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Abstract

We estimate the delay-adjusted all-cause excess deaths across 53 US jurisdictions. Using pro-
visional data collected from September through December 2020, we first identify a common
mean reporting delay of 2.8 weeks, whereas four jurisdictions have prolonged reporting delays
compared to the others: Connecticut (mean 5.8 weeks), North Carolina (mean 10.4 weeks),
Puerto Rico (mean 4.7 weeks) and West Virginia (mean 5.5 weeks). After adjusting for report-
ing delays, we estimate the percent change in all-cause excess mortality from March to
December 2020 with range from 0.2 to 3.6 in Hawaii to 58.4 to 62.4 in New York City.
Comparing the March–December with September–December 2020 periods, the highest
increases in excess mortality are observed in South Dakota (36.9–54.0), North Dakota
(33.9–50.7) and Missouri (27.8–33.9). Our findings indicate that analysis of provisional
data requires caution in interpreting the death counts in recent weeks, while one needs also
to account for heterogeneity in reporting delays of excess deaths among US jurisdictions.

Introduction

Estimation of the real burden imposed by the coronavirus disease-2019 (COVID-19) pan-
demic in its first year has been challenged by numerous factors including limited testing,
the large fraction of asymptomatic or subclinical cases, and questions surrounding whether
deceased individuals died of COVID-19 as the primary cause or as one of several contributing
conditions [1–3]. Under these circumstances, analysis of excess mortality data represents one
way to assess the actual impact of the pandemic on society [4]. However, because data on
excess mortality are provisionally released, reported counts are subject to reporting delays.
The lengths of reporting delays are often unclear, and strategies to adjust provisional excess
mortality data to account for delays would be helpful to study the impact of the COVID-19
pandemic in real time.

The United States Centers for Disease Control and Prevention (US CDC) releases provi-
sional death counts by week and US jurisdiction on a weekly basis [5]. Incomplete counts
in the weeks preceding the publication week are caused by various factors, including admin-
istrative and processing time lags, time of year, decedent age and cause of death. According to
the National Center for Health Statistics, approximately 80% of deaths are automatically pro-
cessed by a system, while 20% require manual input. In view of the ongoing COVID-19 pan-
demic, deaths can take even longer to process. Although the completeness of the data cannot
be determined directly, the associated reporting delays can be estimated using well-developed
techniques [6].

The importance of reporting delays in real-time analysis of infectious disease outbreaks has
been previously recognised [7–14]. In some instances, detailed characterisation of reporting
delays was hindered by limited available data, for instance during outbreaks in regions with
ongoing armed conflicts [11] or among refugee populations [12, 13]. In other instances, the
more detailed available data allowed analysis of time-varying trends in reporting delays
using P-splines [14] or moving time windows [15]. Both methods can be significantly ham-
pered when only a small fraction of cases is reported, making follow-up inference of reporting
delays challenging [15].

Among the published studies on excess mortality in 2020 during the COVID-19 pandemic
[16–21], few adjusted their estimates for reporting delays. Kawashima and colleagues [20] con-
ducted such an adjustment for monthly all-cause deaths in Japan based on prompt vital sta-
tistics. By contrast, Weinberger and colleagues [21] analysed more granular data consisting of
weekly counts across US jurisdictions and conducted nowcasting of deaths within a Bayesian
framework [15]. Their conclusions were that reporting delays significantly differed across US
jurisdictions, and that excess mortality was modestly undercounted in recent weeks unless
adjustment was done. Although the official CDC report acknowledged this issue [5], there
is still no detailed information on differences in reporting delays between jurisdictions as
well as follow-up estimation of a common shared mean reporting delay.
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In the current study, we fill this gap by explicitly characterising
differences in reporting delays between jurisdictions. We also pro-
vide estimates of excess mortality at the subnational level in the
USA for two timeframes: from March to December and from
September to December 2020. The first timeframe of our analysis
covers the whole period of the pandemic in the USA in 2020. The
second timeframe was chosen to encompass the timeline of the
second wave of the COVID-19 pandemic.

