ON THE CLIFFORD COLLINEATION, TRANSFORM AND SIMILARITY GROUPS (IV)

AN APPLICATION TO QUADRATIC FORMS

G. E. WALL

To RICHARD BRAUER on his 60th birthday

1. Introduction

E. S. Barnes and I recently¹⁾ constructed a series of positive quadratic forms f_N in $N = 2^n$ variables (n = 1, 2, ...) with relative minima of order $N^{\frac{1}{2}}$ for large N. I continue this investigation by determining the minimal vectors of f_N and showing that, for $N \neq 8$, its group of automorphs is the Clifford group²⁾ $\mathscr{CT}_1^+(2^n)(\S 3)$. This suggests a generalization. Replacing $\mathscr{CT}_1^+(2^n)$ by $\mathscr{CT}(p^n)$, where p is an odd prime, I derive a new series of positive forms in $N = (p-1)p^n$ variables (§4). The relative minima are again of order $N^{\frac{1}{2}}$ (pfixed, $N \rightarrow \infty$), the "best" forms being those for p = 3,5. All forms are eutactic though only those for p = 3,5 are extreme.

The methods used here raise several questions. Firstly, the forms constructed have fairly big relative minima while the representations of the symplectic group Sp(2n, p) associated with $\mathscr{CT}(p^n)$ are of smallest possible degree (CGI, theorem 10). Are these two facts directly related? Secondly, it is natural to regard the lattice introduced in §4.2 as a commutative algebra. Is there a simple direct relation between this algebra and the automorph group $\mathscr{CT}(p^n)$?

2. Preliminaries

The notation used in this paper is a compromise between that of EF and that of CGI, CGII. See in particular 2.1-2.3 below.

2.1. Vector spaces and groups over GF(p).

Throughout this paper, p stands for a fixed prime and n for a fixed natural

Received Nov. 22, 1961.

¹⁾ Cf. [1]. This paper is referred to as EF.

²⁾ Cf. [2], [3]. These papers are referred to as CGI, CGII.

number. $V = V_n(p)$ denotes the vector space of all row vectors $\boldsymbol{a} = (\alpha_1, \ldots, \alpha_n)$ over the Galois field GF(p). V_r stands generically for an r-dimensional subspace of V, C_r for a coset $\boldsymbol{a} + V_r$.

It is easily proved that each function $f(\alpha)$ defined on V and with values in GF(p) coincides in value with a unique polynomial $P(\alpha_1, \ldots, \alpha_n)$ of degree <p in each α_i . Such polynomials will be called *standard*. The *degree* of f is defined as the total degree of P.

Let p = 2. Consider the 2*n*-dimensional quadratic form $\phi(\lambda) = \sum_{i=1}^{n} \lambda_i \lambda_{n+i}$ over GF(2), where λ is the row vector (λ_i) (i = 1, ..., 2n). The (2*n*-rowed) matrices³⁾ T which leave $\phi(\lambda)$ invariant, i.e., $\phi(\lambda) = \phi(\lambda T')$, form the orthogonal group $O_1(2n, 2)$. Let

(2.1.1)
$$T = \begin{pmatrix} P & Q \\ R & S \end{pmatrix} \qquad (P, Q, R, S n \times n \text{ matrices})$$
$$d_T = \text{rank } R.$$

The T such that d_T is even form the rotation subgroup $O_1^+(2n, 2)$.

Let p > 2. Consider the 2 *n*-dimensional alternate bilinear form

$$f(\lambda, \mu) = \sum_{1}^{n} (\lambda_{i} \mu_{n+i} - \mu_{i} \lambda_{n+i})$$

over GF(p). The matrices T which leave $f(\lambda, \mu)$ invariant, i.e., $f(\lambda, \mu) = f(\lambda T', \mu T')$ form the symplectic group Sp(2n, p). The notation (2.1.1) will also be used for the elements of Sp.

2.2. Vector spaces and groups over the cyclotomic field P.

Let R_0 denote the rational field, P the p-th cyclotomic field: $P = R_0(\omega)$, where $\omega = \exp(2\pi i/p)$. Then $E = E_{p^n}$ denotes a p^n -dimensional vector space over P. We choose a fixed basis of E, indexing its p^n members \mathbf{e}_a with the p^n elements α of V. We use the notations

$$\mathbf{x}=(\mathbf{x}_{a})=\sum \mathbf{x}_{a}\mathbf{e}_{a}$$

for the elements of E.

The scalar product on E is defined by

³⁾ The transpose of a matrix T in denoted by T'.

$$(x_{\alpha}) \cdot (y_{\alpha}) = \sum_{\alpha \in V} \overline{x}_{\alpha} y_{\alpha}.$$

The terms unitary (p>2), orthogonal (p=2) are interpreted accordingly.

Let p = 2. The Clifford transform group $\mathscr{CT}_1^+(2^n)^{4}$ is a group of orthogonal transformations on E. There exists a homomorphism of $\mathscr{CT}_1^+(2^n)$ onto $O_1^+(2n, 2)$ such that each original of $T \in O_1^+$ has the form⁵

(2.2.1)
$$X\mathbf{e}_{a} = 2^{-\frac{1}{2}d_{T}} \sum_{\boldsymbol{\beta} \in \mathcal{C}} (-1)^{f(\boldsymbol{\beta})} \mathbf{e}_{\boldsymbol{\beta}},$$

where C is a coset of dimension d_T , f a function of degree ≤ 2 . For each function $g(\alpha)$ of degree ≤ 2 , non-singular $n \times n$ matrix D over GF(2) and vector $\mathbf{t} \in V$, the linear transformation⁶

$$(2.2.2) Y \mathbf{e}_{\boldsymbol{a}} = (-1)^{g(\boldsymbol{a})} \mathbf{e}_{\boldsymbol{a}D+\mathbf{t}}$$

belongs to \mathscr{CT}_1^+ .

Let p > 2. The Clifford transform group $CT(p^n)$ was defined in CGI §3.1. We define $\mathscr{CT}(p^n)$ as the commutator group of $CT(p^n)$ when $p^n > 3$, as the group $\{Y, Z\}\mathscr{CS}$ in CGI Appendix, section (4), when $p^n = 3$. $\mathscr{CT}(p^n)$ is a group of unitary transformations on E. There exists a homomorphism of $\mathscr{CT}(p^n)$ onto Sp(2n, p) such that each original of $T \in Sp$ has the form⁷

(2.2.3)
$$X\mathbf{e}_{\boldsymbol{a}} = \pm \theta^{-d_T} \sum_{\boldsymbol{\beta} \in C} \omega^{f(\boldsymbol{\beta})} \mathbf{e}_{\boldsymbol{\beta}},$$

where C is a coset of dimension d_T , f a function of degree ≤ 2 and

(2.2.4)
$$\theta = \sum_{i=0}^{p-1} \omega^{i^2}.$$

For each function $g(\alpha)$ of degree ≤ 2 , non-singular $n \times n$ matrix D over GF(p)and vector $\mathbf{t} \in V$, the linear transformation⁸⁾

(2.2.5)
$$Y \mathbf{e}_{\boldsymbol{\alpha}} = \boldsymbol{\omega}^{g(\boldsymbol{\alpha})} \mathbf{e}_{\boldsymbol{\alpha}D+\mathbf{t}}$$

belongs to \mathscr{CT} .

⁴⁾ Defined in CGII § 3.3., for $n \ge 3$ only, as the commutator group of $CT(2^n)$. A universal definition is that $\mathscr{CT}_1^+(2^n)$ consists of the elements in CGII (5.10) corresponding to the elements T of $O_1^+(2n, 2)$.

⁵⁾ See CGII (510) and (5.5).

⁶⁾ These are the elements in CGII (5.10) corresponding to $d_T = 0$.

⁷⁾ See CGI (3.1.1) and (4.1.6).

⁸⁾ These are the elements of \mathscr{CT} corresponding to the T with $d_T=0$.

2.3. Lattices. Let Ω denote the ring of all integers in P. We define an Ω lattice as the set of all integral linear combinations

$$\sum \hat{\xi}_a \mathbf{u}_a \qquad (\hat{\xi}_a \in \mathcal{Q})$$

of p^n linearly independent vectors \mathbf{u}_{α} . In particular, $\Gamma = \Gamma_{p^n}$ denotes the \mathcal{Q} lattice of all integral vectors

$$\sum x_a e_a \qquad (x_a \in \Omega).$$

If Λ_1 , Λ_2 are \mathcal{Q} -lattices and $\Lambda_1 \subset \Lambda_2$, the grouptheoretical index $|\Lambda_2 : \Lambda_1|$ is finite. In particular, if $\lambda(\neq 0) \in \mathcal{Q}$, we have

$$|\Gamma:\lambda\Gamma|=|N(\lambda)|^{p^n},$$

where $N(\lambda)$ is the norm of λ in P relative to R_0 . For, if $\mathbf{x}, \mathbf{y} \in \Gamma$ then $\mathbf{x} \equiv \mathbf{y} \pmod{\lambda\Gamma}$ if, and only if, $x_{\alpha} \equiv y_{\alpha} \pmod{\lambda}$ for each $\alpha \in V$.

