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Abstract

The infinite source Poisson arrival model with heavy-tailed workload distributions
has attracted much attention, especially in the modeling of data packet traffic in
communication networks. In particular, it is well known that under suitable assumptions
on the source arrival rate, the centered and scaled cumulative workload input process for
the underlying processing system can be approximated by fractional Brownian motion.
In many applications one is interested in the stabilization of the work inflow to the
system by modifying the net input rate, using an appropriate admission control policy.
In this paper we study a natural family of admission control policies which keep the
associated scaled cumulative workload input asymptotically close to a prespecified linear
trajectory, uniformly over time. Under such admission control policies and with natural
assumptions on arrival distributions, suitably scaled and centered cumulative workload
input processes are shown to converge weakly in the path space to the solution of a
d-dimensional stochastic differential equation driven by a Gaussian process. It is shown
that the admission control policy achieves moment stabilization in that the second moment
of the solution to the stochastic differential equation (averaged over the d-stations)
is bounded uniformly for all times. In one special case of control policies, as time
approaches ∞, we obtain a fractional version of a stationary Ornstein–Uhlenbeck process
that is driven by fractional Brownian motion with Hurst parameter H > 1

2 .
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1. Introduction

This paper is motivated by an arrival model for data traffic in communication networks
considered by Kurtz [6]. We will introduce the model in a more accessible form in the special,
though quite general, case of interest here. Let N0 be a counting process where N0(t), t ≥ 0,
represents the number of source activations by time t . The j th source activated at time Uj
brings a unit rate workload into the system which lasts for a random length of time τj , where
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{τj }j≥1 are independent and identically distributed (i.i.d.) with distribution ν on [0,∞). At
time t , the cumulative work input in the system from the source j is, thus, τj ∧ (t − Uj)+,
where a∧b = min{a, b} and x+ = max{x, 0}. The rate at which jumps ofN0(t) occur is given
as λ(t,W0(t)), where W0(t) is the total cumulative work input in the system at time t from all
the sources and λ is a strictly positive function on R+ × R+.

A precise mathematical definition of the coupled stochastic processes N0,W0 is given as
follows. Let 0 < S1 < S2 < · · · be the jump times of unit-rate Poisson process N and {τj }j≥1
be an i.i.d. sequence, independent of {Sj }j≥1, with common distribution ν. Let λ : R+ ×R+ →
(0,∞) be a continuous function. Let ξ be the Poisson random measure on R+ × R+ with
intensity measure η = m × ν, where m denotes the Lebesgue measure on [0,∞), defined as
ξ = ∑∞

j=1 δ(Sj ,τj ). Define N0,W0 through the system of equations

N0(t) = N(�0(t)), (1.1)

W0(t) =
∑

j : Sj≤�0(t)

τj ∧ (t − γ0(Sj )) =
∫

[0,�0(t)]×[0,∞)

r ∧ (t − γ0(s))ξ(ds, dr), (1.2)

�0(t) =
∫ t

0
λ(s,W0(s)) ds, γ0(t) = �−1

0 (t).

Note that the above set of equations recursively defines the stochastic processes (N0,W0) from
one jump instant γ0(Sj ) of N0(t) to the next.

Setting the filtration F u = σ {Sj , τj : Sj ≤ u}, it is easy to see that {γ0(u)}u≥0 is an {Fu}-
adapted process and, thus, for any t ≥ 0,�0(t) = γ−1

0 (t) is a bounded {Fu}-stopping time. In
particular,N0(t)−�0(t) is {Gt }-martingale, where Gt = F�0(t), t ≥ 0. Thus,N0 is a counting
process with {Gt }-stochastic intensity λ(t,W0(t)).

The key results of [6] are the law of large numbers and the central limit theorem for the
scaled system (Xn, Yn), where

Xn(t) = 1

n
Nn(t), Yn(t) = 1

n
Wn(t), (1.3)

and (Nn,Wn) are defined as in (1.1) and (1.2) except on replacing N0 with a Poisson process
with rate n and λwith the function λn(t, w(t)) = nλ(t, n−1w(t)). Under suitable assumptions,
(Xn, Yn) converges in probability to (X, Y ), satisfying

X(t) =
∫ t

0
λ(s, Y (s)) ds, Y (t) =

∫ t

0
μ(t − s)λ(s, Y (s)) ds,

where μ(t) = E{τi ∧ t} (Theorem 2.1 of [6]). Also, under suitable assumptions (that include
the differentiability of the function y �→ λ(t, y)), the scaled and centered process (X̃n, Ỹn) =√
n(Xn −X, Yn − Y ) converges in distribution to (X̃, Ỹ ), satisfying

X̃(t) = �(B(t))+
∫ t

0
λy(s, Y (s))Ỹ (s) ds,

Ỹ (t) =
∫
B(t)

(r ∧ (t − γ (s)))�(ds, dr)+
∫ t

0
μ(t − s)λy(s, Y (s))Ỹ (s) ds, (1.4)

where B(t) = [0,�(t)] × [0,∞), �(t) = ∫ t
0 λ(z, Y (z)) dz, γ (t) = �−1(t), λy(t, y) =

(∂/∂y)λ(t, y), and � is a Gaussian random measure with the control measure

E{|�(ds, dr)|2} = dsν(dr), (1.5)

where ν is the distribution of τi (Theorem 2.2 of [6]).

https://doi.org/10.1239/aap/1435236984 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1435236984


478 A. BUDHIRAJA ET AL.

One special case of τi is particularly interesting in the context of modeling data traffic in
modern communication networks. This is the case where τi are heavy-tailed with the distribution

ν(dr) = (β − 1)θ(θr + 1)−β dr, r ≥ 0, (1.6)

where β ∈ (2, 3) is the tail index and θ ∈ (0,∞) is a scale parameter. When λ is the
constant function and (1.6) is assumed, it is well known that, under suitable assumptions and
proper scaling, the cumulative workload input process converges to fractional Brownian motion.
A version of this fact appears in Section 4 of [6], see also [3]–[5], [7], [8], and [10].

For the convergence to fractional Brownian motion, in a scaled system, it is also necessary
to rescale τis or the measure ν(dr) in (1.6). One way to see this is to observe that without
rescaling, the Gaussian random measure� in (1.4) and (1.5) is not self-similar in the variable r .
For this reason (see, e.g. Section 4 of [6] for the case when λ is constant), it is natural to scale
the measures as

νn(dr) = (β − 1)nθ(nθr + 1)−β dr (1.7)

or, equivalently, replace τi by τi/n.
This case is not included in Theorems 2.1 and 2.2 of [6] which, although allowing for state

dependent λ, treat the scaled system (1.3) that has no scaling in the intensity measure ν, and,
hence, the key convergence results of [6] for nonconstant λ cannot be applied with (1.7). In
fact, as already suggested by the result in Section 4 of [6] for the constant λ case, dealing with
(1.7) for nonconstant λ is expected to be more involved. For example, a natural normalization
in this case is no longer

√
n.

Models where λ is a function of the state process are natural when one considers control
mechanisms for regulating the amount of work input in the system. A common form of a control
policy that aims to appropriately balance long processing delays with low processor utilization
consists of suitably decreasing the input rate when the workload input in the system is very
high and increasing the rate when it drops too low. Study of the asymptotic behavior of the
workload input process with heavy-tailed session length distributions under such state feedback
control mechanisms is the subject of this paper. We will consider a scaled multidimensional
system where the session lengths are distributed according to νn as in (1.7), and establish limit
theorems for settings where λ is state dependent. We are particularly interested in the design of
control policies that keep the net workload input (asymptotically) close to a prespecified linear
trajectory such that the variability (suitably scaled) is bounded uniformly in time. The slope of
the linear trajectory represents the system processing rate and, thus, such control policies yield
uniform in time reliability bounds on probabilities of processor underutilization and overload.

Let us now describe briefly our model and the results we have established. We suppose that
a system consists of d-processing stations, and that work arrives to each station (independently
of others) as before. The function λ controlling the arrival rate, however, now depends on
the average total workload input across all the stations. More specifically, denoting the total
cumulative workload input at the ith station by yi(t) and their average ȳ(t) = (1/d)

∑
i yi(t),

we suppose that λ = f (t, ȳ(t)). Even more specifically, we will work with a special λ having
the form

λ = f (t, ȳ(t)) = exp{−g(ȳ(t)− bt)} (1.8)

for some b > 0 and function g. The constant b represents the processing rate at each station,
although processing of work is not explicitly included in our model and plays no role in the
analysis. The function g will satisfy the following assumption.
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Assumption 1.1. It holds that g(0) = 0. The function g is twice differentiable and its first and
second derivatives g′ and g′′ satisfy

0 < � ≤ g′(x) ≤ L for all x ∈ R

and
|g′′(x)| ≤ L for all x ∈ R

for some �, L ∈ (0,∞).

The above assumption will be taken to hold throughout this work and will not be explicitly
noted in the statements of various results. Note that under this assumption, g is a strictly
increasing function, and g(u) > 0 if u > 0 and g(u) < 0 if u < 0. From the properties of
g, we see that the function λ in (1.8) has a natural physical interpretation: the rate of session
arrivals at the ith station increases when ȳ(t) drops below bt , while it decreases when ȳ(t)
exceeds bt . We will refer to g as an admission control policy.

Our scaled system will be characterized by independent Poisson random measures ξn,i having
common intensity measure nαm×νn where νn is as in (1.7) and the cumulative workload input
process Yn,i(t), unlike (1.3) will now be normalized by a factor of nα−1, rather than n (see
(2.4)). We will assume that

α ∈ (β − 1,min{3β − 5, 5 − β}). (1.9)

The reason for such choice of α and for the normalization nα−1 will be given below (see
Remark 2.2).

Precise evolution equations for Yn,i are given in Section 2. We now give a brief description
of our main results. In Theorem 2.1 we prove a law of large numbers result stating that, as
n → ∞,

Yn = (Yn,1, . . . , Yn,d)
�

converges in probability in D
R
d+[0,∞) to a continuous (nonrandom) trajectory U = (U, . . . ,

U)�, whereU is characterized as the unique solution of an ordinary differential equation (ODE)
(see (2.6)), and a rate of convergence is given as well. The solution U has the property that
supt≥0 |U(t) − bt | < ∞. In fact, with a particular choice of b, namely b = 1/θ(β − 2), we
have U(t) = bt for all t .

Next, we study the fluctuations of Yn. In Theorem 2.2 we show that a suitably centered
and normalized form of Yn, denoted as Zn (see (2.10)), converges in distribution inDRd [0,∞)

to the solution Z = (Z1, . . . , Zd)
� of a d-dimensional stochastic differential equation (SDE)

(see (2.11)), driven by d independent Gaussian processes Ri , i = 1, . . . , d. The moment
stabilization property of the admission control policy is demonstrated in Theorem 2.3, which
states that supt≥0 E|Z̄(t)|2 < ∞, where Z̄ = (1/d)

∑d
i=1 Zi .

We remark that in the b = 1/θ(β − 2) case, one can achieve the law of large number limit
of bt by simply taking the admission control policy to be g ≡ 0 (this function obviously does
not satisfy Assumption 1.1). However, in the g ≡ 0 case, the limit process obtained from the
fluctuation central limit theorem will have variance that increases to ∞ as t → ∞.

Finally, we show that in one particular case, the average of the limit process Z̄ is driven
by a Gaussian H -self-similar process R̄ with H = (4 − β)/2 > 1

2 . The driving process R̄ is
not fractional Brownian motion since it does not have stationary increments. This is directly
related to the fact that the limit process Z̄ satisfies Z̄(0) = 0 and, hence, is not stationary. The
process Z̄(T + ·) is expected to become stationary as T → ∞. Similarly, the driving process
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R̄ is expected to have stationary increments in the long run (i.e. R̄(T + ·)− R̄(T ) approaches
a process with stationary increments, as T → ∞). We study the asymptotic behavior of the
process Z̄(T + ·) as T → ∞ in Theorem 2.4. For simplicity we restrict ourselves here to
the b = 1/θ(β − 2) case. It is shown that, as T → ∞, the process Z̄(T + ·) converges
in distribution in CR[0,∞) to a stationary Ornstein–Uhlenbeck process driven by fractional
Brownian motion with Hurst parameter H = (4 − β)/2 > 1

2 .
The paper is organized as follows. We state all the results in Section 2. Section 3 contains

the proofs of Proposition 2.1 and Theorem 2.1. The proof of the central limit theorem will be
provided in Section 4. In Section 5 we represent the limit (centered) station average process Z̄
as an integral with respect to a Gaussian process and provide the proof of Theorem 2.3 on the
moment stabilization property of the admission control policy g. Section 6 is devoted to the
study of the asymptotic behavior, as T → ∞, of the process Z̄ obtained from the central limit
theorem, and the proof of Theorem 2.4 is given.

The following notation will be used. We denote the set of nonnegative integers by N

and nonnegative reals by R+. For a Polish space S, CS[0,∞) (respectively DS[0,∞)) will
denote the space of continuous (respectively right-continuous with left limits (RCLL)) functions
endowed with the local uniform (respectively Skorokhod) topology. We denoteC by the generic
constants in (0,∞) whose value may change from one proof to the next.

2. Model formulation and main results

We begin in this section with the evolution equations for the unscaled system.

2.1. Unscaled system

Let ξ0,i , i = 1, . . . , d, be independent Poisson random measures on [0,∞) × [0,∞) with
common intensity measure η = m× ν, wherem denotes the Lebesgue measure on [0,∞) and
ν is given in (1.6). Then, ξ0,i can be represented as

ξ0,i =
∞∑
j=1

δ(Si,j ,τi,j ),

where 0 < Si,1 < Si,2 < · · · are the jump times of independent unit rate Poisson processes for
i = 1, . . . , d, and τi,j are i.i.d. with distribution ν. These Poisson random measures will be the
building blocks for our counting processes Ni with desired stochastic intensities.

Let f : R+ × R → R+ be a function of the form

f (t, y) = exp{−g(y − bt)},

where g : R → R is a function satisfying Assumption 1.1. Let X0 = (X0,1, . . . , X0,d )
� and

Y0 = (Y0,1, . . . , Y0,d )
� be N

d - and R
d+-valued RCLL processes given through the following

system of equations:

X0,i (t) = N0,i (t) = ξ0,i (B0(t)) =
∞∑
j=1

1{Si,j≤�0(t)},

Y0,i (t) =
∫
B0(t)

r ∧ (t − γ0(s))ξ0,i (ds, dr) =
∑

j : Si,j≤�0(t)

τi,j ∧ (t − γ0(Si,j )), (2.1)
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where

�0(t) =
∫ t

0
f (s, Ȳ0(s)) ds, Ȳ0(t) = 1

d

d∑
i=1

Y0,i (t), γ0(t) = �−1
0 (t) (2.2)

and
B0(t) = [0,�0(t)] × [0,∞).

Note that from Assumption 1.1, �0 is continuous and strictly increasing. Therefore, γ0 is well
defined and continuous as well. Here, γ0(Si,j ) is the j th activation time at the ith station, that
is, the j th jump time of N0,i (t). For γ0(Si,j ) ≤ t , t − γ0(Si,j ) is the amount of time up to t
since the j th session activation at the ith station and Ti,j = γ0(Si,j )+ τi,j is the end time of the
j th session at the ith station. Thus, τi,j ∧ (t − γ0(Si,j )) is the work input by the j th activated
source at the ith station, up to time t .

From Assumption 1.1 it follows that

f (t, y) = exp{−g(y − bt)} ≤ exp{−g(−bt)} for all y ≥ 0. (2.3)

In particular, f is a strictly positive function that is locally bounded, namely

sup
t∈[0,T ],y∈R+

f (t, y) < ∞ for all T > 0.

From this it follows that there is a unique solution to the system of equations (2.1) and (2.2).
Furthermore, γ0 is a {Fu}-adapted process, where

Fu = σ {ξi(A) : A ∈ B([0, u] × [0,∞)), i = 1, . . . , d}.
Consequently, for any t ≥ 0, �0(t) = γ−1

0 (t) is a bounded {Fu}-stopping time and, therefore,

N0,i (t)−�0(t) = ξ̃0,i ([0,�0(t)] × [0,∞))

is a {Gt } = {F�0(t)}-martingale, where ξ̃0,i = ξ0,i − η is the compensated Poisson random
measure associated with ξ0,i , i = 1, . . . , d.

2.2. Scaled workload and main results

We now introduce the scaled system. Roughly speaking, the scaling corresponds to replacing
τi,j with τi,j /n, Si,j with Si,j /nα and dividing the cumulative workload input processes by
nα−1. More precisely, for each fixed n ∈ N, let ξn,1, . . . , ξn,d be independent Poisson random
measures on [0,∞)× [0,∞) with common intensity measure

ηn(ds, dr) = nα dsνn(dr),

where νn is introduced in (1.7). Define, for i = 1, . . . , d,

Xn,i(t) = 1

nα
Nn,i(t) = 1

nα
ξn,i(Bn(t)),

Yn,i(t) = 1

nα−1

∫
Bn(t)

r ∧ (t − γn(s))ξn,i(ds, dr), (2.4)

https://doi.org/10.1239/aap/1435236984 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1435236984


482 A. BUDHIRAJA ET AL.

where

�n(t) =
∫ t

0
f (s, Ȳn(s)) ds, Ȳn(t) = 1

d

d∑
i=1

Yn,i(t), γn(t) = �−1
n (t), (2.5)

and
Bn(t) = [0,�n(t)] × [0,∞).

As for the unscaled system, we see that the solution (Xn,Yn)
� of the system (2.4) exists and

is unique on [0,∞) for each n, where Xn = (Xn,1, . . . , Xn,d)
� and Yn = (Yn,1, . . . , