first set of experiments, our goal is to observe how each of these methods

perform in terms of computation time, with different number of agents joining the

environment at different times. For this purpose, we generated instances with an empty

grid of size 20× 20, initially having 20 or 30 agents. We added 5 or 10 new agents to

these instances, at different time steps with different group sizes. A total of 25 instances

were generated, with 5 different initial and new agent setups.

In these empty-grid instances, the initial locations and the goal locations of the agents

are picked such that each initial-goal pair is at the opposite diagonal corners of each

other. This setup results with longer plans in empty grids, allowing us to observe the

changes in the computation times more easily, since every step added to the plans has

an impact on the computation time.

Figure 7 shows the total computation times for 5 different setups of these instances

with different methods. Each bar shows the average time of 5 instances with the same

setup. For instance, Setup 1 (20 + 5) has initially 20 agents, and 5 agents join at time

1. Setup 5 (30 + 2 + 2 + 2 + 2 + 2) has initially 30 agents; then 2 agents join at time

1, 2 agents join at time 2, 2 agents join at time 3, 2 agents join at time 4, and 2 agents

join at time 5.

The computation times consist of two parts, grounding and solving time, taken from

clingo. We run Revise-and-Augment-in-Tunnels with tunnel constraints (shown as TC)

and Revise-and-Augment-in-Tunnels with tunnels in generate (shown as TG) with two

different tunnel width values of 0 and 20. Width 0 only uses the vertices of the path of an

agent, bringing the solution closer to Revise-and-Augment (shown as R&A), and width

20 covers the whole environment, therefore, the same environment as Replan-All.

Note that in the figure, the computation times greater than 200 s are not displayed

exactly. A timeout of 200 s was set for the experiments, and none of the instances was

solved with Revise-and-Augment (R&A) within this time limit. The detailed results for

each instance and method can be found in Appendix C of the supplementary material
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Fig. 7. Average grounding and solving times for 5 setups on an empty 20×20 grid.

accompanying the paper at TPLP archive, including the separate times in each stage of

solving D-MAPF, where finding a new solution after a change is called a stage.

Observations and discussions about the computational performance of the methods. From

these results, we observe that Revise-and-Augment has the highest computation times

among all methods and the fastest performing method is Replan-All. Both approaches

for solving Revise-and-Augment-in-Tunnels, TC and TG, perform close to each other

and Replan-All, but are not as fast as Replan-All for all of our instances.

We observe that, for TC, when the tunnel width increases, the computation times

decrease. This decrease is visible mostly in grounding times, whereas the solving times

do not differ significantly for different tunnel widths. This shows the effect of grounding

the constraints for the forbidden vertices, which are added for each vertex outside an

agent’s tunnel, for every existing agent. As the tunnel width increases, the number of

forbidden vertices decreases, reducing the number of added constraints and therefore the

grounding time for constraints.

On the other hand, for TG, when the tunnel width increases, we observe some increase

in computation times. This is due to the higher number of tunnel atoms considered for

generating the plans for wider tunnels. As the tunnel width gets larger, the number

of tunnel atoms considered for each agent increases accordingly. The number of tunnel

atoms directly impacts the number of choice rules being used for generating the new plans,

therefore increasing the computation time. The effect of the tunnel atoms on computation

times can clearly be observed in the computation times of initial MAPF solving stage.

Initially, every vertex is a part of every agent’s tunnel, and for our instances, this creates

an increase around 10 s in the total time of solving MAPF compared to other methods.

If we consider the case where the MAPF instance is the same and the new agents are

added at the same time steps but the number of new agents added at those time steps

are different (e.g., Instances 3 and 4), the increase in the computation times with the
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increase in the number of agents is visible in the results of all methods except R&A. For

example, for Replan-All, the computation time for finding a solution after adding 5 new

agents in Instance 3 is 19.01 s, while the time for finding a solution after adding 10 new

agents in Instance 4 is 28.96 s. Similar increases can be observed for TC and TG.

Consider Instance 4 and Instance 5, where the MAPF instance and the total number

of new agents are the same, but they are joining as different groups at different times.

For all of our methods, the difference of total times is visible in the results. When the

same agents are added at different times, the computation takes longer. This is mainly

due to the increase in the makespan of the whole D-MAPF solution, caused by the agents

starting their plans at a later time.

Investigating the quality of solutions. In our second set of experiments, we used instances

with obstacles adapted from MAPF benchmarks in Stern et al. (2019), as follows: (1)

We selected three types of 32× 32 grids as environments: random-32-32-10 contains

random obstacles in the 10% of the environment, random32-32-20 has random obstacles

in the 20% of the environment, and room32-32-4 divides the environment into small

rooms and connects them through “doors.” (2) We scaled these grids to size 20× 20

and utilized the random scenarios provided for these grids for creating our instances.

(3) From all random scenarios, we extracted the initial and goal location pairs that do

not overlap with obstacles in any of these environments. (4) We merged these pairs to

a list and generated 5 base MAPF instances by randomly selecting 20 agents from the

merged list. (5) Then, for each of these MAPF instances, we created 10 different D-MAPF

instances, containing 20 new agents randomly selected from the list, that are not used

in its MAPF instance. This resulted in 50 D-MAPF instances that can be used in the

selected environments, making 150 instances in total. For these experiments, we assume

that all new agents are added at t= 0 before the execution but after computing a MAPF

plan.