Let Λ be an \mathcal{Q} -lattice such that $\lambda \Gamma \subseteq \Lambda \subseteq \Gamma$, where $\lambda (\neq 0) \in \mathcal{Q}$. We define the *dual* Λ' of Λ modulo λ as follows: Λ' is the set of $\mathbf{x} \in E$ such that $\mathbf{x} \cdot \mathbf{y} \in \lambda \mathcal{Q}$ for all $\mathbf{y} \in \Lambda$. Since $\lambda \Gamma \subseteq \Lambda \subseteq \Gamma$, we have $\overline{\lambda} \Gamma \subseteq \Lambda' \subseteq \Gamma$. The argument of EF §2 shows that Λ' is an \mathcal{Q} -lattice, that Λ is the dual of Λ' modulo $\overline{\lambda}$ and that

(2.3.1)
$$|\Gamma:\Lambda||\Gamma:\Lambda'| = |\Gamma:\lambda\Gamma| = N(\lambda)|^{p^n}.$$

It is a well known theorem that every finitely generated module over a principal ideal ring has a basis. The following variant is proved in exactly the same way.

LEMMA 2.3.1. Let $\lambda(\neq 0) \in \Omega$ and suppose that every divisor of the principal ideal with generator λ is principal. Then every Ω -module M such that $\lambda \Gamma \subset M \subset \Gamma$ is an Ω -lattice.

2.4. Criteria for quadratic functions on $V_n(2)$.

In the present section, p = 2 and $f(\alpha)$ is a function defined on V with values in GF(2). If $W \subseteq V$, we write

(2.4.1)
$$\langle W; f \rangle = \sum_{\alpha \in W'} (-1)^{f(\alpha)}.$$

As stated in $\S2.1$, f has a unique expression in the form

(2.4.2)
$$f(\boldsymbol{\alpha}) = \sum_{s} \boldsymbol{a}_{s} \boldsymbol{\alpha}_{s} \qquad (\boldsymbol{a}_{s} \in GF(2), \ \boldsymbol{\alpha}_{s} = \prod_{i \in s} \boldsymbol{\alpha}_{i}),$$

where summation is over the subsets (including the empty set) of $1, 2, \ldots, n$.

We note that, since $\alpha^2 = \alpha$ on GF(2), the degree of $f(\alpha)$ is ≤ 2 if, and only if, the function $g(\alpha) = f(\alpha) + f(0)$ is a quadratic form.

LEMMA 2.4.1. The degree of $f(\alpha)$ is ≤ 2 if, and only if, $f(\alpha)$ has an even number of zeros in every $V_3 \subset V$.

Proof. The following conditions for a scalar-valued function $h(\mathbf{u})$ on a vector space to be a quadratic form are well known:

- (i) the function $k(\mathbf{u}, \mathbf{v}) = h(\mathbf{u} + \mathbf{v}) h(\mathbf{u}) h(\mathbf{v})$ is bilinear, and
- (ii) $h(\lambda \mathbf{u}) = \lambda^2 h(\mathbf{u})$.

It follows that h is a quadratic form if, and only if, its restriction to every subspace of dimension ≤ 3 is a quadratic form. It is therefore sufficient to prove our lemma for $n \leq 3$. For $n \leq 2$, the lemma is obvious from (2.4.2). For n = 3, it follows from the formula $\sum_{\alpha \in V} f(\alpha) = a_{(1,2,3)}$.

COROLLARY. The degree of f(a) is ≤ 2 if, and only if,

(2.4.3)
$$\langle V_3; f \rangle \equiv 0 \pmod{4}$$
 for every $V_3 \subset V$.

We suppose from now on that the degree of $f(\alpha)$ is ≤ 2 . Let $q(\alpha) = f(\alpha) + f(0)$ be the corresponding quadratic form. The *polar form* of q is the bilinear form

$$Q(\alpha, \beta) = q(\alpha + \beta) + q(\alpha) + q(\beta).$$

Since Q is alternate $(Q(\alpha, \alpha) \equiv 0)$ its rank is even, say 2 d. We call d the *reduced rank* of f.

LEMMA 2.4.2. Suppose that $f(\alpha)$ has degree ≤ 2 , reduced rank $\leq D$. Then, for each $V_k \subset V$ $(0 \leq k \leq n)$,

$$(2.4.4) \qquad \langle V_k; f \rangle \equiv 0 \pmod{2^t},$$

where⁹⁾ $t = \max\left(\left[\frac{1}{2}(k+1)\right], k-D\right)$.

Proof. Let d be the reduced rank of f. Then $q(\alpha) = f(\alpha) + f(0)$ is equivalent¹⁰ to one of

$$q_1(\boldsymbol{\alpha}) = \sum_{1}^{d} \alpha_i \alpha_{d+i}, \quad q_2(\boldsymbol{\alpha}) = q_1(\boldsymbol{\alpha}) + \alpha_1 + \alpha_{d+1}, \quad q_3(\boldsymbol{\alpha}) = q_1(\boldsymbol{\alpha}) + \alpha_2 d+1.$$

⁹⁾ [r] = integral part of r.

¹⁰⁾ See e.g., Dieudonné [6].

The number of zeros of $q(\alpha)$ is accordingly

$$2^{n-1} + \epsilon 2^{n-d-1}$$
 ($\epsilon = 1, -1 \text{ or } 0$)

and so $\langle V; f \rangle = \epsilon 2^{n-d}$. Therefore

$$\langle V; f \rangle \equiv 0 \pmod{2^{n-d}}$$

and, since $d \leq \frac{1}{2}n$,

$$\langle V; f \rangle \equiv 0 \pmod{2^{\left[\frac{1}{2}(n+1)\right]}}.$$

Applying the last two congruences to the restriction \overline{f} of f to V_k and noting that the reduced rank of \overline{f} cannot exceed that of f we get the lemma.

LEMMA 2.4.3. Suppose that f(a) has degree ≤ 2 , reduced rank d. Let D be an integer such that $0 \leq D \leq \frac{1}{2}n$. If

$$(2 4.5) \qquad \langle V_{2D+2}; f \rangle \equiv 0 \pmod{2^{D+2}} \text{ for every } V_{2D+2} \subset V,$$

then $d \leq D$.

In fact, if *d* were > *D*, the restriction of $q(\alpha)$ to a suitable V_{2D+2} would be equivalent to $\sum_{1}^{D+1} \alpha_i \alpha_{D+1+i}$; but then $\langle V_{2D+2}; f \rangle = \pm 2^{D+1}$, contrary to (2.4.5).

We shall later have to consider functions $h(\alpha)$ defined on a coset $\mathbf{a} + V_k$ rather than the whole of V. The degree and reduced rank of h are defined to be those of the function $l(\beta) = h(\mathbf{a} + \beta)$, whose domain of definition is the subspace V_k .

3. Lattices of dimension 2^n

We suppose throughout this section that p = 2. The minimal vectors of the lattices $\Lambda(\lambda)$ are determined in §3.1, the automorphs of the "principal" lattices $\Lambda^{(1)}$, $\Lambda^{(2)}$ in §3.2.

We recall the definition of $\Lambda(\lambda)$ (EF §3). $(\lambda) = (\lambda_0, \ldots, \lambda_n)$ is a set of integral indices satisfying

$$(3.0.1) \qquad \qquad \lambda_0 = 0, \ \lambda_r - 1 \le \lambda_{r-1} \le \lambda_r \quad \text{for} \quad 1 \le r \le n,$$

and $\Lambda(\lambda)$ is the lattice formed by all integral linear combinations of the vectors

$$2^{\lambda_{n-r}}[\boldsymbol{C}_r] = 2^{\lambda_{n-r}} \sum_{\boldsymbol{\alpha} \in \mathcal{C}_r} \mathbf{e}_{\boldsymbol{\alpha}},$$

where C_r runs over all cosets in V.

If $W \subseteq V$ and $f(\alpha)$ is a function defined on W with values in GF(2), we write

$$[W; f] = \sum_{a \in W} (-1)^{f(a)} \mathbf{e}_a$$

3.1. Minimal vectors of $\Lambda(\lambda)$. Let x be a minimal vector of $\Lambda = \Lambda(\lambda)$. By theorem 3.2. of EF,

(3.1.1)
$$\mathbf{x}^2 = 2^m$$
, where $m = \min(n - r + 2\lambda_r)$,

and \mathbf{x} has the form

(3.1.2)
$$\mathbf{x} = 2^{\lambda R} [W; f],$$

where R satisfies

$$(3.1.3) n-R+2\lambda_R=m, 0 \le R \le n,$$

and W is a subset of V with 2^{n-R} elements.

We now complete this partial characterization by giving the conditions that a vector of the form (3.1.2) belong to Λ .

THEOREM 3.1. Let R be an integer satisfying (3.1.3), W a subset of V with 2^{n-R} etements, f(a) a function defined on W with values in GF(2). Let d be the largest integer such that

(3.1.4)
$$\lambda_{R+k} = \lambda_R + \left[\frac{1}{2}(k+1)\right] \quad for \qquad 0 \le k \le 2 d.$$

Then the vector $2^{\lambda R} [W; f] \in \Lambda(\lambda)$ if, and only if,

(i) W is a coset C_{n-R} , and

(ii) $f(\alpha)$ has degree ≤ 2 , reduced rank $\leq d$.

