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Abstract

Connexions are sought between the subvarieties of a variety II of groups and the subvarieties of the
variety [U, <&] of all groups which are central extensions by groups in U, in the case when U has the
form Str33. Here 2lr is the variety of abelian groups of exponent dividing r and 33 is a variety of soluble
groups of finite exponent.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 E 10.

Introduction

Let U be a variety of groups and, in the usual notation, let [U, ©] be the variety
of all groups whose central factor groups are in U. An interesting problem is to
determine relationships between the subvarieties of [U, @] and of U. In general
significant results of this kind are difficult, if not impossible, to obtain, nilpotent
varieties providing an obvious stumbling block. In [3] I tackled this question when
II is abelian-by-nilpotent and of finite exponent proving, roughly speaking, that
the non-abelian-by-nilpotent subvarieties of [U, @] are in natural one-to-one
correspondence with non-nilpotent subvarieties of U. One could sum up that
investigation, and the present one as examining aspects of non-nilpotence in
certain varieties of the type [U, ©].

In fact, the present paper is part of an attempt to investigate the method of [3]
more closely and to use it on wider classes of varieties. The a priori constraints
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that method imposes are several. First the subvarieties of [U, @] must be
generated by finite groups (and therefore by critical groups: one relies on finding
generating sets of groups with amenable structure and this is done, as usual, by
analysing the structure of critical groups). This is ensured if U is locally finite: see
(1.3) below. Secondly, it is crucial that U be contained in a variety of the form
3133 with 93 soluble, for one uses several times that abelian residuals of saturated
formations are complemented in a finite soluble group (Huppert [5; VI, 7.15]).
More importantly, perhaps, this set up gives rise to natural symplectic representa-
tions. The upshot is that we take U to be 91 r 93 where r is greater than one and 93 is
a variety of soluble groups of finite exponent.

Now let n be the least positive integer for which the groups in 93 have nilpotent
length at most n. We consider the varieties generated by the, so to say, "new"
critical groups in [3lr93, ©]. To be precise let % be the set of subvarieties of
[2lr93, ©] which are generated by basic groups of nilpotent length greater than n
not in 21 ,.93. Similarly, let £ be the set of subvarieties of 91 r 93 generated by basic
groups of nilpotent length greater than n. We shall see (in (4.6)) that there exists a
function 0: % -» £ defined by

The best result one can have is that 0 is one-to-one, and one result ((4.6)) I prove
is:

(1.1) THEOREM. If either
(a) r is odd,
(b) 93 is nilpotent, or
(c) the exponent of 93 is odd,

then 6 is one-to-one.

Of course the nilpotent case is (5.1) of [3], but all cases are instances of a
common phenomenon as we shall see in Section 4. By contrast 0 is not one-to-one
in even the smallest cases excluded by the hypotheses of (1.1), namely, when
r = 2 and 93 = 2lm2t2 with m being odd (I give an explicit example to illustrate
this in Section 4).

In a sequel I hope to examine contexts in which 0 fails to be one-to-one. For
example, for the varieties just mentioned:

(1.2) THEOREM. Let r = 2 and 93 = 9lm9t2 with m odd. Then, if 2 £ £ is
join-irreducible, 20" ' contains at least one and at most two join-irreducible varieties.

Unexplained notation and results concerning varieties of groups follow Hanna
Neumann's book [9]. At several points I rely heavily on results and methods from
[3]: this paper should be read in close conjunction with it.

https://doi.org/10.1017/S1446788700022333 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022333


368 R. A. Bryce [3]

To conclude this introduction I prove the following result: in one sense it
underlies the whole philosophy of this paper.

(1.3) LEMMA. Let II be a locally finite variety of groups. Every subvariety of
[U, 6] is generated by finite groups.

PROOF. Every variety is generated by finitely generated groups so it suffices to
show that if G E [It, 6] is finitely generated than varG is generated by finite
groups.

To this end note that G/$X(G) is finite, being in U and finitely generated. By
Neumann [8] then, G' is finite, say of order N. Also f,(G) is finitely generated
since it has finite index in a finitely generated group. Let the torsion subgroup T
of f[(G) have exponent e. Then G' n ^(G)e = 1. For, if x E G' n ?,(G)e then
x = ze for some z E J|(G); so 1 = xN = zeN and z E T; hence x = 1. Now G is a
subdirect product of G/G' and G/f,(G)e, the first being abelian and the second
finite. Hence var G is generated by finite groups.

2. Quotations from [3]

We shall need several results from [3] or, at any rate, results much like them.
The reader will be referred there for proofs which are similar enough to warrant
omitting here.

Let 33 be a variety of soluble groups of finite exponent, say of nilpotent length
n with n minimal. Let G be a basic group in [21 r93, @] which is of nilpotent length
greater than n and not in 3lr5B. The notation of the next result will be carried
through the whole paper, often without comment.

(2.1) LEMMA. Let SG be the set of groups S with the properties
(i) varS = varG,
(ii) the nth nilpotent residual of S is complemented in S, and
(iii) S is s-critical.
Then SG is not empty and if R is a group of least order in %G it has the following

structure. Let A be the nth nilpotent residual of R and B a complement for it in R.
(a) A is a p-group, for some prime p dividing r, of class 2;
(b) ^(A) = A' = ?,(/?) « cyclic;

(d) ifN is a non-trivial normalp'-subgroup of B then [A, N] = A;
(e)CR(A/A') = A;

(g) R is a basic group.
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The proof of (2.1) is little different from that of (3.4) in [3] and its immediate
preamble.

Let 91 denote the set of minimal elements of all SG as G ranges over the basic
groups in [9tr9S, ©] which have nilpotent length greater than n and which are not
in 31 r 33; much of the remainder of the paper is concerned with the structure of the
groups in SI. A variety is in the set % introduced in the Introduction if and only
if it is generated by a subset of <3l.

We recall now the central construction from [3]. Let B be a group, p" a
prime-power and M a Z «/?-module. The 5-group M t is defined on the set
M X M* X Zp. (A/* is the contragredient of M) by the operation

{mx, fx, zx){m2, f2, z2) = {mx +m2,fi + f2,zl +z 2 - / , (m 2 ) )

where mx, m2 G A/,/,, f2 G M* and z,, z2 G Zp*\ and with the action

(m,f,z)b = (m»,fb,z)

for all m G A/, f G M*, z G Zp* and b G B. The details can be found in [3; pages
338-339]. The important features of Mf are: the subsets { (m,0 ,0) :m£M) and
{(0, / ,0) : / G M*} are 5-isomorphic to M and M* (and we usually identify
them); {(0,0, z): z G Zp,} is (additively) isomorphic to Zpa (and we also identify
them); and, in the same spirit, for m G M,f G M*, [m, f] = f(m).