We used these instances to investigate the quality of solutions computed with the

tunnels. For the old agents, we examined how their initially computed plans change after

the new agents are added to the environment. Table 1 shows a sample result for each

environment for the same set of agents.

The columns #Plan Changes and #Path Changes show the number of agents that

have a different plan and path than their initial solution. A change in a plan is either a

change in the time of visiting a location or changing the visited location completely. Here,

we consider a path change as visiting a different vertex that does not exist in the original

plan. For each instance, the first lines in these columns show the number of agents for

Replan-All, the second lines show the number of agents for TC with widths 0, 2, and 5,

respectively, and the third lines show the same information for TG.

For instance, for the first instance (random 10%), according a D-MAPF solution com-

puted with Replan-All, 12 agents had to change their initial paths, and 14 agents had to

change their initial plans. In a D-MAPF solution computed with TC: no agent changes

its path if the tunnel width is given as 0, while 6 agents change their plans (i.e., traver-

sals of their paths); 6 agents change their paths if the tunnel width is given as 2, while 7

agents change their plans; and 10 agents change their paths if the tunnel width is given

as 5, while 10 agents change their plans.
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Table 1. Results for the same D-MAPF instance in three different 20× 20 environments

MAPF D-MAPF #Plan #Path #Diverted Agents
Grid Mkspn Mkspn Changes Changes [Amount of Divergence in Replan-All]

Width-0 Width-2 Width-5
14 12 12 7 1

random 10%

25 27 6, 7, 10 0, 6, 10 [6; 8; 8; 17;
9; 13; 10; 1;
3; 16; 5; 1]

[3; 2; 4; 3;
2; 5; 11]

[2]
13, 10, 4 0, 9, 4

Width-0 Width-2 Width-5

random 20%

25 27 6 3 3 0 0
4, 4, 9 0, 4, 7 [1; 1; 1]
2, 3, 7 0, 3, 5

Width-0 Width-2 Width-5

room

19 11 4
20 19 [9; 15; 4; 7;

25 35 19, 20, 20 0, 19, 19 5; 26; 1; 3; [3; 6; 2; 22;
19, 19, 19 0, 19, 19 7; 3; 27; 15; 20; 11; 1; 6; [13; 13; 4; 1]

5; 16; 6; 3; 7; 6; 1]
14; 8; 7]

The last three columns show the number of agents that visit a vertex outside of their

tunnels of width 0, 2, and 5, respectively, in a D-MAPF solution computed with Replan-

All. The square-bracketed lists show how many such vertices outside of tunnels are visited.

For instance, for the first instance (random 10%), in a D-MAPF solution computed

with Replan-All, out of the 12 agents who diverged from their paths, 7 agents went

outside of their tunnels of width 2, and 1 of them went further away from its path (i.e.,

outside of its tunnel of width 5).

Observations and discussions about the quality of solutions. We observe the same amount

of increase in the makespan of plans, with all methods. We observe a higher increase in

the makespan in the room environment, compared to the other environments: all 20

of the existing agents have changed their plans and all except one of the agents have

changed their paths. Such higher increases in the makespan (compared to the other two

environments) is due to the constrained structure of the environment.

In terms of divergences, we see that, for every tunnel width, the number of vertices

visited outside of the agents tunnels is high for some agents. For instance, for room with

tunnel width 0, one of the agents visits 27 vertices outside its tunnel (in this case, its

path). Since the makespan of D-MAPF plan is 35, we can see that the agent diverts from

its original path in at least 77% of its new path.

These divergence results demonstrate agents significantly changing their plans with

Replan-All. Recall that such significant changes in plans are not desired in real-world

applications where robots collaborate with humans, and this was our motivation for

introducing the concept of tunnels.
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Table 2. Average run times of 150 D-MAPF instances for different
environments/methods

Grid Replan-All TC W0 TC W2 TC W5 TG W0 TG W2 TG W5

random 10% 39.65 47.82 44.62 43.22 48.44 48.53 48.99
random 20% 33.90 39.45 37.11 36.06 41.17 41.60 42.19
room 38.61 39.65 34.44 34.22 42.72 41.98 43.93

Effect of obstacles in computation times. Table 2 shows the average of the total com-

putation times for all D-MAPF instances in the second set of experiments. When we

compare computation times in different environments, we observe that random 20% has

the fastest computation times. This is an expected result due to the environment having

fewer empty cells for the agents to move; hence, resulting in a smaller problem size. On

the other hand, while room environment has even fewer empty cells, the computation

times are higher due to the tight passages between the rooms. For TC, we observe a

similar pattern with the first set of experiments: as the tunnel size increases, the com-

putation becomes faster. For TG, we also observe similar behavior with the first set of

experiments: increasing the tunnel size increases the computation times.

8 Conclusion

D-MAPF problem considers MAPF problem in dynamic environments where changes

can occur in the environment or the team of agents. In this study, we introduced a

general definition for D-MAPF problem that covers different assumptions on appear-

ance/disappearance of agents and different objective functions studied in the literature,

as well as the possible changes that can occur in the environment. We introduced a

framework for solving D-MAPF that can use different methods for computing the new

solutions after changes in the environment, utilizing multi-shot ASP. In addition to for-

mulating the existing approaches Replan-All and Revise-and-Augment using multi-shot

ASP, we introduced a new method called Revise-and-Augment-in-Tunnels that combines

the advantages of multi-shot solving and re-using the existing solutions. We integrated

this method into our framework and observed its usefulness in terms of computational

performance and solution quality.
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