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Abstract. One of the main characteristics of Mercury is its 3:2 spin-orbit resonance, combined
with a 1:1 resonance between the orbital node of its orbit and the angle describing the precession
of the rotation axis, both measured on the ecliptic plane. We build an analytical model, using
Hamiltonian formalism, that takes into account this phenomenon thanks to the introduction
of three resonant variables and conjugated momenta. We calculate the equilibria corresponding
to four different configurations, which means four completely different values of the (ecliptic)
obliquity; in particular, we focus on the present (stable) situation of Mercury, and thanks to
several canonical transformations, we obtain, near the equilibrium, three pairs of angle-action
variables, and consequently, three basic frequencies. Let us note that the model is as simple
as possible: the gravitational potential is limited to the second degree terms (the only ones for
which a value can be presently given), and the orbit of Mercury is Keplerian. The numerical
values obtained by our simplified model are validated by the coherence with existing complete
numerical models.

1. Introduction
Motivated by the projects of space missions like BepiColombo† or MESSENGER‡, we

have in mind to build an analytical resonant spin-orbit model for the present situation of
Mercury. We use a very classical Hamiltonian formalism, starting with a kernel model,
and adding step by step the different perturbations.

In this paper, we first present the kernel, in the form of a three-degrees-of-freedom
Hamiltonian system, averaged over the short periods; it succeeds in describing the libra-
tion about the resonant spin-orbit 3:2 motion by three pairs of action-angle variables,
obtained after a succession of simplifications and canonical changes of variables. The
three basic frequencies of the system are in complete agreement with the very recent
values obtained numerically by Rambaux & Bois (2003).

The basic hypotheses are the following: Mercury is a rigid non-spherical body, the
gravity field is truncated after the second degree terms (the only ones for which we have
significant numerical values), the orbital motion of Mercury is Keplerian. Let us remark
that the obliquity is not put to zero and in the last part, the spin axis is not parallel to
the third axis of inertia.

All the computations are performed with the software Mathematica with the parame-
ters values taken in Anderson et al. (1987) and ESA-SCI (2000).

† Mission of the European Space Agency and ISAS, Japan’s Institute of Space Astronautical
Sciences

‡ MErcury Surface Space ENvironment, Geochemistry and Ranging, space mission of NASA
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2. Coordinate Choices
We are going to work with four reference frames centered at Mercury’s center of mass:

• (X0, Y0, Z0) inertial frame with X0 and Y0 in the ecliptic plane (fixed at some epoch),
• (X1, Y1, Z1) orbital frame with Z1 perpendicular to the orbit plane,
• (X2, Y2, Z2) with Z2 pointing to the spin axis direction and X2 directed along the

ascending node of the equatorial plane on the ecliptic plane and
• (X3, Y3, Z3) with Z3 in the direction of the axis of greatest inertia and X3 in the

direction of the axis of smallest inertia.

The choice of the ecliptic frame as the inertial frame is motivated by our intention to
introduce further planetary perturbations on the model.

These frames are linked together (see Fig. 1) by three sets of Euler’s angles (h,K, ),
(g, J, l) and (Ωo, io, ωo) (where the subscript o stands for “orbital”) with Ωo the ascending
node longitude, io the inclination and ωo the pericenter argument.
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Figure 1. On the left side, the (X0, Y0, Z0), (X2, Y2, Z2) and (X3, Y3, Z3) frames with (h, K, )
being Euler’s angles related to (X0, Y0, Z0) and (X2, Y2, Z2) and (g, J, l) being Euler’s angles re-
lated to (X2, Y2, Z2) and (X3, Y3, Z3). On the right side, the (X1, Y1, Z1) frame with (Ωo , io , ωo)
being Euler’s angles related to (X0, Y0, Z0) and (X1, Y1, Z1). All of them are centered at Mer-
cury’s center of mass.

In fact, to describe the motion of Mercury, we need two sets of canonical variables: the
orbital ones, and the rotational ones.

A first classical orbital choice would be to take Delaunay’s elements, related to the
ecliptic plane (Mercury being a mass reduced to its center of mass):

Lo, Go,Ho, lo, go, ho.