Methods

Data

Provisional death counts for 2019–2020 were regularly published
on the CDC website (https://www.cdc.gov/nchs/covid19/covid-
19-mortality-data-files.htm) on Wednesdays at 5 p.m. Reported
deaths were categorised by Morbidity and Mortality Weekly
Report (MMWR) week of publication and by US jurisdiction
where the death occurred. For the current study, 22 snapshots
were collected with publication dates between September 2020
and the first week of February 2021. One snapshot published
the week of 16 September 2020 (MMWR week 38) was omitted
for technical reasons, which was not critical for the study. The
time period containing the most recent week with non-zero
deaths covered MMWR week 34 (week ending date: 22 August
2020) in the earliest collected snapshot through week 53 of
2020 (week ending date: 2 January 2021) in the last four snap-
shots. The death counts for the week of publication and for the
preceding week as well as for the weeks of 2021 were likely to
be missed in any given snapshot because of zero reported counts;
all non-zero death counts less than 10 were masked by the CDC
for privacy reasons. The reporting jurisdictions included the 50
states with New York state separated into two jurisdictions:
New York City and the rest of the state. Additionally, the
District of Columbia and Puerto Rico were among the total 53
jurisdictions.

Historical records of weekly deaths from 2014 to 2018 were
retrieved from the same source as the provisional counts for
2019–2020. The structure of the dataset was analogous except
that it was not subject to any changes in the future. The jurisdic-
tional counts of reported COVID-19 deaths were assessed via the
daily trends published by the CDC (https://covid.cdc.gov/covid-
data-tracker/#trends_dailytrendscases (accessed 26 February
2021)).

Reporting delay: parametric estimation (independent and
partial pool model)

The reporting delay distribution describes the distribution of time
periods between the occurrence of an event and its reporting to
the system. The probability distribution function of the reporting
delay is usually modelled using one of three unimodal distribu-
tions with positive support (fi(○; θ), i = 1, 2, 3): the gamma,
Weibull or lognormal distributions. The set θ consists of two
parameters: the mean and the standard deviation (S.D.) of the
reporting delay distribution.

To estimate the reporting delay, the death count d(s,j)w reported
on week w by jurisdiction j in any of the earlier snapshots s = 1,
…, (S− 1) was compared with the death count d(S,j)w reported in
the latest snapshot S [11, 12]. Poisson likelihood was used to

infer the unknown parameters θj:

L(j)
(
uj;

{
d(s,j)w

}) =
∏S−1

s=1

∏

w,T(s)

d(s,j)w =0

Poissonpmf
(
d(S,j)w ; E

[
d(S,j)w

])
, (1)

E
[
d(S,j)w

] = d(s,j)w · F(T(S)− w+ 0.5; uj)− F(0.5; uj)

F(T(s)− w+ 0.5; uj)− F(0.5; uj)
, (2)

for any w, j and s = 1, …, (S− 1). The second equation accounts
for the continuity factor [6]. Here, T(s) denotes the publishing
times of the snapshots s, and Poissonpmf(d;E[d]) is the probability
mass function:

Poissonpmf (d; E[d]) = (E[d])d · exp(−E[d])
d!

.

To estimate variation in reporting delays across jurisdictions, two
different approaches were employed. In the first approach, the
reporting delay for each jurisdiction was estimated independently,
such that each likelihood L( j ) ( j = 1, …, 53) was maximised with
respect to θj. In the second approach, a partial pool model was
used to infer the common shared mean reporting delay and its
S.D. [22–24]. In the latter context, the reporting delays for various
jurisdictions were closely related to each other, sharing a common
mean value μ. Any deviations from the shared value of the mean
were modelled using a Student’s t-distribution:

mj � Student t(n, m, sm), (3)

where the other two parameters were the degree of freedom ν and
the standard error of the mean sm. The Student’s t-distribution
(3) was chosen over the normal distribution because it is less sen-
sitive to outliers. Like the nonparametric estimation described
below, the first approach showed promise when used to nowcast
the number of deaths that have yet to be reported. The second
approach was used to identify the common mean μ, and the cor-
responding P-values (percentiles of the Student’s t-distribution)
for detecting outliers (i.e. jurisdictions significantly deviating
from others in their reporting delays).

A negative binomial distribution could have been used instead
of the Poisson distribution in equation (1). However, simulations
showed that the value of the overdispersion parameter in the
negative binomial distribution approached an arbitrarily large
value, implying equivalence of the negative binomial and
Poisson likelihood functions. A similar conclusion was reached
in another relevant study [15].