In several places later on it will be important to have the following characteri-
zation of Mf. Here the details suppressed in (2.4) of [3] are made explicit. The
result will re-appear in the broader context of realization to be introduced in
Section 3.

(2.2) LEMMA. Let B be a group and Lap-group with the following properties.
(i) L has abelian p-subgroups M, N which together generate L;
(ii) L is ap-group of class 2 with cyclic centre;
(iii) L' - [M, N] = ?,(L) «£ f,(L5); and
(iv) M n f,(L) = N n f,(£) = 1-

Suppose that \ f ,(L) |= pa and let 4>0: f ,(L) -> Zp be an isomorphism.
The function 6: N -* M* defined by 6n(m) = [m, n]\p0 is a B-isomorphism and

there is a B-isomorphism ^ : L -* M^ such that

\j,:m->{m,0,0) and $: n -*(0, 0n,O),

for all m G M and all n G N.

PROOF. That 6 so defined is a 5-isomorphism is left as an exercise.
Every element of L can be written uniquely in the form mnz (m G A/, n G N,

z G {,(L)). Define ^ : L -» A/f by

• (»», 0n, z^0). « e M, n G iV, z G ( )
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Then, writing the group operation in M and N additively where appropriate,

[(mnz)(m'n'z')]xp =[(mm')(nn')(zz'[m', n]'])]xp

= (m + m',n + n', z% + z'^o - 0n{m'))

and since $ is plainly a ZJ-map, and one-to-one and onto, it is a 5-isomorphism.
The finaly quotation is, in a sense, the crux of [3], and of (4.6) of the present

paper. Suppose that B, Bt (i E I) are finite groups and that M, Mt (i £ 7) are
modules for them over (possibly different) rings Zp«. Moreover suppose that, for
some variety SB,

( Mt = 3S(M,Z?/), i e / ;

that CB(M) - 1; and that var{M,U,: / £ /} is locally finite.

(2.3) LEMMA. Under the conditions of the last paragraph, if

MB evar{M,5, : / £ / } ,

then

The proof of this result can easily be reconstructed from [3; page 347]. It is this
result which enables us to show that 6 is one-to-one if every variety in the set U
can be generated by groups of the form M*B: see (4.6).

3. Symplectic modules

The group R of (2.1) is of a type familiar in many parts of group theory, its
interest lying in the fact that the natural representation of R on A/A' is
symplectic in the following sense. Suppose that A' has order pa. It is easy to see
that A/A' must have exponent precisely p" and may therefore be regarded as a
5-module over the ring Zp«. Commutation in A induces a non-degenerate
alternating bilinear form ( , >: A/A' X A/A' -» Zp« in a well-known way: if
A' = (z) then, for ax, a2 £ A,

[aua2] = zW.oi*')

the exponent being interpreted modulo pa. Since B respects this form its natural
representation on the Zp«-spaceA/A' is symplectic.
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It is convenient to introduce the following formalism. Let B be a group and P a
ring with 1. A PS-module is symplectic if there is a bilinear form ( , ):
M X M-» Psatisfying

(i) ( m , w ) = 0 , m E M; and

(ii) (m$\ mb
2)= (mum2), mum2EM,bEB.

(The reader is referred to Huppert [5] for an account of symplectic modules
where, however, the coefficient rings are fields.) In general a bilinear form
satisfying (i) is alternating; and one satisfying both (i), (ii) is an invariant scalar
product on M.

If N is a submodule of a symplectic PS-module M then, as usual,

N1-^ {mEM:(m,n)=0,n£N}

is a submodule of Af. If N C iVx then N is an isotropic submodule of M, and if
N fl iVx = 0 then N is non-degenerate.

A homomorphism 6: M -> iV between symplectic PS-modules is symplectic if
(mid, m26) = (w,,wi2) for all m,, m2 £ Af. It is usual to call a symplectic
isomorphism an isometry.

(3.2) LEMMA. Lef P be Zp« or a field and let Mbea PB-module of finite rank.
(i) M = M* as P-modules.
(ii) Suppose that M is symplectic.
(a) / / U, V are submodules of M and « £ U, let \u '• V ~* P be the function

v (-> (D, K) . The function x '• U -» F* defined by u i-> xu
 /5 a PB-homomorphism

whose kernel is U n F x .
(b) / /A/ w non-degenerate, M s Af* as PB-modules.
(c) If Vis a non-degenerate submodule of M, then M = V ® V± .
(iii) Suppose that P is a perfect field of characteristic 2, that M is irreducible and

that M s Af*. 77ien e/?/ier Af admits a non-degenerate scalar product or M is a
one-dimensional trivial module.

Note that (iii) is not needed in the present paper. I include it because of its
interest as a partial converse to (ii)(b). When the characteristic of P is odd (iii)
does not remain true.

PROOF OF (3.2). (i) This is well-known if P is a field and the case P = Zp« is
very similar (see page 338 of [3]). The proof of (ii)(a) is easy and is omitted (it
does not, of course rely on these restrictions on P and Af). To prove (ii)(b) let
X: Af -» Af * be defined as in (ii)(a) using U= V = M. Since Af is non-degenerate
X is one-to-one and hence is an isomorphism by (i).
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To prove (ii)(c) let x : M -» V* be defined as in (ii)(a). Since V is non-degener-
ate, V D Vx = 0. Hence x I V is one-to-one and therefore, by (i), onto. To each
m E M then there exists v E V such that xm

 = Xv< which is to say m — v E F x .
It follows that M=V®V±.

(iii) Let 0: A/ -» M* be an isomorphism. The function M X M -> P defined by
(m, «) H^ 0m(«) + #„("!) satisfies (3.1) and is bilinear. Hence if it is non-zero we
are done. So suppose that, for all m, n E M, 0m{n) + 6n(m) = 0. Now this means
that for all m, n e M, 6m+n(m + n) = Bm{m) + 6n{n). Also 6m>(nb) = 6m{n) for
all b E B. Hence the subset Mo = {m E M: 6m(m) = 0} is a submodule of M.
Since M is irreducible Mo = 0 or Mo = Af. In the second case the function
M X M -> P, (m, n) \-> 0m(n) is bilinear and satisfies (3.1) and again we are done.
If dim M > 2 the first case cannot arise. For suppose Mo = 0 and 0 ¥= m E M.
For all X E P, 0Xm(\m) = X26m(m) and since every non-zero element of P has a
square root we may choose X so that 0Km(Xm) = 1. Hence there are independent
elements m, n E M with 0m(wi) = 6n(n) — 1. But then 9m+rl(m + n) = 0 and
m + n ¥= 0, contradicting Mo = 0. The proof of (3.2) is complete.