The capital letters designate the conjugated momenta associated to the angles lo (mean
anomaly), go = ωo and ho = Ωo, and are classically defined as

Lo = m
√

µ a, Go = Lo

√
1 − e2, Ho = Go cos io,

with e the eccentricity and a the semi-major axis of Mercury’s orbit. µ is G (m + M) in
first approximation, G is the universal constant of gravitation, m is the mass of Mercury
and M this of the Sun.
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For the rotation, following Deprit (1967) and Kinoshita (1972), we adopt Andoyer’s
variables

L,G,H, l, g, h,

G being the norm of the angular momentum, L = G cos J the projection of the angular
momentum on Z3 and H = G cos K the projection of the angular momentum on Z0.

The problem of these Andoyer’s variables is that angular variables are not well-defined
if K or/and J are zero but their sum is always well-defined. This is why we have chosen
a new set of partially non singular variables (Λ1,Λ2,Λ3, λ1, λ2, λ3) such that the angular
variables are:

λ1 = l + g + h, λ2 = −l, λ3 = −h

and their conjugated momenta:

Λ1 = G, Λ2 = G − L = G (1 − cos J), Λ3 = G − H = G (1 − cos K).

Let us remark that the transformation from Andoyer’s variables to the new one is canon-
ical.

3. Model of rotation
Let us introduce our main hypothesis for this first approach: Mercury is assumed to

move on a fixed elliptic orbit, with the present orbital parameters: ao = 57.9 × 106 km,
eo = 0.206, io = 7◦. Without any planetary perturbation, the Hamiltonian can be
written:

H = −m3µ2

2L2
o

+ T (Λ1,Λ2,Λ3, λ1, λ2, λ3) + VG(Λ1,Λ2,Λ3, λ1, λ2, λ3)

where T is the kinetic energy and VG the gravity potential. One can show (Deprit 1967)
that

T =
(Λ1 − Λ2)2

2I3
+

1
2
(Λ2

1 − (Λ1 − Λ2)2)(
sin2 λ2

I1
+

cos2 λ2

I2
)

where I1, I2, I3 are the principal inertia momenta with I1 < I2 < I3.
As Peale (1974) and other authors did, and because only few data about Mercury are

known, we will limit the development of VG to the second order in spherical harmonics,
the other ones will be considered as perturbations on the basic model:

VG = −GMm

r

(
Re

r

)2 [
C0

2 P2(sin θ) + C2
2 P 2

2 (sin θ) cos 2ϕ
]

where P2 and P 2
2 refer to the second order Legendre’s polynomial and associated poly-

nomial, Re is Mercury’s equatorial radius, r the distance between the Sun and Mercury
centers of mass, θ and ϕ the latitude and longitude of a Mercury’s surface element, in
the frame (X3, Y3, Z3).

Let us now express VG in terms of Cartesian coordinates:


x̄3 = cos ϕ cos θ
ȳ3 = sin ϕ cos θ
z̄3 = sin θ

where (x̄3, ȳ3, z̄3) is the unit vector in the direction of the perturbing body (the subscript
“3” being used to recall that we are working in the frame (X3, Y3, Z3)). Thus replacing
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the Legendre polynomials by their expressions, we find:

VG = −GMm

r3
(Re)2

[
C0

2

2
(2z̄2

3 − x̄2
3 − ȳ2

3) + 3C2
2 (x̄2

3 − ȳ2
3)

]
(3.1)

However, the purpose being to write the potential in our canonical set of rotational
(Λ1,Λ2,Λ3, λ1, λ2, λ3) and orbital (Lo, Go,Ho, lo, go, ho) variables, let us express the vec-
tor (x̄3, ȳ3, z̄3) in the orbital frame:

 x̄3

ȳ3

z̄3


 = R3(−λ2)R1(J)R3(λ1 + λ2 + λ3)R1(K)R3(−λ3) ×

R3(−ho)R1(−io)R3(−go)


 cos vo

sin vo

0


 (3.2)

where vo is the true anomaly, Ri are rotation matrices (their subscript is the number of
the rotation axis).