Mixture model

Although the reporting delay distribution was chosen from one of
three unimodal distributions, this selection induced a constraint
to the modelling framework by imposing a structural prior.
Another approach to account for all three distributions within a
single model is to consider mixtures of distributions. This strategy
provides a greater degree of flexibility because each distribution
contributes to the total likelihood proportionally to the relative
weights πi (

∑
i pi = 1), subject to the data fit. By contrast with

the common practice in formulating mixture models, where
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each component distribution has its own set of parameters (e.g.
each of the three distributions would have their own means and
S.D.S), we assumed that all distributions shared the same set of
parameters (mean and S.D.). This ensures a higher convergence
probability of implemented Markov Chain Monte-Carlo simula-
tions [25].

Alternatively, the best-fit distribution could be selected based
on information criteria (e.g. the widely applicable information cri-
terion (WAIC) or ‘leave-one-out’ information criterion (LOOIC)
[24, 26]). However, integrating out unobserved (latent) variables
from the model, such as the death counts masked by CDC, can
be challenging [27]. The mixture model implements all three
component distributions based on relative weights πi. In this
case, there was no need to integrate out latent variables or to
manually calculate likelihoods for each data point, as is required
using other methods [28].

Following these assumptions, the total likelihood for the mix-
ture model was defined as follows:

LS({uj}; {w, s}) =
∏J
j=1

∑3
i=1

p
(j)
i L(j)i (uj; {w, s}),

where p
(j)
i are relative weights (

∑
i p

(j)
i = 1) and the subscript i

indicates one of the three distributions (i = 1, 2, 3). The compo-
nent likelihoods L(j)i are given by equation (1) and the expected
deaths E[d(S,j)w ]i (an internal argument of the likelihoods) are
given by (2) respective to each distribution i:

E[d(S,j)w ]i = d(s,j)w · Fi(T(S)− w+ 0.5; uj)− Fi(0.5; uj)

Fi(T(s)− w+ 0.5; uj)− Fi(0.5; uj)
, (4)

where Fi denotes the cumulative distribution function of the com-
ponent distribution i. The posterior probability for each compo-
nent distribution q(j)i could be then determined using the
equation:

q(j)i = p
(j)
i L(j)i (uj; {w, s})∑3

i=1 p
(j)
i L(j)i (uj; {w, s})

.

Reporting delay: nonparametric estimation

For nonparametric estimation of the reporting delay, the reverse-
time discrete hazard was defined as previously described [7, 8]:
gj(d) = Pr(delay = d | delay≤ d) = fj(d)/Fj(d). Here, the variable
d was introduced such that a zero value (d = 0) corresponds to
the death count reported within the first 2 weeks (equivalently,
within the first 10 days because all snapshots were published on
Wednesdays rather than on the last day of the week). Other values
(d = 1, 2, …, D) correspond to reporting delays of weeks, respect-
ively. The upper bound D denotes the maximum delay, implying
that Fj(delay≥D) = 1. Finally, gj(0) = 1 was imposed, and other
hazards gj(d > 0) were found by fitting the probability distribution
functions fj(d) = gj(d)

∏D
i=d+1 (1− gj(i)) to the data. Equations

(1), (4) were used, accounting for the only difference in defining

the cumulative distribution functions:

Fj(T(s)−w; {gj(d)})=
∏D

i=T(s)−w−1
(1− gj(i)) if T(s)−w− 1≤D,

1 otherwise,

⎧⎨
⎩

(5)

where the parameter D was set to 20 weeks in the simulations.

Nowcasting procedure

To predict the number of deaths not yet reported by the surveil-
lance system, a prospective nowcasting framework was applied
[11, 29]. The number of yet unreported deaths on a given week
was sampled from a negative binomial distribution that followed
the failure-counting interpretation [30]. The first parameter of the
negative binomial distribution (the number of ‘failures’) was the
number of already reported deaths during that week, whereas
the second parameter (the probability of ‘success’) was the cumu-
lative distribution function of the reporting delay counted from
week of death, w, to the publication date of the latest snapshot.

Expected excess mortality

The expected weekly number of deaths was estimated using a
Poisson linear regression model [21] involving a seasonal compo-
nent but neglecting to adjust for severe influenza and associated
pneumonia. The posterior median and the 95% upper bound
were set as two thresholds. The range of differences between the
nowcasted number of deaths and each of these thresholds was
then reported as excess deaths as in previous studies [5, 20]. All
negative differences were assigned to zero. The reader is referred
to the Appendix for additional mathematical details of the statis-
tical framework.