We shall need the following constructions of symplectic modules: these, I
believe, are not standard. Let Mt (1 «£ / *£ s) be a collection of symplectic
PS-modules. On the module ®/=, Mt define a bilinear form by

s
i-\(x,y)= 2 (-1)

1 = 1

where TT, : ®/=, M, -» M, is the natural projection. It is easily checked that this
form is bilinear and satisfies (3.1). I denote this symplectic module by

it is more convenient for our purposes in some places than the more usual direct
sum (which has a sum, and not an alternating sum, above). However, it is neither
commutative nor associative, though

is a convenient right norming.
Next suppose that A/, N are PS-modules and that x: N -» M* is a homomor-

phism. We make M © N into a symplectic PS-module as follows: define a scalar
product on M © N by

((m, «), {mr, «')) = Xn(
m) ~ Xn(W), m, m' E M, n, n' E N.

Denote this symplectic module by M\N. Note that the submodules {(m, 0): m E
Af} and {(0, n): n E N) of Afx̂ V are isomorphic to A/ and iV respectively and
that they are isotropic.
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Much of this pape r is concerned with the following prob lem. Suppose that M is
a Zp.B-module . W h e n is it possible to find a group A , a p-group of class 2 with
cyclic centre equal to A ' , on which B acts as a group of au tomorph i sms
centralizing A', and such that A/A' is isomorphic to M as a 5-module? A
necessary condition, of course, is that M should admit a scalar product. When p is
odd this condition is easily seen to be sufficient: on the set M X Zp« define the
operation

( w , , z , ) ( w 2 , z2) = ( m , + m2, z{+ z 2 + {{mx, m2))

and the S-action (w, z)b = (mb, z) and check that one has a 5-group with the
desired property.

I now describe this situation in general terms as follows. Let M be a symplectic
Wf-module. Suppose that there is a 5-group A with the following properties: A
has a central subgroup X centralized by B and containing A' such that

(i) there is an isomorphism <|>: X -* P+ ,
(ii) there is a group 5-isomorphism 6: A/X -* M, and
(iii) for all a,, a2 E.A

[al,a2]<f>=((alX)e,(a2X)e).

We say then that A realizes M.
It will often be convenient to regard X and A/X as PB-modules, in fact to use

the isomorphisms 0, <f> to identify A/X with M and X with P. In this spirit we
have [a,, a2] — (aiX, a2X) for alia,, a2 e A.

The basic results we need about realization follow. In the first result it is only
the case p = 2 which is of interest because of the construction in the ante-
penultimate paragraph. Then the assumption of solubility is essential because of a
result of Grass [4], a fact pointed out to me by Professor Karl Gruenberg.

(3.4) THEOREM. Let K be a finite soluble group and M a faithful K-module over
Zp.. Suppose that Op.(K) ¥= 1 and that [M, Op(K)] = M. Then

(i) every K-invariant scalar product on M can be realized and
(ii) if Ax, A2 are K-groups realizing isometric scalar products on M then AXK =

A2K..

PROOF. We begin by supposing that the image of the scalar product
<, > : M X M -> Zp. is the ideal (py).

Let FQ be the free group of the variety %pMp« AJ!2 whose rank is the same as
that of M. There is therefore an onto homomorphism a0: Fo ->-> M such that

https://doi.org/10.1017/S1446788700022333 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022333


374 R. A. Bryce [91

Since Fo is projective there is a subgroup KQ of Aut Fo and an onto homomor-
phism fi0: Ko -> K satisfying

(xy)a0 = (xaoY
Po, x £F0,y EK0.

Moreover if Ko is chosen to be of minimal order then ker/J0 «£ $(K0), since any
supplement for ker/J0 in Ko would do as well; and since ker/?0 acts trivially on
F0/$(F0), ker/J0 is a/?-group. The Frattini argument then shows that Op,(K0)fi0

= Op.(K).
I claim now that there is a homomorphism £: FQ -» Zp* satisfying

[x, y]£= (xao,yao), x, y E Fo.

For, let {xu x2,... ,xm} be a free generating set for Fo. Then every element of Fg
has a unique representation in the form

[ 1 ^m2 F 1 ^-mm-1

xm'X2\ ''' lxm>xm-\\ '
where 0*£\, ; =£/>"— 1 for all i, j . The existence of such an expression is
obvious, and uniqueness is easy: if such an expression is 1 in Fo then the
endomorphism of Fo defined by

yields [xif Xj]x'J = 1 whence pa\XiJ or \ u = 0, and this for every pair i, j with
/ >j. This ensures the existence of | . Note that the image of | is ( py > because of
the assumption in the first sentence of this proof. Note also that for all k G Ko,

= (xao,yao)= [x,
so that | is a A^-homomorphism if we regard Zpa as a trivial A0-module.

A final prehminary observation before constructing a realizing group: Op(K0)
has no fixed points in F0/FQ. For, if U/FQ is the fixed point space of Op(K0) in
F0/FQ then U< kerao/Fo' since Op(KQ) has no fixed points in M. But Uhas a
complement in F0/FQ by Fitting's Lemma, contradicting kera0 ^ <&(F0), unless
U/Fo = 1.

Now, modulo ker£, Fitting's Lemma ensures that Fo' has a complement
admitting Ko in ker a0. Consequently, there exists in ker a0 a subgroup C with the
properties: C < F0K0, ker a0 = F0'C and FQ n C = ker£.

Consider the group Fo/C and call it Ao: it will turn out to be almost a realizing
group for M.

To see this, let Xo = A'o and define <J>: XQ -» Z ,̂. by
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and 60: Ao/Xo -* M by

60: (xC)(F£C/C) \-*xa0, x G Fo.

Then for all x, y e Fo,

[xC, yC]<j>0 = [x, y]C<l>0 = [x, y]£ = (xa0, ya0)

= ((xC)(FQC/C)80, (yC)(F0C/C)e0)

= ((xc)xoeo,(yc)xoeo).

Next, we show that K acts on Ao. For let

L= {/e Auti^ikerao admits/, [F0,l] < keraoand / e CAlitFo(Op,(K0))}.

