BULL. AUSTRAL. MATH. SOC. 05C38
voL. 25 (1982), 187-206.

ON RANDOMLY 3-AXIAL GRAPHS

Youser ALAVI, SABRA S, ANDERSON,
GARY CHARTRAND AND S,F., Kapoor

A graph G , every vertex of which has degree at least three, is
randomly 3-axial if for each vertex v of G , any ordered
collection of three paths in G of length one with initial
vertex v can be cyclically randomly extended to produce three
internally disjoint paths which contain all the vertices of G .
Randomly 3-axial graphs of order p = 4 are characterized for
P $ 1 (mod 3) , and are shown to be either complete graphs or

certain regular complete bipartite graphs.

A graph G was defined to be randomly traceable in Chartrand and
Kronk [2], if, for each vertex v of G , every path with initial vertex
v can be extended to a hamiltonian path with initial vertex v .
Equivalently, a graph G of order at least three is randomly traceable if
every path of G 1is contained in some hamiltonian cycle of G . It was
proved in Chartrand and Kronk [2], that a graph G of order p is

randomly traceable if and only if G is isomorphic to Kb, Cb or

K(p/2, p/2) , where in the last case p is even,

A random extension of a path P : v , V. in a graph is a

15 Ugs vees Uy

v eeey U v
1* "2 > 'n? Tn+l vhere Yy

adjacent to vn that does not belong to P . A collection of paths, each

path P* : v is any vertex of the graph

+1
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with initial vertex v , is called internally disjoint if every two paths
in the collection have only the vertex v in common. Let

P = (Pl, P2, P3, ..

disjoint paths with Pi t v, v

o Pk) be an ordered collection of k internally

< 4 <
150 Vpgs cres Vpp s LSS k , such that

each path has initisl vertex v and length ¢t =2 1 . By a cyclic random
extension of P we mean a sequence of random extensions of the paths
Pl’ P2, ... resulting in the following sequence of ordered collections of
internally disjoint paths: '
(P{, Py, Pyy ees Pk], (p#, 2. S Pk), (P*, P, P4, ..., Pk), .
(B3, P3, P34, ..., p2), ((3)*, B3, P3, ..., P}),
((3)*, (p3)~, Pi, -t P) ...

In Burns, Chartrand, Kapoor and Saba []], a graph G , where 1 =<k =< 6(G),
was called randomly k-axial if for each vertex v of G , any ordered
collection of k paths in G of length one having initial vertex v can
be cyclically randomly extended to produce k internally disjoint paths

which contain all the vertices of G .
It is proved in Burns, et al. [1], that a graph G is
(i) randomly 1l-axial or

(ii) randomly 2-axial with &(G) = 2 if and only if G is

randomly traceable.

Thus, randomly k-axial graphs serve as a generalization of randomly
traceable graphs. The problems of determining which bipartite graphs and
which complete n-partite graphs are randomly k-axial were also studied
there. Among the results presented were
(1) the complete bipartite graph K(nl, n2) is randomly
k-axial (k =2 3) if and only if n, =n, and n 20,1
(mod k) and
(2) the complete tripartite graph K[nl, O n3) is randomly

k-axial (k = 2) if and only if n =n,=ng= k/2 .

It is not difficult to verify that for ¢ = 3 , the regular complete
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t-partite graph X(d, d, ..., d) is randomly k-axial for all d =21 and
k = (t-1)d . It was conjectured by Burns, et al. [1] that

(1) for k=22 and ¢t 2 3 , a noncomplete graph

Kn . nt) is randomly k-axial if and only if

13 n2’

ngo=n,= ...=n, = k/(t-1) and that

(2) every randomly k-axial graph (k = 3) is a regular
complete multipartite graph.

We have already noted that the randomly 1l-axial graphs and randomly
2-axial graphs have been completely classified. From the results and
conjectures stated above, it would follow that the only randomly 3-axial
graphs are complete graphs of order at least 4 and certain complete
bipartite graphs. We verify that such is the case in many instances.

First we present an improvement of a result of Burns, et al. [1].

THEOREM 1. If G is a randomly k-axial graph (k = 3) of order
p , where p = 0 (mod k) , then either

(1) G=K , or
p

(i) G = K(p/2, p/2) when p/k 1is even,

Proof, Let m=p/k . If m is even, then it was proved in Burns,
et al. [1], that either G = Kp or G = K(p/2, p/2) . Thus we assume m
is odd, and let v, € V(G) . Since G is randomly k-axial, &{(G) = k ,
and then m = 3 . Now we can select any k edges incident with v to

0]

produce k paths of length one having initial vertex vo , and cyclically

randomly extend these to obtain a spanning subgraph of ( (see Figure 1).

*
The levels Ll, L2, cees Lm_l and Lm , where
= . . .o . =1 = m-
L, {vzl’ V0 . vtk} , 1si=m1),
and
A =
Lo = s Vo -oos P i

are also indicated in Figure 1. Further define [ = L; U {vo}
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L UJ) ‘UJ).. ‘l).J) ..J)U J)'D

3 31. 32. .. 3'7. P 3,k-1 . 3k
Lno Ym2,1] Pm2,20 ¢ Vm2,j Ym-2 k-1 .vm—2,k
Tnar Pmaray Vmer,ol 0 Vmel,j © o m-1,k-1 -1,k
L;;I U vmgé . . vmj .. vm,k-l

FIGURE 1

With the above terminology, it was proved in Burns et al. [1], that

every vertex of Lm is adjacent to every vertex of Lm and to every

1

vertex of Ll . Repeating the arguments used in Burns et al. [1], and the

definition of randomly k-axial graphs, with the initial vertex v

selected from Ll , we see that every vertex of Ll is adjacent to every

vertex of Lm and to every vertex of [ Continuing this procedure we

o ¢

conclude that every vertex of Li is adjacent to every vertex of Li

1
and to every vertex of Li+1 (£ =1,2, ..., m) , where the subscripts are
expressed modulo m .

For m =3 and odd we now show that G = Kp . Our first claim is

that every vertex of Li is adjacent to every vertex of Lj , T #J and
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1 =%, J<m. This is already the case for m=3 . So let m=5, We

now prove that every vertex of Li , 1 =12 =<m, is adjacent to every
vertex of Li+2 , where the subscripts are expressed modulo m . For

convenience, let X denote any vertex of L (see Figure 2). Using the

2
definition of randomly k-axial graphs with x as the initial vertex, we
can obtain a new labelling of the vertices of G as shown in Figure 2,

Note that a vertex of G (in L2 ) has not yet been labelled. Since G

is randomly k-axial, this vertex must be labelled xm Since xm k-1
Jk-

k-1

and <x

must be adjacent to xm me1 k=1

1,k-1 € L)4 , it follows, because of

symmetry, that for each %2 (1 =7 =m) , every vertex of Li is adjacent

to every vertex of Li , where, as always, the subscripts are expressed

+2

modulo m .,

If m =5, then our claim holds. If m =T , we use the known edges

of G and the fact that G is randomly X-axial to produce yet another

labelling of the vertices of G . Relabel vertex x as Yy , vertex
xm—l,k-l as ym-2,k-1 and vertex xm-2,k—l as ym—l,k-l . Every other
vertex xrs is relabelled Ypg * Since G is randomly k-axial, the

unlabelled vertex in L2 must oe ym,k-l , and is adjacent to ym-l,k—l .

By symmetry, we conclude that every vertex of Li is adjacent to every

vertex of Li+3 .

If m=17 , then our claim holds. If m = 9 , we proceed as above to
produce yet another labelling of the vertices of G . Relabel y as z ,
vertex Yy as and y

as By the same

m-1,k-1 Pm-3,k-1 m-3,k-1 "m-1,k-1 °

reasoning as above, one can show that every vertex of Li is adjacent to
every vertex of Li+h for all % . Continuing this procedure, we see that
every vertex of Li is adjacent to every vertex of Lj , T #J and
1=Z,jJ<m.

Finally, we assert that (Li) , the subgraph induced by the vertices

in L, , is complete for ¢ =1, 2, ..., m . Recall that L =L*u {vo}
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Consider a relabelling of the vertices of G with v, relabelled as u ,

0
vertex vm,k-l relabelled as um—l,k and vm-l,k relabelled as um,k-l .
Every other vertex Vg 18 relabelled U * Then the vertices um-l,k—l

and U, k-1 are adjacent, that is, € E(G) . By symmetry,
Jk—-

Ym-1,k-1"m-1,k

(Lm > is complete, and consequently every <Li) is complete.