Technical details

To infer individual mean reporting delays and perform nowcast-
ing, nonparametric estimation of the reporting delay distribution
was used. A parametric estimation was implemented only for
verification purposes (Fig. 1). A partial pool model was used to
calculate the common mean of the reporting delay shared across
jurisdictions. Because of excessive computational time require-
ments, only a lognormal distribution was implemented in the par-
tial pool model. The choice of the lognormal distribution was
guided by its dominant selection while fitting the mixture models
for various jurisdictions (Appendix Fig. 1).

Statistical inference was conducted within the Bayesian frame-
work realised in CmdStan (version 2.26, https://mc-stan.org). Pre-
and post-processing of the data and results were performed in the
Python environment (version 3.8). The code snippets are avail-
able at http://github.com/aakhmetz/Excess-mortality-in-US-2020.

Results

We started our analysis by fitting the reporting delays for all 53
US jurisdictions independently of one another. The patterns of
the mean reporting delays for all-cause excess mortality suggested
clustering around a common value (Fig. 1a and Appendix Fig. 1).
A common shared mean delay was calculated at 2.8 weeks (95%
credible interval (CI): 2.4, 3.0 weeks). Most jurisdictions (32/53,
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60.4%) had mean reporting delays within the interquartile range
of 2.0–3.4 weeks. All jurisdictions except for four had mean
reporting delays within the 95th percentile range of 0.5–5.0
weeks. Connecticut, North Carolina, Puerto Rico and West
Virginia had mean reporting delays above the 95th percentile
(shown as a dotted line in Fig. 1a). Suspecting those jurisdictions
to be outliers, we first identified that North Carolina clearly
deviated from the other jurisdictions with a mean delay of 10.4
weeks (median P-value 0.001) [31]. Excluding North Carolina
from the partial pool model, we determined that the other three
jurisdictions also clearly deviated from the remainder:
Connecticut reported death counts with a mean delay of 5.8

weeks (median P-value = 0.006), Puerto Rico with a mean delay
of 4.7 weeks (median P-value = 0.028) and West Virginia with a
mean delay of 5.5 weeks (median P-value = 0.010) (Appendix
Fig. 2).

To identify jurisdictions experiencing delays in reporting not
as extreme as the four jurisdictions above, we investigated the cor-
relation between fraction of deaths reported within the first 10 days
and mean reporting delays. Figure 1b shows clustering of points
around the value of 61% identified earlier in the technical notes
of the CDC [5]. We hypothesised that points located on the left-
hand side of the corresponding dashed vertical line in Figure 1
represented jurisdictions with longer anticipated reporting delays.

Fig. 1. (a) Mean reporting delay by jurisdiction using different estimation approaches (legend). Error bars indicate the 95% CI for individually estimated reporting
delays using a parametric model. Dashed line indicates a common mean delay inferred from the partial pool model. The entire shaded area indicates the 95% CI for
the common mean delay, whereas the dark shaded area covers the interquartile range of the posterior. (b) Relationship between the fraction of deaths reported
within the first 10 days and the mean reporting delay by jurisdiction obtained from non-parametric estimation of the reporting delay distribution. Dashed line
indicates an estimate of 61% cited in technical notes of CDC [5]. (c) Correlation between number of reported COVID-19 deaths per 100 000 from September to
December 2020 and the mean reporting delay by jurisdiction. Solid line is obtained from a linear regression model. Shaded area indicates 95% CI.
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Suspecting that longer delays were caused by larger numbers of
reported COVID-19 cases in jurisdictions, we assessed the associ-
ation between mean reporting delay and cumulative number of
reported COVID-19 deaths per 100 000 from September to
December 2020. We first compared a linear regression model
with a non-zero slope and Student’s t-distribution to minimise
the effect of outliers with a null model with a zero slope.
Following an LOOIC, the null model was rejected (ΔLOOIC =
10.1; relative weight for alternative model: 0.93). The alternative
model predicted that an additional 4.5 reported COVID-19 deaths
per week per 100 000 individuals was associated with 1 additional
week in the reporting delay (Fig. 1c).