Then Ko normaUzes L, and ker/?0 «S L. Also

(3.4.1) [F0,L]<FZnksra0.

To see this, note first that

[F^, L] = [Fo, Fo, L] < [Fo, Fo, Lkera 0 ]

< [Fo, Lkera0 , F0][Lkeia0, Fo, Fo],

by the three subgroup lemma, whence [FQ, L] «S FQ D kera0; and then it follows
that there is for each / e L an O/,,(^T0)-homomorphism F0/FQ -» FQ/FQ n kera0

defined by xFJ i-> [x, I] which, of course, must be zero since the composition
factors of the O/,-(AT0)-module F0/FQ are all non-trivial whilst FQ/FQ n kera0 is
trivial. Therefore (3.4.1) is confirmed. It follows that kerj60 < A0K0 and so it
may be factored out leaving K acting on Ao.

The group Ao now satisfies the requirements of a realizing group for M except
that <J>0: A"o -» Zp« whilst being one-to-one is not necessarily an isomorphism. But
a central product of Ao and Zpa will provide a realizing group for M. To be
precise let iV = {(z'\ z<j>0): z £ A'o} and put A = (Ao X Zp*)/N; then it is clear
that A realizes M.

We now take up the question of uniqueness. To begin, suppose that Al is a
realizing group for M with subgroup Xx and isomorphisms 0,, <J>, satisfying the
definition of realization. Since Op(K) has no fixed points inA^X^ it follows that
there is a unique, /T-admissible subgroup A2/A\ olAx/A\ such that

A,/A\=A2/A\XXX/A\;

this because of Fitting's Lemma. The group A2 almost realizes M in the sense that
there exists an isomorphism 02: A2/A'2 -» M and a monomorphism <f>2: Y4'2 -» Zpa
such that

(3.4.2) [ a l A ' 2 , a 2 , A ' 2 ] < i > 2 = ( ( a l A ' 2 ) e 2 , ( a 2 A ' 2 ) e 2 ) , a l t a 2 E A 2 .

Of course /I, is a central product of y42
 an<^ X\ amalgamating all of A'2.
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Conversely, if we have a group A2 with the properties described we can
construct a realizing group for M as such a central product. Moreover, since all
possible ways of amalgamating A\ into Zp« are permuted transitively by the
automorphisms of Zpa all such realizations Al of M constructed from A2 are
A>isomorphic.

Hence to conclude the proof we need to show that if A2, A3 are tf-groups
satisfying (3.4.2) then A2K = A3K. Since Fo is projective in 31 «2l « A 912 there
exist onto homomorphisms a,: Fo -» Al (i — 2,3) and subgroups Kt (i = 2,3) of
Aut Fo with onto homomorphisms $ : Kt -» # satisfying

(jc>)a,. = (act,)*', x E F 0 , j 6 * „ / = 2,3,

and

(3.4.3) (xa^A'fi^ XOQ, xEF0,i = 2,3.

Moreover, as before in the case of Ko, we may suppose that for / = 2,3
ker ft < $(A",), that ker̂ S, is ap-group and that OpiKJfr = Op(K).

We investigate the connexion between K2 and A3. First

(3.4.4) (ker ajFJ, = ker o0, 1 = 2,3.

For, if x G kerai( that is if xat = 1, then by (3.4.3) xa0 = 1 so kera; C kera0.
Also if y 6= ker a0 then yat E 4̂̂  by (3.4.3) and hence for some z E FQ, za, = jet,
or jz"1 E ker a,. Therefore (3.4.4) is proved.

A corollary of this is that ker a0 admits K2 and K3. Also

(3.4.5) ker a D FJ = ker a , n ^ ' .

For, if x, y E Fo then

[x, j]a2«(>2 = [xa2, ya2]<$>2 = ((xa2)A'262, (ya2)A'2O2)

(3.4.6) = <*ao

whence, on restriction to Fo', a2<j>2 = a3<f>3, which ensures (3.4.5).
Next for each k2 E K2 there exists /:3 E K3 such that ^2^3 acts trivially on

F0/kera0. For given k2 E K2 choose k3 to satisfy k2fi2 = fc3j83. Then for all
xEF0

= (xk?a2)
k2l>2A'262 = (xa2)A'2d2 = xaQ,

so k2
{k3 acts trivially on F0/ker a0. Consequently, if L is the subgroup of Aut Fo

of all automorphisms admitted by kera0 and acting trivially on F0/kera0 then
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K2L = K3L, and, of course, KtC\L = ker/?,, / = 2,3. Hence, modulo L, Op.(K2)
and Op.(K3) are equal and therefore for some / E L ,

Op,{K3)' = Op,{K2).

Since conjugation by / in F0K3 induces an isomorphism of the group A3K we
may, without loss of generality, assume that / = 1. For convenience write N =
<V(* 2 X= Op,(K3)) and Lo = CL(N). Then

( ) *,Lo, i = 2,3.

Now it follows from (3.4.6) that ker a0 is central in Fo modulo ker a2 n Fo'.
Hence Fitting's Lemma yields the existence of normal subgroups C, of Fo

admitting A", and such that

ker a, = C,(FJ n ker a,) and C, n Fo' = Fo' n ker a,.

However, C, is then a complement for FQ in ker a0 modulo Fo' n ker a2 admitting
(^.(A^). Since there is only one such complement C2 = C3 — C, say. It follows
that

ker a2 = ker a3.

Next, let L, = {/ E Lo: kera2 admits /}. Then since K2L0 — K3L0 it follows
that K2, K3 normalize L, and

K2LX = /CjL, and A", n i , = ker^S,, / = 2,3.

Moreover, it follows from (3.4.1) that

[FQ,LX] <kera 2 .

Now j8y: Â , -» ̂ T may be extended to a homomorphism from KiL] -» A" and we
shall call this j8, also:

(*,/,) - M / . k, E A",, /, E L,., 1 = 2,3,

is well defined since KtC\ Lx — ker/?,. Then there exist onto homomorphisms yt:
F0KiLx -»^,K defined by

( A h = (/«,)(*A), / E Fo, x E A",L,

and both have kernel equal to L, ker a2. Consequently, the images of y2 and y3 are
isomorphic which is to say A2K = A3K, as required.

(3.5) LEMMA, (i) Every symplectic submodule of a realizable symplectic PB-mod-
ule is realizable.