Proof. Lemma 3.3 of EF can be sharpened by adding the following conditions for equality:

If precisely 2^{n-s} coordinates x_a are odd, the corresponding a form a coset C_{n-s} .

The proof is straightforward and is omitted. This sharper form of the lemma shows that (i) is a necessary condition.

We may now suppose that W is a coset, or even a subspace V_{n-R} , because

the results for cosets can easily be deduced by translation of coordinates. Now, each $V_k \subset V_{n-R}$ is the meet of V_{n-R} with some $V_{k+R} \subset V$ but not the meet of V_{n-R} with any V_{k+R+u} , u > 0. Therefore, by theorem 3.1 of EF, the vector $\mathbf{x} = 2^{\lambda R} [W; f] \in \Lambda$ if, and only if,

(3.1.5)
$$\langle V_k; f \rangle \equiv 0 \pmod{2^{\mu_k}} \text{ for every } V_k \subset V_{n-R},$$

where $\mu_k = \lambda_{R+k} - \lambda_R$. We remark that, by (3.1.4),

(3.1.6)
$$\mu_k = \left[\frac{1}{2}(k+1)\right] \text{ for } 0 \le k \le 2 d,$$

and that, by (3.0.1) and (3.1.1),

$$(3.1.7) \qquad \mu_{2d+2} = d+2 \ if \ 2d+2 \le n-R,$$

(3.1.8)
$$\left[\frac{1}{2}(k+1)\right] \le \mu_k \le k-d \quad \text{for} \quad 2d \le k \le n-R.$$

Suppose now that $x \in A$. By (3.1.5), (3.1.6) and (3.1.8),

 $\langle V_3; f \rangle \equiv 0 \pmod{4}$ for every $V_3 \subset V_{n-R}$,

so that, by the corollary to lemma 2.4.1, the degree of $f \le 2$. Again, by (3.1.5) and (3.1.7),

$$\langle V_{2d+2}; f \rangle \equiv 0 \pmod{2^{d+2}}$$
 for every $V_{2d+2} \subset V_{n-R}$,

so that, by lemma 2.4.3, the reduced rank of $f \le d$.

Conversely, suppose that f has degree ≤ 2 , reduced rank $\leq d$. If $k \leq 2d$, (3.1.5) holds by lemma 2.4.2 and (3.1.6). If k > 2d, (3.1.5) holds by lemma 2.4.2 and (3.1.8). Hence $x \in A$. This proves our theorem.

A straightforward enumeration of the quadratic functions of given reduced rank yields the total number of minimal vectors of rank R stated in (5.10) of EF.

3.2. Automorphs of the principal lattices. The first and second principal lattices $\Lambda^{(1)}$, $\Lambda^{(2)}$ of dimension $N = 2^n$ are the $\Lambda(\lambda)$ given by

(3.2.1)
$$\lambda_r = \left[\frac{1}{2}r\right] \text{ and } \left[\frac{1}{2}(r+1)\right] \quad (0 \le r \le n)$$

respectively. They occupy a special position in that their (common) relative minimum $\left(\frac{1}{2}N\right)^{\frac{1}{2}}$ exceeds that of any other $\Lambda(\lambda)$ of dimension N.

The fact that $\Lambda^{(1)}$, $\Lambda^{(2)}$ are dual modulo 2^n implies that they have the same group of automorphs. Suppose e.g. that X is an automorph of $\Lambda^{(1)}$. If $\mathbf{x} \in \Lambda^{(1)}$, $\mathbf{y} \in \Lambda^{(2)}$, then

$$\mathbf{x} \cdot X\mathbf{y} = X^{-1}\mathbf{x} \cdot \mathbf{y} \equiv 0 \pmod{2^n}.$$

Since this holds for all $\mathbf{x} \in A^{(1)}$, $X\mathbf{y} \in A^{(2)}$. Since $X\mathbf{y} \in A^{(2)}$ whenever $\mathbf{y} \in A^{(2)}$, X is an automorph of $A^{(2)}$. The common group of automorphs is denoted by \mathfrak{A} .

By §3.1, the minimal vectors of $A^{(1)}$ (*n* odd), $A^{(2)}$ (*n* even) are

(3.2.2)
$$2^{\left[\frac{1}{2}n\right]-s}[C_{2s}; f]$$

where C_{2s} runs over all even-dimensional cosets in V, f over all functions of degree ≤ 2 on C_{2s} ; and those of $\Lambda^{(1)}$ (n even), $\Lambda^{(2)}$ (n odd) are

(3.2.3)
$$2^{\left[\frac{1}{2}(n+1)\right]-s}[C_{2s+1}; f],$$

where C_{2s+1} runs over all odd-dimensional cosets in V, f over all functions of degree ≤ 2 on C_{2s+1} .

THEOREM 3.2. If $n \neq 3$, $\mathfrak{A} = \mathscr{C} \mathscr{T}_1^+(2^n)$. If n = 3, $\mathfrak{A} \cong [3^{4,2,1}]$ (in the notation of Coxeter and Moser [5]) and $\mathscr{C} \mathscr{T}_1^+(2^3)$ is a subgroup of \mathfrak{A} of index 270.

Proof. Let M_s denote the set of vectors (3.2.2) of fixed dimension 2s, M the union of all the M_s . Write $\mathbf{u}_0 = 2^{\left[\frac{1}{2}n\right]} \mathbf{e}_0$. We first prove that

(3.2.4) *M* is the set of all vectors Xu_0 ($X \in \mathscr{C}\mathcal{T}_1^+$).

By (2.2.1), $X\mathbf{u}_{9} \in M$ if $X \in \mathscr{CS}_{1}^{+}$. By (2.2.2) \mathscr{CS}_{1}^{+} permutes the vectors in each M_{s} transitively. It remains to prove that for each s there is an $X \in \mathscr{CS}_{1}^{+}$ such that $X\mathbf{u}_{0} \in M_{s}$, i.e., by (2.2.1), that there is a $T \in O_{1}^{+}$ such that $d_{T} = 2 s$. The matrix T defined as follows satisfies the requirement:

$$\begin{aligned} \lambda \mathbf{T}' &= \mu, \text{ where} \\ \lambda_i &= \mu_{n+i}, \ \mu_i &= \lambda_{n+i} \quad (1 \le i \le 2 s) \\ \lambda_i &= \mu_i, \ \lambda_{n+i} &= \mu_{n+i} \quad (2 s < i \le n). \end{aligned} \end{aligned}$$

This proves (3.2.4).

Let \mathfrak{A}_0 be the group formed by the automorphs which leave \mathbf{u}_0 fixed. By (3.2.4),

G. E. WALL

$$\mathfrak{A} = (\mathscr{C} \mathscr{T}_1^+)\mathfrak{A}_0.$$

Assuming that $n \neq 3$, we now prove that $\mathfrak{A} = \mathscr{C} \mathscr{T}_1^+$ by showing that

 $\mathfrak{U}_{\mathbf{0}} \subset \mathscr{C} \mathscr{T}_{1}^{+}.$

We consider three cases.

(a) n = 1. $M = [\pm e_0, \pm e_1]$, so that \mathfrak{A} consists of the 8 symmetries of the square. O_1^+ is the identity group, so that \mathscr{CP}_1^+ consists of the 8 linear transformations (2.2.2). Hence $\mathfrak{A} = \mathscr{CP}_1^+$.

(b) n = 2. The elements of $\mathfrak{A}_0 \cap \mathscr{CT}_1^+$ are the 48 linear transformations (2.2.2) such that $\mathbf{t} = \mathbf{0}$, $g(\mathbf{0}) = 0$. On the other hand, \mathfrak{A}_0 permutes the elements of M orthogonal to \mathbf{u}_0 , viz.,

 $\pm 2 \mathbf{e_a}, \pm 2 \mathbf{e_b}, \pm 2 \mathbf{e_c}$ (a, b, c the non-zero elements of V),

so that the order of \mathfrak{A}_0 is at most 48. Hence $\mathfrak{A}_0 = \mathfrak{A}_0 \cap \mathscr{C}_1^+ \subset \mathscr{C}_1^+$.

(c) $n \ge 4$. We call C_{2s} the *carrier* of the vector (3.2.2). Let N_s denote the set of vectors in M_s whose carriers are subspaces, N the union of all the N_s . If $v \in M$, we have

$$0 \qquad (\mathbf{v} \in N)$$
$$\mathbf{u}_0 \cdot \mathbf{v} = 2^{2\left[\frac{1}{2}n\right] - s} (\mathbf{v} \in N_s) \qquad \right)$$

so that \mathfrak{A}_0 permutes the elements of each N_s .

Suppose now that

$$X \in \mathfrak{A}_0, \mathbf{v}_i \in N_1, X \mathbf{v}_i = \mathbf{w}_i \quad (i = 1, 2, \ldots),$$

and let V_2^i , W_2^i be the (2-dimensional) carriers of \mathbf{v}_i , \mathbf{w}_i respectively. Since $2^{2-2\left[\frac{n}{2}\right]}\mathbf{v}_i \circ \mathbf{v}_j \equiv \mathbf{0}$ or 1 (mod 2) according as $V_2^i \cap V_2^j \neq (\mathbf{0})$ or $= (\mathbf{0})$,

2 = 1 = 1 $\mathbf{v}_i \circ \mathbf{v}_j \equiv 0$ or 1 (mod 2) according as $V_2 = 1$ $V_2 \neq (0)$ or = (0), it follows that

$$(3.2.6) V_2^i \cap V_2^j = (0) if, and only if, W_2^i \cap W_2^j = (0).$$

Now, since n > 3, a 2-dimensional subspace is uniquely determined by the set of 2-dimensional subspaces which meet it in the zero subspace (0). Therefore, by (3.2.6),

(3.2.7)
$$V_2^i = V_2^j$$
 if, and only if, $W_2^i = W_2^j$.

Thus, X maps the set of elements of N with fixed carrier V_2 onto the set of elements of N with a fixed carrier W_2 which depends only on V_2 .

It now follows from case (b) that X has the form

$$X\mathbf{e}_{\boldsymbol{\alpha}} = (-1)^{g(\boldsymbol{\alpha})} \mathbf{e}_{\pi(\boldsymbol{\alpha})},$$

where π is a mapping of V onto itself whose restriction to each V_2 is a nondegenerate linear mapping into V. It follows that π is a non-singular linear transformation on V. Also, since [V] is a vector (3.2.2) or (3.2.3), X[V] has the form [V; f] for some function f of degree ≤ 2 . Hence g has degree ≤ 2 and so, by (2.2.2), $X \in \mathscr{CT}_1^+$. This proves (3.2.5).

We mention briefly the case n = 3. \mathfrak{A} has a subgroup isomorphic to $[3^{4,2,1}]$ (Coxeter and Moser [5], §9.4). On the other hand, an argument on the lines of (c) above shows that \mathfrak{A} and $[3^{4,2,1}]$ have the same order. Hence $\mathfrak{A} \cong [3^{4,2,1}]$.

4. Lattices of dimension $(p-1)p^n$

We pass now to the case p > 2. Given the relation of \mathscr{CT}_1^+ to $\Lambda^{(1)}$, and the similarity in form between the elements of \mathscr{CT}_1^+ and \mathscr{CT} , it becomes clear how to generalize $\Lambda^{(1)}$ and $\Lambda^{(2)}$. The definitions, and several alternative characterizations, are given in §4.1. The "*H*-adic" characterization is of central importance and greatly simplifies the determination of the relative minima and minimal vectors. A real metric, which turns $\Lambda^{(1)}$, $\Lambda^{(2)}$ into $(p-1)p^n$ -dimensional real lattices in the usual sense, is introduced in §4.2. With these preparations the main lattice properties follow fairly easily, though the anomalous cases p = 3,5 need some further detailed consideration.

Notation. We write

$$C_{r} \mid = \theta^{n-r} [C_{r}] = \theta^{n-r} \sum_{\alpha \in C_{r}} \mathbf{e}_{\alpha},$$

$$C_{r} ; f \mid = \theta^{n-r} [C_{r} ; f] = \theta^{n-r} \sum_{\alpha \in C_{r}} \omega^{f(\alpha)} \mathbf{e}_{\alpha},$$

$$\mathbf{u}_{\alpha} = \theta^{n} \mathbf{e}_{\alpha},$$

where θ is the Gauss sum (2.2.4).

We write $\Pi = \omega - 1$. The principal ideal $\Pi \mathcal{Q}$ is prime and $\Pi^{-\frac{1}{2}(p-1)}\mathcal{Q} = \theta \mathcal{Q}$ = $\overline{\theta}\mathcal{Q}$, $\Pi^{p-1}\mathcal{Q} = p\mathcal{Q}$. The *p* elements of the residue class ring $\mathcal{Q}/\Pi\mathcal{Q}$ are represented by the rational integers 0, 1, ..., p-1.

If $\lambda \in P$, the norm and trace of λ relative to R_0 are denoted by $N(\lambda)$, tr λ . 4.1. The principal lattices. We define $\Lambda^{(2)}$ as the set of $\mathbf{x} \in \Gamma$ such that $X\mathbf{x} \in \Gamma$

https://doi.org/10.1017/S0027763000023837 Published online by Cambridge University Press

for all $X \in \mathscr{CT}$; in other words, it is the largest set of integral vectors invariant (as a whole) under \mathscr{CT} . By (2.2.3), $\theta^n \Gamma \subset \Lambda^{(2)}$. Therefore, by lemma 2.3.1, $\Lambda^{(2)}$ is an Q-lattice.

We define $\Lambda^{(1)}$ as the dual of $\Lambda^{(2)}$ modulo θ^n . It is an \mathcal{Q} -lattice such that $\theta^n \Gamma \subset \Lambda^{(1)} \subset \Gamma$. By the argument of §3.2, every unitary transformation which leaves $\Lambda^{(2)}$ invariant also leaves $\Lambda^{(1)}$ invariant. In particular, $\Lambda^{(1)}$ is invariant under $\mathscr{C}\mathscr{T}$. Hence, by the definition of $\Lambda^{(2)}$, $\Lambda^{(1)} \subset \Lambda^{(2)}$.

The following is an alternative characterization of $\Lambda^{(1)}$. Consider the Q-lattice, say Λ , formed by the integral linear combinations of the vectors

$$(4.1.1)$$
 $|C_r; f|,$

where C_r runs over all cosets in V, f over all functions on C_r of degree ≤ 2 . The vectors (4.1.1) are, apart from sign, the vectors Xu_a , where α runs over V, X over \mathscr{CT} (see (2.2.3) and (2.2.5)). Since

$$(X^{-1}\mathbf{u}_{a})\cdot\mathbf{x}=\pm\theta^{n}\mathbf{y}_{a},$$

where y = Xx, it follows that Λ is dual to $\Lambda^{(2)}$ modulo θ^n . Therefore $\Lambda = \Lambda^{(1)}$.

For the remaining characterizations of $A^{(1)}$, $A^{(2)}$, some preparations are necessary. We define the *product* of two vectors by

$$(\mathbf{x}_a)(\mathbf{y}_a) = (\mathbf{x}_a \mathbf{y}_a).$$

Under this product, Γ becomes a commutative algebra over the ring \mathcal{Q} , with unit element 1 = [V]. A *polynomial* in the elements X, Y, . . . of Γ means a sum

$$\sum_{\lambda, \mu, \dots, z = 0} a_{\lambda \mu \dots} \mathbf{X}^{\lambda} \mathbf{Y}^{\mu} \cdots$$

of monomials with coefficients in Ω . The subalgebra of Γ generated by **X**, **Y**, ... means the smallest subalgebra of Γ which contains these elements; it consists of the polynomials in **X**, **Y**, ... with zero constant term $a_{00} \ldots 1$.

If $\alpha \in GF(p)$, let α' denote that rational integer in the interval [0, p-1] which represents α . Write

$$\mathbf{A}_{i} = \sum_{(a_{1},\ldots,a_{n})\in V} \alpha'_{i} \mathbf{e}_{(a_{1},\ldots,a_{n})} \qquad (i = 1, \ldots, n).$$

Then each $x \in \Gamma$ has a unique Π -adic expansion

(4,1,2)
$$\mathbf{x} \sim \sum_{i=0}^{\infty} Q_i(\mathbf{A}_1,\ldots,\mathbf{A}_n) \Pi^i,$$

where the Q_i are standard¹¹ polynomials with coefficients in [0, p-1]. (4.1.2) means that $\mathbf{x} \equiv \sum_{i=1}^{k-1} Q_i \Pi^i \pmod{\Pi^k \Gamma}$ for all k.

To prove our assertion, we consider the congruences

$$\sum_{\lambda_1,\ldots,\lambda_n=0}^{j-1} q_{\lambda_1\ldots\lambda_n} \alpha_1^{\prime \lambda_1} \cdots \alpha_n^{\prime \lambda_n} \equiv \mathbf{x}_a \pmod{\Pi^k},$$

where α runs over V. This is a system of p^n linear equations for the p^n variables $q_{\lambda_1...\lambda_n}$ in the residue class ring $\mathcal{Q}/\Pi^k \mathcal{Q}$. Since the determinant of the system is a power of $\prod_{i < j} (\alpha'_i - \alpha'_j)$ and so a unit of $\mathcal{Q}/\Pi^k \mathcal{Q}$, the solution is unique. Thus, $\mathbf{x} \equiv Q(\mathbf{A}_1, \ldots, \mathbf{A}_n) \pmod{\Pi^k \Gamma}$, where Q is a standard polynomial over \mathcal{Q} , whose coefficients are unique modulo Π^k . Replacing the coefficients of Q by their Π -adic representations, we get the required unique representation $\mathbf{x} \equiv \sum_{i=1}^{k-1} Q_i \Pi^i \pmod{\Pi^k \Gamma}$.

If x_{α} is a function of $\alpha_{i_1,...,\alpha_{i_t}}$ only, each Q_i is a polynomial in $A_{i_1,...,A_{i_t}}$ only. This follows from the Π -adic expansion of the p^t -dimensional vector $y_{(\alpha_{i_1},...,\alpha_{i_t})} = x_{\alpha}$.