Figure 2 shows all-cause excess mortality adjusted by the
reporting delays for six jurisdictions. Among them were two jur-
isdictions (Texas and Florida) with the highest numbers of
reported COVID-19 deaths from September to December 2020,
two jurisdictions (South Dakota and North Dakota) with the
highest COVID-19 deaths per 100 000 over the same period,
and two jurisdictions (Delaware and Georgia) where adjustment
for reporting delay led to an increase instead of a decrease in
the unadjusted counts over the last 2 weeks of 2020 (cf. solid
and dotted lines in Fig. 2). Conducting a validation procedure
for nowcasting using earlier cutoff times (Appendix Fig. 3), we
found, similarly to [21], that the performance for nowcasting
was conservative because the nowcasted death counts are likely
to be underestimates of the final counts. The values from the latest
snapshot published on 11 February 2021 are expected to reflect
the final counts of 2020 with greater certainty compared with
prior snapshots because the time elapsed between the publication
date and the last week of 2020 exceeds the estimated mean report-
ing delay in most jurisdictions. The results of nowcasting for all
jurisdictions are shown in Appendix Figure 4.

Next, we calculated excess mortality by jurisdiction for the
entire period of the COVID-19 pandemic (from March to
December 2020; Table 1) and for the second wave (from
September to December 2020; Appendix Table 1). As expected,
adjustment did not significantly alter the estimated numbers of
deaths over the entire period. The jurisdictions with the largest
percent changes following adjustment were New York City with
the range of 58.4–62.4% (26 212–28 040 excess deaths), New
Jersey at 32.4–37.0% (19 571–22 369 excess deaths) and Texas at

23.7–27.1% (40 413–46 127 excess deaths). The jurisdictions
with the smallest changes following adjustment were Hawaii at
0.2–3.6% (24–357 excess deaths), Maine at 0.2–3.8% (32–497
excess deaths) and Alaska at 0.3–7.9% (14–316 excess deaths).
Comparing the September–December 2020 period with the
March–December 2020 period, the jurisdictions with the largest
percent changes following adjustment were South Dakota at
36.9–54.0% (1073–1568 excess deaths), North Dakota at 33.9–
50.7% (906–1354 excess deaths) and Missouri at 27.8–33.9%
(6196–7543 excess deaths), while the jurisdictions with the smal-
lest changes following adjustment were Puerto Rico at 0.2–2.5%
(22–271 excess deaths), Hawaii at 0.5–5.9% (22–242 excess
deaths) and Maine at 0.6–6.9% (32–374 excess deaths). The pro-
vided values indicate deviations from two thresholds of the
median and the 95th percentile as it was described above.

Discussion

Adjustment of provisional all-cause excess deaths by reporting
delays as currently documented on the CDC website relies on esti-
mates obtained from provisional data for 2018–2019 [5].
Adjustment of delays using recent data from 2020 has been car-
ried out, but not explicitly reported. Here, we quantified jurisdic-
tional reporting delays using the latest data from the second half
of 2020. According to our estimates, four jurisdictions out of 53
(Connecticut, North Carolina, Puerto Rico and West Virginia)
reported excess mortality with substantial time lags that were
likely related to administrative factors. On the one hand, the per-
centage of deaths reported within the first 10 days in those four
prefectures was much smaller compared to the overall mean of
61% (Fig. 1b). On the other hand, there was no evident correl-
ation between the mean reporting delay and the average weekly
number of reported COVID-19 cases for September–December
2020 (Fig. 1c). However, longer reporting delays in some other
jurisdictions such as South Dakota or North Dakota were likely
be caused by the burden of the COVID-19 pandemic (Fig. 1c).
We determined that an increase of approximately 4–5 reported
COVID-19 deaths per 100 000 individuals per week was asso-
ciated with an additional 1 week in the reporting delay. Overall,
we found that jurisdictional reporting of death counts had delays
of 2–3 weeks, which, nevertheless, represents a significant

Fig. 2. Comparing the nowcasted all-cause excess
deaths by week of 2020 with expected deaths. Black
line and grey shaded area show the median and 95%
CI of the nowcasted death count in 2020. Blue line
and blue shaded area indicate the median and 95% CI
derived from posterior distributions of the expected
weekly deaths. Individual grey lines indicate the reported
deaths in 2014–2019.
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Table 1. Excess mortality by jurisdiction for the entire period of the COVID-19 pandemic (from March to December 2020)

Jurisdiction Observed deaths, No.
Expected deaths,

No.
Excess deaths,

No.
Excess deaths,

%
Observed deaths unadjusted,

No.

Alabama 54 066 (53 985–54 153) 42 919 8379–11 147 19.5–26.0 53 626

Alaska 4148 (4121–4180) 4021 14–316 0.3–7.9 4033

Arizona 66 003 (65 954–66 069) 51 564 11 316–14 438 21.9–28.0 65 887

Arkansas 32 208 (32 161–32 265) 26 819 3617–5450 13.5–20.3 32 086

California 270 183 (270 093–270 316) 224 603 39 126–45 580 17.4–20.3 269 998

Colorado 40 476 (40 437–40 528) 34 588 3592–5908 10.4–17.1 40 388

Connecticut 30 188 (30 109–30 271) 25 606 4239–5641 16.6–22.0 29 419

Delaware 9224 (9189–9263) 7692 534–1556 7.0–20.2 9057

District of
Columbia

6341 (6319–6367) 5294 518–1112 9.8–21.0 6282

Florida 206 478 (206 370–206 602) 177 187 23 499–29 290 13.3–16.5 206 198

Georgia 87 258 (87 142–87 378) 71 905 11 662–15 353 16.2–21.4 86 083

Hawaii 10 052 (10 024–10 086) 10 024 24–357 0.2–3.6 9978

Idaho 14 044 (14 022–14 073) 11 966 1052–2150 8.8–18.0 13 998

Illinois 110 356 (110 292–110 442) 88 734 17 459–21 622 19.7–24.4 110 215

Indiana 65 198 (65 113–65 293) 56 097 6677–9667 11.9–17.2 64 846

Iowa 30 142 (30 083–30 207) 25 249 3152–4947 12.5–19.6 29 965

Kansas 26 461 (26 421–26 511) 22 179 2705–4305 12.2–19.4 26 364

Kentucky 46 586 (46 502–46 675) 40 123 3867–6469 9.6–16.1 46 086

Louisiana 48 321 (48 232–48 414) 38 426 7171–9895 18.7–25.8 47 416

Maine 13 115 (13 090–13 149) 12 914 32–497 0.2–3.8 13 054

Maryland 51 214 (51 155–51 281) 41 140 7264–10 073 17.7–24.5 51 066

Massachusetts 58 740 (58 685–58 808) 48 725 8263–10 230 17.0–21.0 58 596

Michigan 98 484 (98 420–98 569) 81 462 13 180–17 021 16.2–20.9 98 343

Minnesota 44 283 (44 212–44 363) 38 825 3379–5525 8.7–14.2 44 027

Mississippi 33 860 (33 802–33 926) 25 799 5876–8061 22.8–31.2 33 624

Missouri 64 564 (64 450–64 680) 53 539 7989–11 032 14.9–20.6 63 734

Montana 10 241 (10 215–10 275) 8767 862–1631 9.8–18.6 10 177

Nebraska 16 840 (16 803–16 885) 13 630 1808–3220 13.3–23.6 16 739

Nevada 26 722 (26 669–26 782) 22 357 2657–4405 11.9–19.7 26 542

New Hampshire 11 527 (11 502–11 559) 10 224 388–1326 3.8–13.0 11 468

New Jersey 82 788 (82 728–82 863) 60 452 19 571–22 369 32.4–37.0 82 640

New Mexico 19 076 (19 021–19 137) 15 467 2080–3657 13.5–23.6 18 821

New York 102 033 (101 964–102 121) 82 403 16 268–19 679 19.7–23.9 101 869

New York City 72 843 (72 800–72 900) 44 910 26 212–28 040 58.4–62.4 72 739

North Carolina 65 662 (65 415–65 938) 79 594 4445–6935 5.6–8.7 63 403

North Dakota 7747 (7708–7791) 6368 906–1472 14.2–23.1 7559

Ohio 121 784 (121 654–121 921) 100 427 16 944–21 357 16.9–21.3 121 099

Oklahoma 38 322 (38 276–38 376) 32 512 3681–5818 11.3–17.9 38 111

Oregon 33 847 (33 791–33 910) 30 578 1159–3269 3.8–10.7 33 634

Pennsylvania 132 048 (131 914–132 189) 110 043 17 640–22 086 16.0–20.1 131 460

Puerto Rico 23 379 (23 327–23 433) 25 020 268–1237 1.1–4.9 23 081

(Continued )
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improvement compared with 2015–2016 [32]. In 2015–2016,
61.9% of all-cause deaths were reported within the first 5 weeks.
However, the same fraction of deaths was reported within the
first 10 days in 2020. Additionally, only some jurisdictions signifi-
cantly deviated from that value during the second half of 2020
(Fig. 1b).