(ii) If Mj (1 < / < s) are realizable symplectic PB-modules so is Y/= 1 Mt and a
realizing group for it is a central product amalgamating P of realizing groups for the
M,

(iii) If x: N ~* ̂ * ' s a homomorphism of PB-modules M, N then M\N is
realizable.
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PROOF. The proof of (i) is easy and is omitted. To prove (ii) it suffices, by (3.3),
to assume 5 = 2. Let Ax, A2 be groups realizing Af,, M2. In what follows the
notation in the definition of realizing group is used with subscripts to refer to Ax

Let Ao = Ax X A2as fi-group and consider the subgroup

I claim that A — ,4 0/C/realizes M, YM2.
Put X= (Xx X X2)/U. Since every element z of Xx X X2 can be written

uniquely in the form

z = (x,0) + u

where x E Xx and u E U we may define an isomorphism <J>: X -» P+ by

Now define 6: AO/(XX X X,) (ss A/X) -> Af, YAf2 by

Clearly, 6 is a 5-isomorphism and we need only check condition (iii). For all
ax,a'x eAx,a2,a'2 E A2,

[ i i l i [ 2 i * 2

= ((axXx)ex,(a\Xx)ex)~ ((a2X2)62,(a'2X2)62)

= (((aiXx)0x,(a2X2)e2), ((a'xXx)0x,(a'2X2)62))

= (((a,, c2)( JT, X X2))0, {{a\,a'2){Xx X Jf2))tf >,

as required.
To prove (iii) define a product on M X N X P by

(w,, n,, r,)(w2, n2, r2) = (m, + m2, n, + n2, r, + r2 - xn,(w2)),

for mt E. M, w, E iV, ^ E P. It is easy to check that this is a group operation.
Denote this group by A. It is a 5-group under the action

(m, n,r)b = (mb, nb, r), m E M,n E TV, r E P,b E B.

Let X - {(0,0, r): r E P}. Plainly <#>: (0,0, r) ^ /• is an isomorphism X -> P + .
Also define 0: . 4 / * ^ Mx/V by

6: (m, n, r)X ->(m, n),
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a 5-isomorphism. Then

[(m,, «,, r,), (m2, n2, r2)]<f> = (0,0, x j ^ i ) ~ Xn^i))^

= ((»!,,«,), (w2,«2))

= ((wi.ii , rx)6,(m2,n2,r2)6)

so y4 does realize M\N. This completes the proof of (3.5).

We will denote the group realizing M\N by x+- It should be noted that the
group A/1 introduced in Section 2 is a special case of this construction: if t:
M* -» M* is the identity map then MiM* = tf.

The next result is a technical one. Later on we use it to make the first reduction
in analysing the groups R of (2.1).

(3.6) LEMMA. Let M be a symplectic PB-module which has sub-modules Mx, M2

with M = Af, + M2. Let x'. M2 -> A/f be defined as in (3.2)(ii)(a). Then there exist
exact sequences of PB-modules

(i) 0 -» A/lXA/2 -» A/YA/YA/,
(ii)

0
i
K
1

0 ^ U-* A/,YMlXM2YM2

i
M
I
0

where all the homomorphisms are symplectic and where K C U± .

PROOF, (i) Define 6: Af,xA/2 -> A/YA/YA/ by

{mx,m2)d — {mx,ml— m2,m2), m, G A/,, w2 £ A/2.

Clearly, 0 is a one-to-one homomorphism and it is symplectic because, for all
i',, m'2) e A/,xA/2,

((m,,m, - m2, m2), (m\, m\ -m'2,m2))

- (m,, m',)- (m, - w2, w'i - m'2)+ (m2, m'2)

= (m\,m'2)- (m'x, m2)= Xm'2(mi) - xm2(m\)

= ({mx,m2),{m\,m2)).
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(ii) Let U be the submodule of A/, Y A/,xA/2 YM2 defined by

u~ {(»ii ,(m,,m2),m2); w, E Af,,m2 £ M 2 } .

Define a function <f>: (/ -» Af by

(mx,(mx, m2), m2)<j> = m, - m2.

Clearly, <t> is a /'B-homomorphism. It is symplectic because

((ffl1,(m1,m2))ffl2)^(m;,(m'1(ffl2),m2)*)= (mx -m2,m\ - m'2)

= (mx,m\)- ((m,,m'2)- (w',,w2» + (m2,m'2)

= (mi'm'\)- {xm'2(mx) - Xmi(m\)) + (m2,m'2)

= ((mx,(mx,m2),m2),(m'x,(m\,m'2),m2))

as required.
Finally, ker<f> = {(m,(w, m), m): m £ M , n A/2} and, for all m G M, n Af2,

m, E A/,, m2 E Af2

((m,(m, m), m),{mx,{mx,m2),m2))

= (m,mx)- (Xm/w) - xm(w,)) + (m,m2)

= (m,mx)- (m,m2)- (m,mx)+ (m,m2)=0.

Hence ker </> C U1- as required. Since <J> is onto we are done.

(3.7) LEMMA. Suppose that P is Zp« or that P is a field and let M be a
non-degenerate symplectic PB-module. Let \- M -* M* be the induced isomorphism
with xm(m') = (m'> m) ensured by (3.2). Then

(i) MxM and MiM* are isometric, and
(ii) / / End M contains a symplectic endomorphism e such that 1 — e is invertible

then M\M and A/YM are isometric.

PROOF, (i) This is almost a tautology: it is easy to verify that the function
(m, n) -* (m, xn) is an isometry.

(ii) Define </>: M\M -> A/YM by

(m,, m2)<j> = (m, + (1 — e)"'m2, m, + e(l — e)~Xm2), mx, m2 E Af.
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It is easy to check that <t> is a ̂ -isomorphism. It is, moreover, an isometry:

({mum2)4>, (m\,m'2)4>)= (mx + (1 -e)~xm2,m\ + (1 - e)'xm'2)

- ( m , + e(\ - e)~xm2,m\ + e(l -e)'xm2)

= ({{mx,m\))+(mx,{\-e)-xm'2)+({\-e)-xm2,m\)

+ ({\-eylm2,{\-e)-Xm'2))

-((mx,m\)+{mx,e(\-e)-xm'1)+{e(\-e)-xm1,m\)

+ (e(l-eyXm2,e(\-eyxm2))

= (m,, (1 - e){\ - e)-xm'2)+ ((1 - e)(l - e)-xm2, m\)

— (w»i»w»2)— (m'x,m2) = {{mx,m2),{m'x,m2)).

(3.8) LEMMA. Let P be a finite field of characteristic 2, let B be a finite group and
let N be an irreducible PB-module.