1

The preceding result leads to the following immediate consequence for

randomly 3-axial graphs.

COROLLARY, If G 1ts a randomly 3-axial graph of order p , where

p = 0 (mod 3) , then either
(i) G = Kp , or
(i2) G = K(p/2, p/2) when p = 0 (mod 6) .
Next, let G be a graph of order p which is randomly 3-axial with
p =2 (mod 3} . We may write p =3m + 2 where m=1 . Let v, € V(G)

0
Since G is randomly 3-axial, &(G) = 3 , and we can select three edges

incident with vo to produce three paths in G of length one having

initial vertex vo , and cyclically randomly extend these to obtain a

spanning subgraph of & (see Figure 3 (a)). Relabel the vertices of G
as follows (where a + b denotes that a is relabelled b ):

. < 4 <
Vip T ¥ 0 Vg T % s Vi3 T %y for 1S Em,
and
vo > and u > u .,
We observe that u and x . must be adjacent, that is, u, € E(G) .
Similarly w3 € E(G) . Thus, a spanning subgraph (as indicated in

Figure 3 (b)) may be associated with any vertex v of G , where f will
denote the final vertex on the first path, and {f s fé, fé} will be a set

of vertices on the three paths which are adjacent to f .

Clearly G contains cycles. Let C : u, U > u =u

oy rees Up 1y U

be a cycle in G of minimum length k . Since G is randomly 3-axial,
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Un-1,1] Vm-1,2 Yn-1,3
mlﬁ Ume Um3
(o]
U
(a)
FIGURE 3

8§(G) = 3 , and there exists a vertex w, different from u, and Uy

1 1 -1
such that ww ¢ E(G) . Let P= (Pl, P,, P3) be an ordered collection of
three internally disjoint paths with Pl Pouy P2 Poutg and
P3 : uwl . Consider a cyclic random extension of P where the random
extensions of the paths Pi, P2 and P3 result in the following sequence

of ordered collections of internally disjoint paths (where a = [k/2] ):
(uulue, uy_y s uwl)
(uulug, w14 o uwl)
(uulu2, w1 o uwlw2)

where the last term of this sequence is

[uu cee Uy, MUy

1 w """a) for k odd

-1 " uk_a, 1
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and where the last term is
(uul ee Uy Ul g U oi0s W ... wa—l) for k even.

Observe that V(C) n { l’ Woy oooy wa} = @ because the cycle C has

minimum length %k . Now P can be cyclically randomly extended in this
manner to produce three internally disjoint paths which contain all the
vertices of G . In view of the preceding remarks we can consider the

cycles C and C’ as shown in Figure 4. Ccmparing the lengths of the

cycles € and (' we obtain

{(m!-l)/Q for k odd,

(m+2)/2 otherwise.

v .
L v a/l\ ) /I\ .
m m TTI
. c’ . . :
o+l Yo Yy
L u u
o o U g W,
L u u
a-1 -l c U+l -1 a-1 Yrearl Paa
L2
Ll

k odd a = [k/2] k even

FIGURE 4
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It is our objective to show that k =3 or k =4 , Towards this end we
assume K =2 5 , and obtain a contradiction to the minimality of k by
producing a cycle of smaller length. We consider two cases according to

the parity of k .
Case 1, Let k=20+12=5,

Applying the definition of randomly 3-axial graphs with the vertex

U o (see Figure 4 (a)) as the initial vertex, we can relabel the vertices

and consider the following internally disjoint paths (see Figure 5):

Py 2881185 v 8y qu1,1%m-a42,1 °
(1) Py i 8815855 ++ 8y 441 ,0%m042,2

P3 : 3313323 ces sm-a+1,3 .
Moreover the sets 4 = {al, Qyy vees a2a—3} and B = {bl, b2, Cees ba—l}
are also indicated in Figure 5, with |4} =20 -3 anda |Bl=a-1. If
sm-a+2,3 € A , then the cycle

Sm-a+l,38m-a+2,3 T Sm—a+2,1sm-a+1,1sm-a+1,3

has length less than k% . So s € B . Suppose s b, ,

m-a+2,3 m-at2,3 ~ Yt

where 1 = ¢ = o-1 .

Let ¢ =1 . Consider the following internally disjoint paths:

Pt 989980 o+ Spgip,1%1% 0 ap
P2 P 88,5855 cu- sm—a+2,2a2a-3a2a-h cee Gy
P3 P 88y3853 o sm-a+l,3b1b2 cen ba-l .

In view of Figure 3 (b), the vertex a1 (= f) must be adjacent to

ba 1 - We may observe that with

% %% o S nn2,1 2%

% ' %1%t Yeal%2a-3tmeave,2 0 S22%12
and
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s

m-o+1,1
L s
m m-a+1,3 sm—a,l 8m-a+2,l
L 8 l
m-1 m-a,3 sm-a-l,l a
: A
Taza-3
SBmar2,2 T Bar(m-2042),2
L 8,9
o+l 23 sll
L 8. .0
a 13 E:] 32&,2
L b >
-1 -1 P12 Boa-1,2
by-2® . .
B
L2 b2
Ll bl

%a2

FIGURE 5
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8 b.b., ... b

93t ay 1Py 1813%3 o0 B gay 3P1P0 a-2 °

a similar argument yields Sba-2 € E(G) . But then ssl3ba-1ba—2s would
be a l-cycle in G .

In an analogous manner, t = 0 - 1 also produces a 4-cycle. There-

fore we assume 2 < ¢t < 0-2 and k= 9 . Now we can obtain random
extensions of the paths Pl’ P2 and P3 of (1) as follows (see Figure 5):
Pl : is extended from sm-a+2,1 to Ays Gps cves Gy s
(2) P2 : is extended from Sm—a+2,2 ‘to a2a_3, a2a-h’ veey a2a-2-r ,
P3 : is extended from sm—a+l,3 to bt’ cers bk .
where
1 if o< 2t ,
X =
a -1 otherwise,
and

t if o <2t ,

a - t otherwise.

Once the path P3 has been extended to bk , because of the minimality of

k , this path cannot be further extended to any remaining vertices in B .

So there exists at least one vertex

a € {a =4, 1l<ec<o23-2r,

a
r+l°

r4+2? "°°° aza_3—r}

to which the path P is extended. Let B denote the set of vertices in

3
B that do not already belong to the path P3 in (2).
We now observe that the paths P_, P2 and P3 have their current
terminal vertices a,, a2a-2-r and e 1D the set
Au {ar, a2a—2-r} C A . Moreover it is clear that any further cyeclic

random extensions of Pl and P2 in A must successively proceed to

a for P, and a

pa1® Gppod ot 1 20-3-r* Zoq li_p’ " for P2 3 otherwvise,
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if any vertices are bypassed, then a cycle of length less than k results.
Let B = {(20-3-2r)/2} =0 -2 - r ., Suppose 1 <c =B . Consider the

following cyclic random extensions from (2):

Pl : is extended from a, to Ay Gp2 o0

P2 : is extended from Apyoop to a2a-3-r cee s
and

P3 : is extended from bk to APty *°°
Then the paths Pl and P3 eventually extend to adjacent vertices, and
subsequent extensions require Pl (P3) to extend to B if ¢ is odd
{even). Consequently the graph (B u {ar, Qpy1s ooos ar+c}) cgntalns a
cycle of length at most

1Bui{a,, a, s o5 a, H = (a-1) + (1+e)

o +c

1A

o + (a-2-r)

<20 +1 .

< _ .
For B < ¢ = 20-3-2r , P3 is extended from bA to A oPptorl

By arguments similar to the above, subsequent extensions require P2 (P3]

to extend to B if ¢ is even (odd), leading to a cycle of length less

than k in the graph (B v {a ., a

r+e’ ar+c+1’ 20~3-r’ a2a-2-r}) :
Case 2. Let k=2026.

We use the spanning subgraph of G as shown in Figure 4 (b) and apply
the techniques of the preceding case to obtain a cycle in G of length

less than k . The details are omitted.
The following result can now be stated.

LEMMA 1. Let G be a randomly 3-axial graph of order p , where

p £ 2 (mod 3) . Then the length of a smallest cycle in G is 3 or L.
In the next two results we consider randomly 3-axial graphs of order
p = 2 (mod 3) where the length of a smallest cycle is 3 or 4 .

LEMMA 2. Let G be a randomly 3-axial graph of order p , where
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p =2 (mod 3) . If G contains K., as a subgraph, then G = Kp

3

Proof. 1In view of Figure 4 (a) the graph G contains a subgraph as
: . = < <
shown in Figure 6. The levels Lt {utl’ Uins ut3} , L=t =m, are

also indicated in Figure 6. Consider the following path &ith initial

vertex ull

U¥p ore U

Hatotop vt Y 0
and

U, UU, U “ee

114413423 “m-1,3

(Recall the notation introduced in Figure 3 (b).) Then
fTé =u __u € E(G) . By analogous arguments, and in view of the symmetry,

m3 m2
( ~ ~ .

we see that Upps Upps ul3) (uml, Uos um3) K3 . Now consider the

paths
Upqlpy +ov UV
“11%12 7 Y2 0

and
Uyylyg oo Hpo s

with ffi = uv € E(G) and f?é = uu € E(G) . By symmetry, we also

conclude that u 1is adjacent with every vertex in level Lm and v is

adjacent with every vertex in level Ll . It can be easily seen that if
m=1, then G = KS . So let m=2 . Observe that (u, v, Lm) = K5 .
The paths

Uty Uy woe Uy s

uvum2 see Ups s
and

ul3u23 ce um3
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yield ffl = Ut € E(G) . Again, by symmetry, every vertex in L, s

adjacent with every vertex in Lm . Thus {u, v, Lm’ Ll) = K8 . We now

assume m = 3 .

v
Lm Ul ) U um3
Lm—l | Wl ,1 ( U1 $2 ﬁ “n1 »3
Pz %um—Q,l ?“m-e,z %um—2,3
Lo O“t+2,1 q>“7:+2,2 out+2’3
Ly Tu J” T
t+1,1 t+1,2 t+1,3
Lt qutl f Uin OutB
! %ut—l,l ?ut—l,Z ?”t-1,3
Ly \ Tas Tes
Ll U4 Pu12 ul3
u
FIGURE 6
Next, we claim that (u, v, L Ll’ L2’ tre Lt) gK3(t"'l)+2 » for all

t satisfying 1 = ¢ < m-1 . The result already holds when ¢ =1 .

Assume that (u, y, Lm, Ll’ L2, veey Lt) gK3(t+l)+2 for any positive
integer t , where 1 <t =m-2 , Consider the paths

Ppoovug % o1 o0 ¥a¥m¥nia,1 00 Y 0

P2 : vuulzuz2 ut2“m2um-l,2 ut+2,2 s

and
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P3 : vul3u23 utaumum_l’3 ut+1,3 ,

where, for t =1, we let

Bl : vulluhuum-l,l cee Uy
Then the vertex f = ut+1,2 is adjacent to Uy, and. ut+l,3 . By
symmetry we conclude that (Lt+l) = K3 and (Lt’ Lt+l) > Ké . Similarly,
the paths
V1 e P o
VUl Uy s Uty 1 o o Bpyn o s
and

Ym3¥m1,3 *0 M3

produce f =u 20 and then, every vertex in I is adjacent with

T+l t+l

1 For t =22, (u, v, Ll’ LE’ cees Lt—l) =7 1(3(1:_1)+2

implies that we may consider the vertices in this complete graph inter-

every vertex in L

changeable. So every vertex in level L is adjacent with every vertex

t+1
t-1 ’
in the set {u, v} u U L, . If t=1, the paths
=1
Vi ¥m¥me1, ot M1
VU M matm1 2 oot oo o
and
vul3um3um-1,3 cee u23
show that f = u is adjacent with every vertex in the set L2 .
Similarly, v 1s also adjacent with every vertex in level L2 . So every

vertex in level L2 is adjacent with every vertex in the set {u, v} u Ll'

Finally, the paths

Uiyaoy o0 M PmMmo1,1 oo Yee2,1 0
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Uy Uy ooe Yo s
and
uul3u23 um3 ,
have f = ut+l,l . So every vertex in level Lt+1 is adjacent with every
vertex in level Lm . Consequently
{u, v, L, Ll, L,y «ues Ly, Lt+1> g 3(t+2)+2 °
for 1 =t =m-2 . Our claim follows by induction, and then,
G u, v, L, Ll’ cees L )ng

LEMMA 3. Let G be a randomly 3-axial graph of order p , where
p =2 (mod 3) . Let the length of a smallest cycle in G be U . Then p
i8 even and G = K(p/2, p/2) .

Proof. We can use Figure 4 (b) to obtain a subgraph of G as shown
in Pigure 7 (a), together with the levels L, = {uil’ Usns ui3} ,

1 <12 =m. Using the definition of randomly 3-axial graphs and symmetry,
with appropriate choices for initial vertices and collections of internally
disjoint paths, we obtafn additional edges shown in Figure 7 (b). Similar

techniques lead to the following additional results;

(3) (Ly; Ly) = (L5 L) =(L 15 L) = K(3, 3) and uv € E(G) .
Since p=3m+2 , if m=1, we see that G contains XK ,6 . If m=2 ,

3

K. . So let

then G = X(4, 4) ; and for m=3 , (ull’ Upy s u31) = K,

m=h .

Consider the following relabelings of V(G) :

3 1 1} < 5 < 1
(i) Uy > uiy and uyg >ruly for 1=i=m, urul,,
! ’ L4 r
[ um-1,2 s Ugp Ul Uy, Tul, and uj,2 »> uj-2,2 for
3=4=m;
‘1 " ” < 5 < n
(ii) Uy > Uy end ug>ufy for 1 =4 =m, u>ug,,
" " " "
v > Uis s um-1,2 o, u, -+ u"” , and uj2 -+ uj““,‘_,’2 for
1=4=m2.
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L
m
Lm-l
Lm-2
Ly “;1° °u ©u
12 13
Ly
L u
2 21 T4sn Ups
L u
1 11 U5 ul3
u
(a)
FIGURE 7
’ ’ " Hi >
Observe that the edges ullu23 and ullu23 lead to UW-cycles in G

analogous to the L-cycle shown in Figure 7 (a). Interpreting the results
in (3) for the new labellings (i) and (ii) in terms of the original labels,

we obtain the following results:
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L), (¢ L), (L L)

(4) (Ll; Lh)’ (L2; LB), (L3; Lh)’ (L s Lm_3; - me1® Tm-o

m-3°

are isomorphic with K(3, 3) ; (u; Lm_l) >~ (p; L2) ~ K(1, 3) .

If m=4 , then G contains a subgraph isomorphic with X(T7, 7) . But if
any pair of vertices not adjacent in X(7, 7) are adjacent in G , then &
would contain a triangle. So G =X(7,7) . For m=5,

(L2; LS)SE K(3, 3) and (v, L2) > {p; LS) K(1, 3) 1leads to a triangle

in the graph. For m = 6 we repeat the above procedure iteratively by

I

interpreting the results in {3) and (4) for the new labellings in terms of
the original labels. It may be observed that the nature of the resulting
adjacencies between levels forces m to be even (that is, p is even),

otherwise, G would contain triangles. Eventually

GoCu, L

o3 Lys wens Ly 05 Loy Doy -nny L ) = K(p/2, p/2) .

As before, G cannot contain any edges not already present in the complete

bipartite graph. Consequently G =X K(p/2, p/2) .
Combining the preceding lemmas we now have the following.

THEOREM 2. If G <is a randomly 3-axial graph of order p , where
p =2 (mod 3) , then either

(1) G=K , or
p

(iz) G = K(p/2, p/2) when p = 2 (mod 6) .

It was proved in Burns, et al., [!], that the graph X(m, n) is
randomly k-axial (k = 3) if and only if m=n , and m = 0 (mod k) or
m=1 (mod k) . Thus, for k=3, K(m, n) is randomly 3-axial if and
only if m=n ,and m =0 (mod 3) or m 21 (mod 3) . Let G be a
where p =1 (mod 3) . If

0, 1 (mod 3) , that is,

randomly 3-axial graph of order p
G = K(p/2, p/2) , then we need p/2
p 0, 2 (mod 3) , and this contradicts p = 1 (mod 3) . So no complete
bipartite graph of order p = 1 (mod 3) can be randomly 3-axial. For

e
e

p=4, 7 and 10 it has been verified that the only graph of order r
L

which is randomly 3-axial is Kb , and we conjecture that this is true for

all p =1 (mod 3) .
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