When we assessed jurisdictional all-cause excess mortality
from September to December 2020, we found that Puerto Rico
had the lowest estimated number, potentially because of signifi-
cant delays in reporting. This result confirms the importance of
accounting for reporting delays when analysing provisional
death counts and performing nowcasting. Excess mortality from
March to December 2020 was less affected by reporting delays;
however, some underestimation of nowcasted death counts can
still be observed.

From a methodological point of view, we employed several dif-
ferent approaches to estimate the reporting delay. Both non-
parametric and parametric estimation of the reporting delay yielded
similar results, confirming the validity of our methodology. The
non-parametric estimation was the easiest to implement, but was
prone to overfitting the data. In contrast, a partial pool model less
sensitive to overfitting can be used for deriving common character-
istics shared across jurisdictions [22, 23].

Our study had several limitations. First, we considered only
all-cause excess mortality, and different underlying causes of
death may have contributed differentially to the reporting delay.
COVID-19-associated deaths may require additional post-mortem
examinations, leading to longer reporting delays especially during
the first year of the COVID-19 pandemic. The reporting delay
can also differ based on age, race and ethnicity as described else-
where [15, 33]. Second, the nowcasting procedure used in our
study does not incorporate a time-varying trend in the reporting
delay [14, 15] and does not include a random effect [7, 8]. It also
considers the contributions across different snapshots and across
weeks to be independent. Implementation of a nowcasting proced-
ure incorporating these factors would require a more sophisticated
approach with construction of a two-dimensional contingency
matrix of number of deaths with the week of death on one margin

and the reporting delay on the other margin [14]. This was not feas-
ible for our aggregated dataset consisting of subsequently released
snapshots. For example, some re-arrangements of weekly numbers
were observed for weekly death counts in Vermont, which would
lead to negative differences between subsequent snapshots, and
thus negative elements of the contingency matrix. Furthermore,
McGough and colleagues [15] also showed that nowcasting remains
challenging when low reporting rates were observed (e.g. in
Connecticut, North Carolina and Puerto Rico). Under these
conditions, both simpler approaches such as those used in our
study and the more sophisticated approaches used elsewhere [8,
14, 15] will be limited in their performance.

Our study shows necessity for adjustment of excess death
counts by the reporting delay which is rather different across
jurisdictions of the USA. A more detailed cause-specific and
multifactorial analysis (e.g. by age, gender, ethnicity and socio-
economic status) is required to further differentiate the reporting
delay and allow more accurate real-time assessments of the
burden of COVID-19 pandemic in the future.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268821001527
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Table 1. (Continued.)

Jurisdiction Observed deaths, No.
Expected deaths,

No.
Excess deaths,

No.
Excess deaths,

%
Observed deaths unadjusted,

No.

Rhode Island 10 289 (10 261–10 321) 8435 913–1880 10.8–22.3 10 212

South Carolina 50 111 (50 064–50 171) 42 426 5528–8176 13.0–19.3 49 984

South Dakota 8763 (8729–8804) 6904 1095–1899 15.9–27.5 8660

Tennessee 75 068 (74 983–75 165) 63 567 8208–11 500 12.9–18.1 74 795

Texas 216 411 (216 245–216 580) 170 284 40 413–46 127 23.7–27.1 215 054

Utah 18 869 (18 839–18 908) 16 202 1248–2667 7.7–16.5 18 801

Vermont 5243 (5225–5267) 4557 125–709 2.7–15.6 5204

Virginia 67 142 (67 069–67 225) 59 084 4819–8057 8.2–13.6 66 929

Washington 52 712 (52 667–52 771) 47 614 2521–5230 5.3–11.0 52 607

West Virginia 20 715 (20 617–20 815) 18 951 599–1857 3.2–9.8 19 498

Wisconsin 53 202 (53 149–53 269) 45 756 4848–7451 10.6–16.3 53 079

Wyoming 4752 (4733–4777) 4110 213–726 5.2–17.7 4709

The numbers in parenthesis indicate the 95% CI. The range shown in two columns for the excess deaths denotes the range of differences between the nowcasted number of deaths and each
of two thresholds: the 95th percentile and the median of the posterior for the expected number of deaths.
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