We return now to $\Lambda^{(1)}$, $\Lambda^{(2)}$. We first prove that $\Lambda^{(1)}$ is the subalgebra of Γ generated by the vectors

$$(4.1.3) |V; f|, |C_{n-1}|$$

where f runs over all functions of degree ≤ 2 , C_{n-1} over all (n-1)-dimensional cosets.

Consider the product $S = |C_r; f| |C_s; g|$, where f, g have degree ≤ 2 . If $C_r \cap C_s$ is empty, S = 0. If not, $C_r \cap C_s = C_t$, where $n \geq \dim (C_r + C_s) = r + s - t$. Hence $S = \theta^{n+t-r-s} |C_t; f+g| \in A^{(1)}$. This proves that $A^{(1)}$ is a subalgebra. The elements (4.1.3) are generators because $|C_r; f| = |V; f| \prod_{i=1}^{r} |C_{n-1}^{(i)}|$ for any $(n-r) C_{n-1}^{(i)}$'s with meet C_r .

Let $L^{(1)}$ denote the set of $\mathbf{x} \in \Gamma$ such that, in the Π -adic expansion (3.1.2), (4.1.4) degree $Q_i \leq 2i$ (i=0, 1, ...).

Since (4.1.4) places no restriction on Q_i when $i \ge \frac{1}{2}n(p-1)$, we have $\Pi^{\frac{1}{2}n(p-1)}\Gamma = \theta^n \Gamma \subset L^{(1)}$. Using the Π -adic expansion

¹¹⁾ i.e., the degree of Q_i in each variable is $\langle p \rangle$; cf § 2.1.

$$\mathbf{A}_i^p = \mathbf{A}_i + \Pi^{p-1} Q_{p-1}(\mathbf{A}_i) + \cdots$$

of \mathbf{A}_{i}^{p} , it can be verified that products and \mathcal{Q} -linear combinations of elements of $L^{(1)}$ are again in $L^{(1)}$; therefore $L^{(1)}$ is a subalgebra of Γ . We prove now that

$$(4.1.5) L^{(1)} = \Lambda^{(1)}.$$

Notation. If S is a subset or element of Γ , S^{*} denotes the corresponding subset or element in the factor algebra $\Gamma^* = \Gamma/\theta^n \Gamma$. The elements of Γ^* are regarded as vectors over the residue class ring $\Omega^* = \Omega/\theta^n \Omega$. $\mathscr{P}(\mathbf{X}^*, \ldots)$ denotes the subalgebra of I^* generated by \mathbf{X}^*, \ldots .

Proof of (4.1.5) Considering the monomials in the Π -adic expansion, we see that $L^{(1)*}$ is generated by the $n^2 + n + 1$ elements

(4.1.6)
$$\mathbf{1}^*, \ \Pi \mathbf{A}_i^*, \ \Pi \mathbf{A}_i^* \mathbf{A}_j^*.$$

Since every |V; f| in (4.1.3) is a polynomial in the $n^2 + n + 1$ vectors

1,
$$\mathbf{a}_i = |V; \alpha_i| - 1$$
, $\mathbf{a}_{ij} = |V; \alpha_i \alpha_j| - 1$,

 $\Lambda^{(1)*}$ is generated by the corresponding elements

$$(4.1.7)$$
 $\mathbf{1}^*, \mathbf{a}_i^*, \mathbf{a}_{ij}^*$

and the vectors

$$(4.1.8) |C_{n-1}|^*.$$

We prove (4.1.5) by showing that

(A) the elements (4.1.6) and (4.1.7) can be expressed in terms of one another;

(B) the elements (4.1.8) can be expressed in terms of the elements (4.1.6).

The proof of (A) is simplified by the following lemma, whose easy proof is omitted.

LEMMA. Let S be a subalgebra of Γ^* and \mathbf{X}^*, \ldots elements of S. Then $S = \mathscr{P}(\mathbf{X}^*, \ldots)$ if, and only if, $S/\Pi S = \mathscr{P}(\mathbf{X}^* + \Pi S, \ldots)$.

Consider now the elements a_i^* . The α -th coordinate of a_i is

$$\omega^{a_i} - 1 = (1 + \Pi)^{a'_i} - 1 = \sum_{j=1}^{a_{j'}} {a'_j \choose j'} \Pi^j.$$

It follows that

$$\mathbf{a}_{i}^{*} = \sum_{j=1}^{p-1} (j!)^{-1} \prod_{k=0}^{j-1} (\Pi \mathbf{A}_{i}^{*} - k \Pi) + \Pi^{p} \mathbf{b}_{i}^{*},$$

where $()^{-1}$ denotes the inverse in Ω^* and \mathbf{b}_i is a vector in Γ whose \boldsymbol{a} -th coordinate depends only on α_i . From the Π -adic expansion of \mathbf{b}_i , we deduce that $\Pi^p \mathbf{b}_i^* \in \Pi \mathscr{P}(\Pi \mathbf{A}_i^*)$. It follows that $\mathbf{a}_i^* \in \mathscr{P}(\Pi \mathbf{A}_i^*)$. Further, since

$$\mathbf{a}_i^* \equiv \sum_{j=1}^{p-1} (j!)^{-1} (\Pi \mathbf{A}_i^*)^j \pmod{\Pi \mathscr{P}(\Pi \mathbf{A}_i^*)},$$

we have

$$\Pi \mathbf{A}_i^* \equiv \sum_{j=1}^{\nu-1} (-1)^{j-1} j^{-1} (\mathbf{a}_i^*)^j \pmod{\Pi \mathscr{P}(\Pi \mathbf{A}_i^*)},$$

whence, by the lemma, $\mathscr{P}(\Pi \mathbf{A}_i^*) = \mathscr{P}(\mathbf{a}_i^*)$.

By similar arguments, we get

$$\mathcal{P}(\Pi \mathbf{A}_i^*, \ \Pi \mathbf{A}_i^{*2}) = \mathcal{P}(\mathbf{a}_i^*, \ \mathbf{a}_{ii}^{*1}),$$
$$\mathcal{P}(\Pi \mathbf{A}_i^*, \ \Pi \mathbf{A}_j^{*2}, \ \Pi \mathbf{A}_j^{*2}, \ \Pi \mathbf{A}_i^{*2}, \ \Pi \mathbf{A}_i^{*3}) = \mathcal{P}(\mathbf{a}_i^*, \ \mathbf{a}_j^*, \ \mathbf{a}_{ii}^*, \ \mathbf{a}_{ij}^*, \ \mathbf{a}_{ij}^{*1}, \ \mathbf{a}_{ij}$$

whence (A) follows.

By (A), and because of the symmetry of the set of vectors |V; f| with respect to index transformations $\boldsymbol{a} \to \boldsymbol{a} D + \mathbf{t}$, it is sufficient to prove (B) when C_{n-1} is the particular coset defined by the equation $\alpha_1 = 0$. Now the Π -adic expansion shows that $[C_{n-1}]^*$ is a polynomial of degree < p in Λ_1^* . It follows that $\Pi^{\frac{1}{2}(p-1)}[C_{n-1}]^* \in \mathscr{P}(\Pi\Lambda_1^*, \Pi\Lambda_1^{*2})$ and therefore, since $\Pi^{\frac{1}{2}(p-1)} \mathcal{Q} = \theta \mathcal{Q}$, that $|C_{n-1}|^* \in \mathscr{P}(\Pi\Lambda_1^*, \Pi\Lambda_1^{*2})$. This proves (B) and (4.1.5).

There is a similar Π -adic characterization of $\Lambda^{(2)}$. Let $L^{(2)}$ denote the set of $\mathbf{x} \in \Gamma$ such that

(4.1.9) degree
$$Q_i \leq 2i+1$$
 $(i=0, 1, ...);$

then

$$(4.1.10) L^{(2)} = \Lambda^{(2)}.$$

This is proved by showing that

(C)
$$|\Gamma: L^{(1)}||\Gamma: L^{(2)}| = |\Gamma: \theta^n \Gamma|,$$

(D) $\mathbf{x} \cdot \mathbf{y} \equiv 0 \pmod{\theta^n}$ whenver $\mathbf{x} \in L^{(1)}$, $\mathbf{y} \in L^{(2)}$.

(C), (D) imply that $L^{(1)}$, $L^{(2)}$ are dual modulo θ^n and thus that $L^{(2)} = A^{(2)}$, as required.

It is an easy combinatorial problem to show that

$$|L^{(1)}: \theta^n \Gamma| = p^{k_2}, |L^{(2)}: \theta^n \Gamma| = p^{k_1},$$

where

(4.1.11)
$$k_1 = \frac{1}{4} [n(p-1) + (p^n-1)], k_2 = \frac{1}{4} [n(p-1) - (p^n-1)].$$

Since $|\Gamma: \theta^n \Gamma| = p^{\frac{1}{2}n(p-1)p^n}$ and $k_1 + k_2 = \frac{1}{2}n(p-1)p^n$, we get (C) and (4.1.12) $|\Gamma: L^{(i)}| = p^{k_i}$ (i = 1, 2).

It is sufficient to prove (D) when

$$\mathbf{x} = \Pi^{\lambda} \mathbf{A}_{1}^{\lambda_{1}} \cdots \mathbf{A}_{n}^{\lambda_{n}}, \ \mathbf{y} = \Pi^{\mu} \mathbf{A}_{1}^{\mu_{1}} \cdots \mathbf{A}_{n}^{\mu_{n}},$$

where

$$0 \le \lambda_i < p, \qquad 0 \le \mu_i < p,$$

$$\sum \lambda_i \le 2\lambda, \qquad \sum \mu_i \le 2\mu + 1.$$

We may suppose that $\lambda + \mu < \frac{1}{2}n(p-1)$, for (D) is obvious otherwise. Let k be the integral part of $(p-1)^{-1}\sum (\lambda_i + \mu_i)$. Since

$$k(p-1) \leq \sum (\lambda_i + \mu_i) \leq 2 \lambda + 2 \mu + 1 < n(p-1),$$

we have

(4.1.13)
$$k < n, \frac{1}{2}k(p-1) < \lambda + \mu.$$

Let r be the number of indices i such that $\lambda_i + \mu_i \neq (p-1)$. Clearly $(n-r)(p-1) \leq \sum (\lambda_i + \mu_i)$, so that

$$(4.1.14) r \ge n-k.$$

Now
$$\mathbf{x} \cdot \mathbf{y} = \overline{\Pi}^{\lambda} \Pi^{\mu} \sum_{\boldsymbol{\alpha} \in \mathcal{V}} \alpha_{1}^{\prime \lambda_{1} + \mu_{1}} \cdots \alpha_{n}^{\prime \lambda_{n} + \mu_{n}}$$
$$= \overline{\Pi}^{\lambda} \Pi^{\mu} \mathbf{s}_{\lambda_{1} + \mu_{1}} \cdots \mathbf{s}_{\lambda_{n} + \mu_{n}},$$

where

$$s_0 = p, \ s_k = 1^k + 2^k + \cdots + (p-1)^k \qquad (k > 0).$$

Since, for k > 0, $s_k \equiv -1$ or $0 \pmod{p}$ according as (p-1)|k or not, we have

$$\mathbf{x} \cdot \mathbf{y} \equiv 0 \pmod{\Pi^{\lambda + \mu + r(p-1)}}.$$

(D) now follows from (4.1.13), (4.1.14). This proves (4.1.10).

4.2. The real metric. E, as defined in §2.2, is a p^n -dimensional metric space

over P. We now describe a natural way of defining it as a $(p-1) p^n$ -dimensional metric space over R_0 .

Consider first the degenerate case n = 0, where E = P and $\Gamma = \Omega$. P is a (p-1)-dimensional vector space over R_0 . It becomes a metric space over R_0 if we define the real scalar product by

$$(4.2.1) \qquad \qquad \lambda * \mu = tr \,\overline{\lambda} \,\mu.$$

Since the Galois group G of P over R_0 is abelian,

(4.2.2)
$$\lambda * \lambda = \sum_{\sigma \in G} (\overline{\lambda} \lambda)^{\sigma} = \sum_{\sigma \in G} \overline{\lambda}^{\sigma} \lambda^{\sigma}$$

whence $\lambda * \mu$ is positive definite.

 Ω becomes a (p-1)-dimensional lattice in the usual sense. The roots of unity $\omega^i (1 \le i \le p-1)$ form a lattice basis. By evaluating det (tr ω^{i-j}), we get

$$(4.2.3) D(Q) = p^{p^{-2}}.$$

The inequality of the arithmetic and geometric means shows that $(p-1)|N(\lambda)|^2 \le \lambda * \lambda$, with equality if, and only if, all conjugates of λ have the same modulus. Hence the minimal vectors of Ω are the roots of unity $\pm \omega^i$ and

$$(4.2.4) M(\mathfrak{Q}) = p - 1.$$

In the general case, E is a vector space over R_0 of dimension $N = (p-1)p^n$, and we define the real metric $\mathbf{x} * \mathbf{y}$ by

(4.2.5)
$$(x_{\alpha}) * (y_{\alpha}) = \sum_{\alpha \in V} x_{\alpha} * y_{\alpha} = \operatorname{tr} (x_{\alpha}) \cdot (y_{\alpha}).$$

 Γ is an N-dimensional lattice with basis $\omega^i e_{\alpha}$ ($\alpha \in V$, $1 \le i \le p-1$). By (4.2.3), (4.2.4),

(4.2.6)
$$D(\Gamma) = p^{(p-2)p^n}, M(\Gamma) = p - 1.$$

Hence, by (4.1.12),

(4.2.7)
$$D(\Lambda^{(i)}) = p^{(p-2)p^{n+2}k_i} \quad (i = 1, 2),$$

where k_i is given by (4.1.11).

The following results are noted for future reference. Let $\lambda \in \Omega$ and let k be the rational integer in [0, p-1] such that $\lambda \equiv k \pmod{\Pi}$. By (4.2.2), $\lambda * \lambda$ is even and $\equiv -k^2 \pmod{p}$. Hence

G. E. WALL

(4.2.8)
$$\geq 2p \quad \text{if } k = 0, \ \lambda \neq 0, \\ \lambda \ast \lambda \quad \geq p-1 \quad \text{if } k = 1, \ p-1 \\ \geq p+1 \quad \text{otherwise.}$$

In particular, when p = 5 and k = 2, 3, equality holds if, and only if, λ is one of the 20 numbers $\pm (\omega^i + \omega^j)$ $(0 \le i < j \le 4)$.

4.3. Minima, minimal vectors. We now determine the minimal vectors of $\Lambda^{(1)}$, $\Lambda^{(2)}$. Let $\mathbf{x} = \Pi^s \mathbf{y} \in \Lambda^{(2)}$ ($s \ge 0$), where $\mathbf{y} \in \Lambda^{(2)}$ but $\Pi^{-1} \mathbf{y} \notin \Lambda^{(2)}$. By the original definition of $\Lambda^{(2)}$, there is an $X \in \mathscr{CT}$ such that $\mathbf{z} = X\mathbf{y} \notin \Pi\Gamma$. Let

$$\mathbf{z} \sim \sum_{0}^{\infty} Q_i(\mathbf{A}_1, \ldots, \mathbf{A}_n) \Pi^i,$$

and let

$$\widetilde{Q}_i(\alpha_1,\ldots,\alpha_n)=\sum a_{\lambda_1\ldots\lambda_n}\alpha_1^{\lambda_1}\cdots\alpha_n^{\lambda_n} \qquad (i=0,\ 1,\ldots)$$

be the unique standard polynomial over GF(p) such that

$$\sum a'_{\lambda_1 \dots \lambda_n} \alpha_1^{\prime \lambda_1} \cdots \alpha_n^{\prime \lambda_n} = Q_i(\alpha'_1, \dots, \alpha'_n)$$

If Y is the transformation (2.2.5), Yw = z and

$$\mathbf{w} \sim \sum_{0}^{\infty} R_{i}(\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}) \Pi^{i},$$

then

$$\widetilde{R}_0(\boldsymbol{\alpha}) = \widetilde{Q}_0(\boldsymbol{\alpha}D + \mathbf{t}), \ \widetilde{R}_1(\boldsymbol{\alpha}) = \widetilde{Q}_1(\boldsymbol{\alpha}D + \mathbf{t}) - g(\boldsymbol{\alpha})\widetilde{Q}_0(\boldsymbol{\alpha}D + \mathbf{t}).$$

After applying such a transformation we may therefore suppose that either (a) $Q_0 = k \mathbf{1}$ $(k \neq 0)$ or (b) $Q_0 = \mathbf{A}_1$. Notice that $\mathbf{z} \notin A^{(1)}$ in case (b), by (4.1.4).

Case (a). Every coordinate z_{α} is non-zero, whence by (4.2.4),

$$\mathbf{x} * \mathbf{x} = (\Pi^{s} \mathbf{z}) * (\Pi^{s} \mathbf{z}) \ge (p-1)p^{n}$$

with equality if, and only if, s = 0 and z_a is a (2p)-th root of unity for each a. Suppose that equality holds. After replacing z by -z if necessary, we have k = 1 and $z = \lfloor V; f \rfloor$ for some standard polynomial $f(\alpha_1, \ldots, \alpha_n)$. Then, expanding $z_a = (1 + \Pi)^f$ by the binomial theorem, we get

$$\widetilde{Q}_i(\alpha_1,\ldots,\alpha_n)=\begin{pmatrix}f(\alpha_1,\ldots,\alpha_n)\\i\end{pmatrix}$$
 $(i=1,\ldots,p-2).$

Therefore, since \tilde{Q}_1 and f are standard, $\tilde{Q}_1(\xi_1, \ldots, \xi_n) = f(\xi_1, \ldots, \xi_n)$ identically in independent variables ξ_i . After applying a suitable transforma-

https://doi.org/10.1017/S0027763000023837 Published online by Cambridge University Press

tion (2.2.5), we may suppose that all terms in f of degree ≤ 2 are zero.

Suppose now that $\mathbf{x} \in \Lambda^{(1)}$. Then $\mathbf{z} \in \Lambda^{(1)}$ and so, by (4.1.4), the degree of $\tilde{Q}_1 \leq 2$. Hence f = 0 and $\mathbf{z} = [V]$. Suppose secondly that $\mathbf{x} \in \Lambda^{(2)}$, $\mathbf{x} \notin \Lambda^{(1)}$. Then, by (4.1.9), the degree of $\tilde{Q}_1 \leq 3$, so that f is a homogeneous cubic. If $p \geq 7$,

$$\widetilde{Q}_2(\widehat{z}_1,\ldots, \widehat{z}_n) = \begin{pmatrix} f(\widehat{z}_1,\ldots, \widehat{z}_n) \\ 2 \end{pmatrix}$$

since the latter is standard. This is impossible because $\binom{f}{2}$ has degree 6, \hat{Q}_2 degree ≤ 5 . Hence p = 3 or 5. We need not consider the case p = 3, because case (b) shows that $z * z > M^{(2)} = 4.3^{n-1}$. Suppose then that p = 5. After a suitable transformation (2.2.5), we may suppose that

$$f(\alpha_1,\ldots,\alpha_n)=\alpha_1^3+\alpha_1q(\alpha_2,\ldots,\alpha_n)+r(\alpha_2,\ldots,\alpha_n),$$

where q, r are homogeneous of degrees 2, 3 respectively. Then, after reduction to standard form, $\begin{pmatrix} f \\ 2 \end{pmatrix}$ contains the sextic terms $\alpha_1^4 q + \alpha_1^3 r$, so that q = r = 0. Thus $z = [V; \alpha_1^3]$. It is easy to see that this vector is actually in $\Lambda^{(2)}$.

Case (b). We have $z_{\alpha} \equiv \alpha'_1 \pmod{\Pi}$, whence, by (4.2.8),

$$\mathbf{x} * \mathbf{x} \ge (p-1)p^n \times 2p = 2(p-1)p^n \quad \text{if } s > 0$$
$$\mathbf{x} * \mathbf{x} \ge (p-3)p^{n-1} \times (p+1) + 2p^{n-1} \times (p-1) = (p^2-5)p^{n-1} \quad \text{if } s = 0.$$

By case (a), x cannot be a minimal vector of $\Lambda^{(2)}$ unless s = 0 and p = 3 or 5. Notice that in these cases $\mathbf{x} \notin \Lambda^{(1)}$ because s = 0 and $\mathbf{z} \notin \Lambda^{(1)}$. Let C^{λ} denote the (n-1)-dimensional coset in V defined by the equation $\alpha_1 = \lambda$. Suppose first that p = 3 and $\mathbf{x} * \mathbf{x} = (3^2 - 5)3^{n-1} = 4.3^{n-1}$. By (4.2.4), and since $Q_0 = \mathbf{A}_1$,

$$z = [C^1; f] - [C^{-1}; g]$$

where f, g are standard polynomials in $\alpha_2, \ldots, \alpha_n$. Using the equations

$$|C^{1}| = 2 \mathbf{A}_{1} - \mathbf{A}_{1}^{2}, |C^{-1}| = \frac{1}{2} (\mathbf{A}_{1}^{2} - \mathbf{A}_{1}),$$

we get

$$\tilde{Q}_1 = \alpha_1^2(g-f) - \alpha_1(g+f),$$

whence the degrees of g-f, g+f are ≤ 1 , 2 respectively. Then the element

$$Y\mathbf{e}_{\alpha} = \omega^{-\frac{1}{2}\left[(f+g) + \alpha_1(f-g)\right]} \mathbf{e}_{\alpha}$$

of \mathscr{CT} maps z onto

$$[C^{1}] - [C^{-1}] = \mathbf{A}_{1} + 3/2(\mathbf{A}_{1} - \mathbf{A}_{1}^{2}).$$

The Π -adic expansion shows that this vector is in $\Lambda^{(2)}$.

Suppose now that p = 5 and $x * x = (5^2 - 5)5^{n-1} = 4.5^n$. By (4.2.8), and since $Q_0 = A_1$,

$$\mathbf{z} = [C^{1}; f] - [C^{-1}; g] + ([C^{2}; h_{1}] + [C^{2}; h_{2}]) - ([C^{-2}; k_{1}] + [C^{-2}; k_{2}])$$

where f, g, \ldots are standard polynomials in $\alpha_2, \ldots, \alpha_n$ and neither $h_1 - h_2$ nor $k_1 - k_2$ assumes the value 0. Then

$$\widetilde{Q}_{1} = \alpha_{1}^{4}(-f+g-h+k) + \alpha_{1}^{3}(-f-g-2h-2k) + \alpha_{1}^{2}(-f+g+h-k) + \alpha_{1}(-f-g+2h+2k)$$

where $h = h_1 + h_2$, $k = k_1 + k_2$. Since the degree of $\tilde{Q}_1 \leq 3$, the coefficient of $\alpha_1^4 = 0$ and those of α_1^3 , α_1^2 , α_1 have degrees ≤ 0 , 1, 2 respectively. After applying the transformation

$$Y \mathbf{e}_{a} = \omega^{-\frac{1}{2}(f+g) - \frac{1}{2}a_{1}(f-g) - c(a_{1}^{2} - 1)} \mathbf{e}_{a},$$

where c is the constant h+2f+g, we have f=g=h=k, so that $h_1=-h_2$, $k_1=-k_2$. The next term of the Π -adic expansion now gives

$$\widetilde{Q}_2 = (\alpha_1^3 - \alpha_1) [(k_1^2 - h_1^2)\alpha_1 - 2(h_1^2 + k_1^2)].$$

Since the functions $h_1 - h_2 = 2 h_1$ and $k_1 - k_2 = 2 k_1$ do not assume the value 0, it follows that h_1^2 , k_1^2 are functions of degree ≤ 2 which can assume only the values 1, -1. It is easy to see that every function of degree 1 or 2 assumes at least 3 values, so that h_1^2 , k_1^2 are constants. Hence, after applying the transformation $Ye_{\alpha} = -e_{-\alpha}$ if necessary, z becomes one of the 4 vectors

$$\mathbf{v}_{r,s} = [C^1] - [C^{-1}] + (\omega^r + \omega^{-r})[C^2] - (\omega^s + \omega^{-s})[C^{-2}],$$

where (r, s) = (1, 1), (1, 2), (2, 1) or (2, 2). The *II*-adic expansion shows that $\mathbf{v}_{r,s} \in \Lambda^{(2)}$. The transformation

$$Y \mathbf{e}_{(\lambda, \alpha_2, \ldots, \alpha_n)} = \theta^{-1} \sum_{\mu} \omega^{(\lambda-\mu)^2} \mathbf{e}_{(\mu, \alpha_2, \ldots, \alpha_n)}$$

belongs to $\mathscr{C}\mathscr{T}$ and maps \mathbf{v}_{12} , \mathbf{v}_{21} into vectors with all coordinates non-zero. Hence the minimal vector pairs $\pm [V; \alpha_1^3]$, $\pm \mathbf{v}_{12}$, $\pm \mathbf{v}_{21}$ are equivalent under $\mathscr{C}\mathscr{T}$. It can be shown, though we omit the proof, that no two of the pairs

$\pm [V]$, $\pm [V; \alpha_1^3]$, $\pm v_{11}$, $\pm v_{22}$ are equivalent under \mathscr{CT} . We have proved

THEOREM 4.3.1. The minimal vector pairs of $\Lambda^{(i)}$ are given by (4.1.1) except when i = 2 and p = 3 or 5. When i = 2, p = 3, every minimal vector pair is equivalent under $C \mathcal{T}$ to $\pm ([C^1] - [C^{-1}])$, where C^{λ} is the (n-1)-dimensional coset defined by $\alpha_1 = \lambda$. When i = 2, p = 5, every minimal vector pair is equivalent under $C \mathcal{T}$ to one, and only one, of the pairs $\pm [V]$, $\pm [V; \alpha_1^3]$ and

$$\pm \{ [C^{1}] - [C^{-1}] + (\omega^{i} + \omega^{-i})([C^{2}] - [C^{-2}]) \} \qquad (i = 1, 2).$$

where C^{λ} has the same meaning as in the case p = 3.

THEOREM 4.3.2. The relative minima $\gamma^{(1)}$, $\gamma^{(2)}$ of $\Lambda^{(1)}$, $\Lambda^{(2)}$ are given by

$$\begin{split} \gamma^{(1)} &= (\not p - 1)\not p^{\frac{1}{2}n - 1 + \frac{1}{2}(\not p - 1)^{-1}(1 + \not p^{-n})} & (\not p \ge 3) \\ \gamma^{(2)} &= (\not p - 1)\not p^{\frac{1}{2}n - 1 + \frac{1}{2}(\not p - 1)^{-1}(3 - \not p^{-n})} & (\not p > 3) \\ \gamma^{(2)} &= 4 \cdot 3^{\frac{1}{2}n - \frac{5}{4} - \frac{1}{4}3^{-n}} & (\not p = 3). \end{split}$$

We can compare our forms with the original ones in 2^n variables by computing $\rho_i(p) = \lim_{n \to \infty} \gamma^{(i)} / \left(\frac{1}{2}N\right)^{\frac{1}{2}}$. We have:

$$\rho_1(3) \approx 0.9, \ \rho_1(5) \approx 0.7, \dots$$

$$\rho_2(3) = 4.3^{-\frac{5}{4}} \approx 1.01, \ \rho_2(5) = 2^{15/8} 5^{-5/8} \approx 1.03, \ \rho_2(7) \approx 0.8, \dots$$

$$\lim_{p \to \infty} \left(\frac{1}{2}p\right)^{\frac{1}{2}} \rho_i(p) = 1 \qquad (i = 1, 2).$$

The lowest values of $(p-1) p^n$ are 6, 18, 20 corresponding to $p^n = 3.9.5$ respectively. The forms in 6 variables are the absolutely extreme and "next best" extreme. The relative minima of the forms in 18, 20 variables for i=2 are

$$4/3^{5/18} \approx 2.95, 4/5^{3/20} \approx 3.1.$$

These are comparable with the value $8^{\frac{1}{2}} \approx 2.8$ for the 16-variable form of EF.