(i) If Nx, N2 are non-degenerate symplectic PB-modules isomorphic to N then Nx

and N2 are isometric.
(ii) The following conditions are equivalent.

(a) NiN* has an irreducible non-isotropic submodule.
(b) N admits a non-degenerate scalar product and End iV contains a non-iden-

tity isometry.
(c) N admits a non-degenerate scalar product and NtN* is isometric to NY N.

PROOF, (i) Write No = Nx \N2 and let U be an irreducible submodule of No.
Then U s N. If U is non-isotropic then N0=U®U±by (3.2), Uxs* N and Ux

is non-isotropic since No is non-degenerate. Now every irreducible submodule of
No, other than N2, has the form

for some a £ hom(iV,) A 2̂). But |hom(Ar
1, A^2)|=|End N | , a power of 2 since

End N is a finite field of characteristic 2. Hence No has an odd number of
irreducible submodules. In consequence at least one irreducible submodule of No

is isotropic. This means that for some 0 # a £ hom(A ,̂, A^),

° = <("i»"2«). («2.W2»«)>» nl,n2ENl,

= <«i."2>+ (nxa,n2a)

so

(nx,n2)= (nxa,n2a), nx,n2£Nx,

the characteristic being 2. Hence a is an isometry.
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(ii) Suppose that V is an irreducible non-isotropic submodule of JVtJV*. This
means that V admits a non-degenerate scalar product and hence that F s F* by
(3.2). Since N* is irreducible it follows that V = N or V s N*. In any case V = N.
Also, NiN* = V® V1- by (3.2) so VxszN also and F x is non-isotropic since
NiN* is non-degenerate.

Now N = {v + va: v E F} for some 0 ^ a £ hom(F, F1). Since N is iso-
tropic we deduce that for all v, v' E V

0 = (v + va, v' + v'a)= (v,v')+ (va,v'a),

and therefore, («,« ') = («a,v 'a) since the characteristic is 2. Thus a is an
isometry. Similarly, there exists an isometry B E hom(F, Fx), different from zero
and from a such that N* = {v + vfi: v E V}. But then a/?"1 is an isometry on V
and 1 =£ a/?1 E End F. Since V = N this completes the proof that (a) implies (b).

That (b) implies (c) follows from (3.7) and (c) implies (a) is obvious.

4. Proof of (1.1)

Here we establish the existence of the map 0; ^i -> £ described in Section 1,
and set about delineating some of its properties, proving (1.1) in the process (see
(4.6)). The main message of [3] is that $ is one-to-one when restricted to those
varieties in % which can be generated by groups of the form M^B. We show that
when the hypotheses of (1.1) are satisfied every variety in % has this property. We
also give several sufficient conditions on a group R E 91 which ensure that vari?
is generated by a group of the form M^B (see (4.3)(ii) and (4.5)).

It is convenient to begin with the following lemma: see [1; page 97] for a
definition of s-critical generation.

(4.1) LEMMA, (i) An irredundant generating set of basic groups for a Cross variety
is an s-critical generating set.

(ii) Let { X], X2,..., Xt} be an s-critical generating set for a Cross variety var X.
(a) In every representation of X as a quotient of a subgroup of a direct product of

groups from QS { AT,, X2,..., Xt} every one of Xy, X2,...,X, occurs.
(b) / / X is s-critical then for some i, X/<P(X) =

PROOF, (i) Suppose that % = {Xu X2,.. .,Xt} is a set of basic groups irredun-
dantly generating var %. If % is not s-critical then for some /

var % = vax{Xj\j # i) V var(gs - \)Xt.

But now the modular law, and the fact that var Xt is join irreducible gives either

var Â  Q\dx{Xj:j^i}
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or

var ^ = var( QS —

The first of these contradicts the irredundance of 90 and the second the criticality
of Xj. Therefore, % is s-critical.

(u'Xa) Since var X = QSD (A",, X2,.. .,X,} (15.73 of [7]) we may write X = U/V
where U is a subgroup of a direct product D, XD2X •• • XDS with each
DjE. QS{X1, X2,...,Xt}. Suppose that some X} does not occur in the set
{Z)1,.D2,...,Z>i}.Then

Xj e var X = var{A^: k ¥^j) V var( QS - 1)A},

contradicting the s-criticahty oi {Xx, X2,...,Xt).
(b) Let P be the projective cover of X in var X. By (3.1) of [3] P is s-critical. Let

Px, P2,...,P, be the projective covers of Xx, X2,...,Xt in varX. Since {P} is the
s-critical basis for var ^([2; page 172, paragraph 2]) it follows from Theorem 3.3
of [1] that every Xt is a homomorphic image of P. Since P is projective, therefore,
Pj is also a homomorphic image of P. But since an s-critical refinement of
{Px, P2,...,P,} is also the s-critical basis for varX([2; loc. cit.]) P is isomorphic
to a subgroup of some Pt. Hence P s ? , . Finally, therefore

XMX) s P/9(P) s />/$(/>) s * , /* (* , )

as required.

The notation of the next lemma follows that of Section 1.

(4.2) LEMMA, (i) Every critical group in 3133 which is of nilpotent length n + 1
precisely is of the form MB where: M is an abelian normal p-subgroup for some
prime p, complemented by B; B 6 S3 and B/Op{B) has nilpotent length n precisely;
Op(B) T^ 1 and every non-trivial normal p'-subgroup of B acts fixed-point-freely on
M.

(ii) Let 5 0 E S3 be a finite group and p a prime. Suppose that Op(B0) ¥= 1 and
that B0/Op(B0) has nilpotent length n precisely. IfM0 is a monolithic Zp«B0-module,
faithful for Bo, withp" | r (so that M0B0 E 91,33), then

v&rM0B0 e £ .

PROOF, (i) Let C £ 5133 be critical and of Fitting height n + 1 precisely, and let
M be the n th nilpotent residual of C. Now, M is non-trivial, is abelian and, by [5;
VI, 7.15], has a complement B in C. Since C is monolithic it follows that M is a
/>-group for some prime/? and that CB(M) = 1. Hence, in particular, 33(1?) = 1.
Also, Op(B) =t 1 or C has Fitting height n at most. If 1 ^ N < B and N < Op(B)
then N acts without fixed points on M by Fitting's Lemma. Finally, B/Op(B) has
Fitting height n or else C has Fitting height at most n.
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(ii) Let C,, C2,... ,CS be basic groups generating var M0B0 irredundantly. In a
minimal representation of M0B0 as a quotient of a subgroup of a direct product
of groups from Q S { C , , C 2 , . . . , C J all C, must occur by (4.1). Now (1.12) of [7]
yields that the monolith aCt of Ct is similar in Ct to the monolith of M0B0 in
M0B0. In particular,

C,/CC/(aC,) = M0B0/CMoBo(oM0B0) = BQ/Op(B0),

which has Fitting height «. It follows that C, has Fitting height n + 1 and
therefore, var{C,, C2,..., C2} E £ as required.