4. Kernel model: 2 degrees of freedom
For this kernel model, we are going to take J = 0, which means that the spin axis Z2

and the third principal axis of inertia Z3 coincide. The coordinates change becomes:
 x̄3

ȳ3

z̄3


 = R3(λ1 + λ3)R1(K)R3(−λ3) ×

R3(−ho)R1(−io)R3(−go)


 cos vo

sin vo

0


 (4.1)

Thus replacing (4.1) in (3.1) and using the relation Lo = m
√

µ a and the well known
developments in eccentricity, up to the order 3 of Brouwer & Clemence (1961) allow us
to introduce missing orbital variables lo and Lo in the potential expression VG:

VG = −GMm7

L6
o

µ3(Re)2 ×

{1
2
C0

2

[
a000 +

5∑
i=1

(a00i cos (i lo) + b00i sin (i lo))

+
2∑

j=1

5∑
i=−5

(a0ji cos (jλ3 + i lo) + b0ji sin (jλ3 + i lo))
]

+ 3C2
2

[ 4∑
j=0

5∑
i=−5

(a2ji cos (2λ1 + jλ3 + i lo) + b2ji sin (2λ1 + jλ3 + i lo))
]}

where a and b depend on K,ho, io, go and e, with ho, io, go and e considered as constants.
So, in our basic model, VG is only function of 3 momenta and 3 angles: Λ1 and Λ3

(through K), Lo, λ1, λ3 and lo.
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5. The main resonant angle
Let us recall again that Mercury is in a 3:2 spin-orbit resonance which can be expressed

in our variables by:

λ̇1 =
3
2
l̇o.

The two sets of canonical variables (orbital and rotational) are then mixed in this com-
mensurability.

Let us thus take

σ =
2λ1 − 3lo

2
as resonant angle and Λ1 as its conjugated momentum. In order to keep a canonical
transformation, we must associate to lo a new conjugated momentum Λo = Lo + 3

2 Λ1.
If we replace by these new variables in (4.2) and after averaging on lo, only a few terms

stay (<> stands for “averaged”):

< VG > = − GMm7

(Λ0 − 3
2Λ1)6

µ3 (Re)2

×
(1

2
C0

2 (a000 +
2∑

k=1

(a0k0 cos (kλ3) + b0k0 sin (kλ3)))

+3C2
2 (

4∑
k=0

(a2k0 cos (2σ + kλ3) + b2k0 sin (2σ + kλ3)))
)

6. Simplified Hamiltonian
Considering that the eccentricity e ∼ 0.206, we are going to keep the terms in (1+ 3 e2

2 )
and (7 e

2 − 123 e3

16 ) but not in e3 only; those terms will act as perturbations on our first
model. And so, we obtain a two degrees of freedom Hamiltonian (see D’Hoedt & Lemaitre
(2004) for details):

< H >=
Λ2

1

2 I3
− m3 µ2

2
(
Λ0 − 3 Λ1

2

)2 − GMm7 µ3 R2
e(

Λ0 − 3 Λ1
2

)6 ×[
1
2
C0

2

(
1 +

3 e2

2

)(
2∑

i=0

a0i cos (iσ3)

)

+3C2
2

(7 e

2
− 123 e3

16

) (
4∑

i=0

a2i cos (2σ1 + iσ3)

)]

with σ1 = σ − ho − go, σ3 = λ3 + ho and where a0i and a2i depend on io and K.
(The canonical transformation from old to new variables allows us to keep Λ1 and Λ3 as
conjugated momenta to σ1 and σ3.)

After computation of the motion equations, we find that the equilibria for the couple
(σ1, σ3) are: (0, 0), (π/2, 0), (0, π), (π/2, π). Let us notice that the last two geometrical
configurations are the same as the first two ones.
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For each couple (σ1, σ3) we find the different values of the (ecliptic) obliquity K:

if (σ1, σ3) = (0, 0), it leads to four values of the ecliptic obliquity (two of them are de-
pendent on the numerical values of the coefficients C2

0 and C2
2 ):

sin (i0 − K) = 0 or

cos (i0 − K) =
C2

2

(
7 e
2 − 123 e3

16

)
C2

0

(
1+ 3 e2

2

)
−C2

2

(
7 e
2 − 123 e3

16

)

if (σ1, σ3) = (π
2 , 0), it also leads to four values of the ecliptic obliquity and we can see

that the first two are the same (K = io and K = π + io):

sin (i0 − K) = 0 or

cos (i0 − K) =
−C2

2

(
7 e
2 − 123 e3

16

)
C2

0

(
1+ 3 e2

2

)
+C2

2

(
7 e
2 − 123 e3

16

)

Finally for each K, we can find numerically the value of Λ1 (see Table 1) and a fortiori
the value of Λ3.

The numerical values shown in the table below are calculated with Re, the equatorial
radius of Mercury, M , the mass of Mercury, and the year chosen respectively as unities
of length, mass and time.

(σ1, σ3) (io − K) (deg) K (deg) Λ1(
m Re2

year
)

0 K1 = 7 13.303

(0,0) 180 K2 =180 + 7 13.303

-95.332 K3 =102.332 13.303

95.332 K4=-88.332 13.303

0 K1 = 7 13.303

(π
2
,0) 180 K2 =180 + 7 13.303

-83.446 K5 =90.446 13.303

83.446 K6= -76.446 13.303

Table 1. Equilibria in the case σ3 = 0.

Let us notice that the values of Λ1 seem equal, but they differ from each other when
we consider more decimals.

We can check that the first equilibrium (the present situation of Mercury) is stable.

7. Frequency of the two angular variables
Of course, Mercury is not blocked at the exact 3:2 resonance, but performs a small

libration about this equilibrium. To measure the frequency of this libration, we perform
a translation to the equilibrium and after successive canonical transformations we can
write our Hamiltonian in angle-action coordinates and find the frequencies of σ1 and σ3:

ν(σ1) = 0.396234
1

year
, ν(σ3) = 0.00589928

1
year

In terms of periods, σ1 has a period of 15.8573 yr and σ3 a period of 1065.08 yr, which
coincides with the results of Rambaux & Bois (2003).
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8. Introduction of the third degree of freedom
Let us now take into account that J �= 0, λ2 is thus now well defined. The potential

< VG > becomes:

< VG > = − GMm7

(Λ0 − 3
2Λ1)6

µ3 (Re)2

×
(1

2
C0

2

(
d000 +

2∑
k=1

d00k cos (kσ3) +
4∑

k=0

d22k cos (2σ1 + 2λ2 + kσ3)
)

+3C2
2

( 2∑
k=−2

d02k cos (2λ2 + kσ3) +
4∑

k=0

d20k cos (2σ1 + kσ3)

+
4∑

k=0

d24k cos (2σ1 + 4λ2 + kσ3)
)

with d depending on io, J,K and e.
If we express this third degree of freedom in terms of Cartesian coordinates (ξ, η) by

this canonical transformation { √
2Λ2 cos λ2 = ξ√
2Λ2 sin λ2 = η ,

we can show that (ξ, η) = (0, 0) is an equilibrium and at this equilibrium we find the
same equilibria as previously for the other 2 degrees of freedom.

Once more, Mercury isn’t at the exact equilibrium, but performs a small libration
about it. Thus, in the same way as previously for σ1 and σ3, we find the period of λ2

which is 584 yr.
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Discussion

Jim Message: Are there any observational results on these librations?

Sandrine d’Hoedt: No, we are expecting two missions. Few things are known about
Mercury – very few things.

Myles Standish: Will a spacecraft get measurements of Mercury’s libration?

Sandrine d’Hoedt: Yes.

Myles Standish: . . . actual physical measurements, either visual or radar?

Sandrine d’Hoedt: Yes.

Walter Brisken: There’s some evidence that the core of Mercury is rotating differently
than the outer shell. Is there any way that this can be incorporated into your model?

Sandrine d’Hoedt: Yes, our Brussels team works on the core of Mercury; we work on
the rigid body and then we get the results.

Sandrine D’Hoedt and Anne Lemaitre
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