4.4. Extreme Forms. Two points can be made at once.

(1) $A^{(i)}$ is invariant under the R_0 -irreducible¹²⁾ group $C\mathcal{T}$. Therefore it is eutactic (Coxeter [4], p. 402).

(2) Let S be the automorphism of P such that $\omega^{s} = \omega^{2}$ and let **a** be any element of V. Then it is easily verified that, if p > 3, every vector (4.1.1) satisfies the quadratic relation

$$x_{3a}^{s} x_{-3a} = x_{-a}^{s} x_{5a}.$$

Therefore, if p > 3, $\Lambda^{(i)}$ cannot be perfect when the vectors (4.1.1) and their negatives are its minimal vectors; i.e., $\Lambda^{(i)}$ cannot be perfect unless p = 3 or p = 5, i = 2. We shall see, however, that $\Lambda^{(i)}$ is perfect in a modified sense now to be defined.

Let Λ be a sublattice of the N-dimensional lattice Γ . Let $G(\mathbf{x}, \mathbf{y})$ stand generically for an R_0 -bilinear function defined on E and with complex values. Then, according to the usual definition, Λ is perfect if the equations

(4.4.1) $G(\mathbf{m}, \mathbf{m}) = 0$ for all minimal vectors \mathbf{m} of Λ ,

imply that

$$(4.4.2) G(\mathbf{x}, \mathbf{x}) = 0 \text{ for all } \mathbf{x} \in E.$$

We may, without loss of generality, suppose in the definition that the values of G(x, y) are in R_0 .

Let now $t(\neq 0) \in GF(p)$ and let T be the automorphism of P such that $\omega^T = \omega^t$. We call Λ *t*-perfect if the implication $(4.4.1) \Longrightarrow (4.4.2)$ holds for functions of the form

(4.4.3)
$$G(\mathbf{x}, \mathbf{y}) = \sum_{\boldsymbol{a}, \boldsymbol{\beta}} g_{\boldsymbol{a}, \boldsymbol{\beta}} \boldsymbol{x}_{\boldsymbol{a}}^{T} \boldsymbol{y}_{\boldsymbol{\beta}} \qquad (g_{\boldsymbol{a}, \boldsymbol{\beta}} \in P).$$

Clearly, if Λ is perfect it is t-perfect for all t. The converse is also true. In fact, let G be as in the previous paragraph. Then

$$G_t(\mathbf{x}, \mathbf{y}) = \sum_{i, j=0}^{p-1} \omega^{-ti-j} G(\omega^i \mathbf{x}, \omega^j \mathbf{y})$$

has the form (4.4.3), and

$$p^2 G(\mathbf{x}, \mathbf{y}) = tr\Big(\sum_{t=1}^{\nu-1} G_t(\mathbf{x}, \mathbf{y})\Big).$$

¹²⁾ $C\mathcal{T}$ is R_0 -irreducible because it is P-irreducible (CGI, theorem 1) and contains the scalars ωI .

Therefore the implication $(4,4,1) \Longrightarrow (4,4,2)$ is valid for G if it is valid for each G_t .

We call Λ *P-perfect* if it is 1-and (-1)-perfect, i.e., if it is perfect with respect to symmetric *P*-bilinear, and Hermitian, forms. We now prove

THEOREM 4.4. $A^{(i)}$ is eutactic and P-perfect. It is perfect only for p = 3, i = 1, 2 and p = 5, i = 2.

Proof. Let G be the function (4.4.3). We seek the conditions that $G(\mathbf{x}, \mathbf{x}) = 0$ for all vectors $\mathbf{x} = |V; \phi|$, where ϕ has the form

$$\phi(\boldsymbol{\alpha}) = \sum_{i \leq j} a_{ij} \alpha_i \alpha_j + \sum_i a_i \alpha_i$$

The equation $G(\mathbf{x}, \mathbf{x}) = 0$ gives

(4.4.4)
$$\sum_{\boldsymbol{a},\boldsymbol{\beta}} g_{\boldsymbol{a},\boldsymbol{\beta}} \omega^{t_{\boldsymbol{\beta}}(\boldsymbol{a})+\boldsymbol{\beta}(\boldsymbol{\beta})} = 0.$$

If

$$\Psi(\boldsymbol{\alpha}) = \sum_{i \leq j} b_{ij} \alpha_i \alpha_j + \sum b_i \alpha_i$$

we write

$$\phi * \Psi = \sum_{i \in J} a_{ij} b_{ij} + \sum_{i} a_{i} b_{i},$$
$$g_{\psi} = \sum_{i} g_{a} g_{a},$$

where summation is over the α , β such that

$$(4.4.5) t\alpha_i\alpha_j + \beta_i\beta_j = b_{ij}, t\alpha_i + \beta_i = b_i (all \ i, j)$$

and where $g_{\Psi} = 0$ when (4.4.5) has no solutions. Then (4.4.4) becomes

$$\sum_{\Psi} \omega^{d \oplus \Psi} g_{\Psi} = 0 \qquad (\text{all } \phi).$$

The matrix $(\omega^{d \in \Psi})$ is non-singular, being a direct power of the $p \times p$ matrix (ω^{ij}) , and so the vector (g_{Ψ}) is zero. If t = -1, (4, 4, 5) has at most one solution α , β whence $G(\mathbf{x}, \mathbf{y}) = 0$. If t = 1, it has either no solution or a unique solution α , α or exactly two solutions α , β and β , α . Hence $g_{\alpha,\beta} + g_{\beta,\alpha} = 0$ for all α , β and so $G(\mathbf{x}, \mathbf{x}) \equiv 0$.

We have now proved that $A^{(i)}$ is *P*-perfect whenever the $[V; \phi]$ are minimal vectors, i.e., except when p = 2, i = 2. The conclusion is still true in this case.

In fact, let $\mathbf{v}_i = [C^i; \phi]$ (i = 0, 1, 2) with ϕ as above and C^i as in §4.3. Then it is easily seen that because $G(\mathbf{x}, \mathbf{x})$ vanishes for G. E. WALL

$$\mathbf{v}_0 - \omega^i \mathbf{v}_1, \ \mathbf{v}_1 - \omega^i \mathbf{v}_2, \ \mathbf{v}_2 - \omega^i \mathbf{v}_0 \qquad (i = 1, 2, 3),$$

it also vanishes for $\mathbf{v}_0 + \mathbf{v}_1 + \mathbf{v}_2 = [V; \phi]$. The previous argument now shows that $G(\mathbf{x}, \mathbf{x}) \equiv 0$. Hence $\Lambda^{(i)}$ is *P*-perfect in all cases.

When p = 2, $\Lambda^{(i)}$ is 1-and (-1)-perfect and so perfect. It remains to prove only that $\Lambda^{(2)}$ is 2-and (-2)-perfect when p = 5. This is done by applying our previous argument to $[V; \alpha_{\kappa}^3 + \phi]$ instead of $[V; \phi]$. It is readily seen that the solution of (4.4.5) plus the equation $t \alpha_{\kappa}^3 + \beta_{\kappa}^3 = b$ is unique if either a, ais a solution or there is a solution a, β with $\alpha_{\kappa} \neq \beta_{\kappa}$. Therefore $g_{a,\beta} = 0$ unless $\alpha_{\kappa} = \beta_{\kappa}$ and $a \neq \beta$. Since this holds for all $\kappa, g_{\alpha,\beta} = 0$ for all α, β and so $G(\mathbf{x}, \mathbf{x}) \equiv 0$. This proves the theorem.

References

- [1] Barnes, E. S. and Wall, G. E., Some extreme forms defined in terms of Abelian groups, J. Australian Math. Soc. 1 (1959), 47-63.
- [2], [3] Bolt, Beverley, Room, T. G. and Wall, G. E., On the Clifford collineation, transform and similarity groups (I) and (II), J. Australian Math. Soc. 2 (1961), 60-96.
- [4] Coxeter, H. S. M., Extreme forms, Canad. J. Maths. 3 (1951), 391-441.
- [5] Coxeter, H. S. M. and Moser, W. O. J., Generators and relations for discrete groups (Springer, 1957).
- [6] Dieudonné, J., La geometrie des groupes classiques (Springer, 1955).

University of Sydney New South Wales