We begin now an analysis of the groups in "51 with the aim of reducing then-
number to a canonical set of basic groups still rich enough to generate all varieties
in%.

Let R 6 *H: its structure is described in (2.1). Since A has class 2 it follows
from the well-known Oates-Powell result (51.37 in [9]) that A/A' is either
co-monolithic as a 5-module (that is, has a unique maximal 5-submodule) or is a
sum of at most two (necessarily co-monolithic) proper submodules. It is the
second of these possibilities we consider now.

(4.3) LEMMA. Let R E 91, and, in the notation of (2.1), regard M = A/A' as a
symplectic B-module with scalar product induced by commutation in A. Suppose that
M = Mx + M2 for submodules Mx, M2 and define x'. M2 -» M* as in (3.2)(iiXa).
Then

(i)Xf5E var/?.
/ / M,, M2 are proper submodules of M then

(ii) y&rx^B = var/?
and, in fact,

(iii)/or some group Bo and Zp«B0-module M0for which M0B0 is a basic group,

var/? = vaiM$B0.

PROOF, (i) By (3.7) MX\M2 is isometric to a submodule of AfYA/YM. Let
A0=AYAYAbea central product realizing MYMYM. Some subgroup Ax of
Ao therefore realizes Af,xA/2. It follows from (3.4) that var AXB = var x*B. Hence
XfB e var/?.

(ii) Conversely, (3.6) yields that, for some submodule U of M, YAf,xM2 YM2

there is a submodule K contained in (7X with U/K isometric to M. Suppose that
Ax/A'' = Mx, A2/A' = M2 so that Ax, A2 realize Mx, M2 resectively. There is a
subgroup A3 of a central product Ax Y xf Y^42 which realizes U. Consequently

(4.4) A3B E vai{AxB, A2B,
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If ju: A 3 -** U is the natural 5-homomorphism write Ko = Kfi'1. Then Ko is
central in A v However, Op,{B) has no fixed points in M and therefore none in U.
Hence X3 = ker/it is precisely the set of fixed points of Op(B) in Ko and Fitting's
Lemma therefore yields

Ko = X3XV

where V admits B. But now A3/V realizes M since U/K is isometric to M. Hence
by (3.4) vai(A3/V)B = var R and, in consequence, (4.4) yields

R E\ai{AiB,A2B,xi'B}.

However, AXB, A2B and y}B belong to var/?. In particular, the modular law
gives

var/? = varxf5 V (var/? A var{^,B, .425}).

Since R is basic the only possibility is var R — var y}B, as required.
(iii) We now know that var/? is generated by a split extension CB° with the

following properties: C is a 5°-group, a /?-group of class 2 with abelian /^-sub-
groups C,, C2 which together generate C; C, n C2 = 1 and C" = [C,, C2] is cyclic
and central in CB°; O^B) is non-trivial and has no fixed points in C, or in C2;
and B°/Op(B°) has Fitting height n precisely. Among all generating groups for
var R with these properties suppose that CB° is the smallest.

First we show that the maps Xi: C2 -» C* and X2: C\ ~» C? ensured by (3.2)
must both be one-to-one: since ker x, < C5° and ker x, n C = 1 it follows that

var /? = var C5°/ker x, V var CB°/C;

whence

var/? = var C5°/ker x,

since var R is join irreducible; whence ker x, = 1 by the minimality of CB°.
By (2.2), therefore, C = C\ as 5°-group. The minimality ensures that C, is

faithful for B° and also that C, is monolithic and co-monolithic as /?°-module
(using (2.3) in this case).

Finally, suppose that T = C,5° is not basic. By (4.2) var T is generated by
basic groups F, = MiBi (0 ^ i < s). Hence we can deduce from (2.3) that

va r / ? = varCJB° = yai{M,%: 0^i<s}.

Since var /? is join irreducible var /? = var M$B0 say, as required.

The next result gives a very different condition ensuring a result like (4.3)(ii).
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(4.5) LEMMA. Let R E "31. Regard M = A/A' as a non-degenerate symplectic
B-module in the usual way. If End M contains a symplectic endomorphism e such
that 1 — e is invertible then

var/* = varAfffl.

PROOF. By (3.7) MiM* and MY M are isometric. Since M* realizes the first and
a central product A YA the second we have the desired result from (3.4).

Let $tf be the set of those basic groups in & which satisfy the hypotheses of
(4.3) or (4.5). That is to say R E <3lt if and only if either A/A' is not co-mono-
lithic or End B A/A' contain a symplectic endomorphism e such that 1 — e is
invertible. Let %f be the subset of % of those varieties generated by groups from

The main result of this section can now be stated.

(4.6) THEOREM, (i) There is a function 0: <$L -» £ defined by

3E0 = var{/7/?i(77):77 G3E}, 3E £ %.

(ii) The restriction of 6 to %* is one-to-one.
(iii) ^ = % if either 33 is nilpotent, r is odd or the exponent of 93 is odd.

PROOF, (i) We must show that did e £ whenever 36 e % and for this it suffices
that var /?/£,(/?) E £ whenever /? E &. Now either A/A' is co-monolithic or it is
not. In the first case it is also monolithic, being self-contragredient by (3.2)(ii)(b),
and hence var/?/£,(/?) E £ by (4.2)(ii). In the second case var/? = \axM$BQ

where Afo5o is basic, by (4.3). Hence

varR/UR) = var{M050,M0*2?0} E £

since M0BQ and MQB0 both satisfy the hypotheses of (4.3)(ii).
(ii) Now suppose that £ „ X2 E %f with £,0 < £20. By (4.3) and (4.5) we may

write

f = 1,2,

where all M^B^ are monolithic groups. Then, since £,0 *s £28,

MtjBtj E var{M2,52,, AQkB2k: k E 7(2)}, y E 7(1).

By (2.3), therefore,

MtjBjj E vax{M}kB2k: k E 7(2)}, j E 7(1),

and so 36] *s 3E2. This is more than enough to prove $ is one-to-one.
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(iii) Suppose that 93 is nilpotent. It follows that if R E <SL, £{(B) D Op,{B) ^ 1,
so we may choose a non-trivial element k E ^(B) n OP{B). Since (k) < B,
[A/A',k] = A/A' by (2.1)(d). It follows that, if we denote the linear map
A/A' -* A/A' induced by conjugation with k also by k, then 1 — A: is onto and
therefore invertible. Since k E S\(B), 1 — k E EndBA/A'; and, since k central-
izes A', it induces an isometry in A/A' by conjugation. By (4.5), therefore,
R E "fRA Hence <&* = %.

Next, suppose that r is odd. The map e: a + A' -> -a + A' is then an isometry
for which 1 — e is invertible. Again by (4.5), %t = %.

To conclude the proof of (4.6) I prove the following results.

(4.7) THEOREM. (See Isaacs [5; p. 276].) Let P be Zpa or a field and M a
PB-module of finite P-rank. Suppose that M admits an invariant, non-degenerate
scalar product (,): M X M -» P. Then E = End M admits an algebra anti-auto-
morphism e\-> e* satisfying e** = e and (me, m')— (m, m'e*) (m, m' £ M).

PROOF. Since the scalar product is non-degenerate the homomorphism x:
M -* M* ensured by (3.2) is one-to-one and therefore onto. For each e E E and
m E M the function M -* P defined by m' H> (m'e, m) is linear and hence
belongs to M*. Therefore for some m0 E M, Xmo(

m') = ( m e » m) an<i mo is

uniquely determined by m and e. However, the map M -» M defined by m i-> m0

is in E; denote it by e*. It is then easy to check that e \-> e* satisfies the properties
claimed.

We call e* the adjoint of e.

(4.8) THEOREM. / / K has odd order and if M is a faithful irreducible Z2 K-module
admitting a non-degenerate invariant scalar product then End M contains a non-
identity isometry.

PROOF. Let a E K be an arbitrary element different from 1. Then a and a"1 are
not conjugate in K. For if ak = a"1 for some k E K we should have that k2

centralizes a, then that k centralizes a since k has odd order, whence a = a~l or
a2 = 1, and finally a = 1. It follows that the conjugacy classes [a] of A, other
than that consisting of the identity element alone, may be paired off

Consequently, representatives of the conjugacy classes other than [1] may be
chosen in the form a,, af1, a2, a?,... ,ar, a~\

Let us denote by a(a) the sum of the linear transformations induced in Af by
the elements of the conjugacy class [a]. Note that o(a) e End M for all a E K.
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Also, o(a)* = o{a~x) since, for all m, m' G M,

(ma(a),m') = (m 2 a',m')= 2 {ma',m') = 2 (m,m'a~')

= (ffi.in' 2 <*-')= (m,m'o(a-1)).
* rer '

Here Tis a complete set of coset representatives for CK(a) in K.
We show that for some a E K, o(a) ¥= o(a~l). For it, to the contrary, o(a) =

a(a"') for all a E K then

e = 2 * = 1 +
xeK i =

since we are working modulo 2. However, for all y E K,

y=ye = e=\,

a contradiction to the non-triviality of K.
We therefore have an element/ E End M for which/* T̂  /. Hence since End M

is a field, so that the adjoint operator is an automorphism of order 2 on End M,
the multiplicative group splits

End Mx = F X N

where /* = / for all / E F, e* = e"1 for all c E N, and JV *= 1. If 1 * e E #
therefore

(we, w'e)= (ffj,w'ee*)= (w,w')

for all m, m' E Af and e is an isometry, as required.

(4.9) COROLLARY. If K is finite and of odd order and if M is a non-degenerate
symplectic Z2«K-module such that M/2M is irreducible then End M contains a
non-identity isometry.

PROOF. The proof will be by induction on a, the case a = 1 being (4.8). So
suppose a > 1.

The given scalar product M X M -* P (= Z2«) induces a non-degenerate scalar
product on M/2pM(l «£ 0 < a - 1); in fact <,): M/2PM X M/2PM -» P/2fiP:

{mx + 2pM,m2 + 2pM)= (ml,m1)+2pP.

If 0 is an isometric endomorphism of M/2M, different from 1, it may be lifted
using the Schur-Zassenhaus Theorem to an endomorphism of M. By induction we
may assume that on M/2a~lM, 6 is an isometry. Hence

(mx9,m2e)- (m1,ffj2)e2a~lP
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for all mu m2 G M. We suppose that 6 is in fact not an isometry on M. Then, it is
easy to check that the function [, ]: M/2M X M/2M -+ P/2P defined by

[m, + 2M, m2 + 2M] = ^ T ( { m , « > m26)- (m,, m2)) + 2P

is a non-degenerate scalar product. By (3.8)(i) [, ] must be isometric to ( , > on
M/2M so that for some <p E End M/2M

[m, + 2M, m2 + 2M] = ((m, + 2M)<p, (m2 + 2M)<p)

= (w,(p + 2Af, m2y + 2M),

lifting (p to M, so

( ( 0 0 ) ( ) ) + 2 / >
*)a—\ v» • z ' \ i 7 L i t —

or
/ **, a », /) \ / ,„ ^ , \ i in-1

\ ftiiu, mrf ) — \ nt\. m-t > ~v z

Therefore,
\ni\6 ,m20 ) = \ml6, tn2Qj + 2" {m\8<p,m20<p)

= ((m,, m 2 ) + 2°~l (/n!<p, m2q>)j + 2a~l (m,<p0, m2<p6)

But ^ has odd multiplicative order so 6 is also an isometry. This completes the
induction and the proof of (4.9).

The proof of (4.6) is now completed using (4.5) in the usual way.
At the risk of labouring the point I finish by pointing out again that when

generating groups of the type M^B can be found there is no trouble. The
difficulties arise when r is a power of 2, when A/A' is co-monolithic and when
A/A' has no symplectic endomorphisms satisfying (4.5) (in particular B has trivial
centre). The smallest instance of such a group R is GL(2,3): A =QS, the
quaternion group of order 8, and B = 53, the symmetric group on three letters,
and in this case varA/^S ¥= vaiR. For, it is easy to check that the Sylow
2-subgroups of R here have exponent 8 whilst those of M^B have exponent 4.

I propose to investigate such cases in a sequel which, in contrast to the present
paper, will be concerned with the questions "How badly can 6 fail to be
one-to-one?", and to what extent are the conditions derived here, which ensure
var/? = var M^B, also necessary?
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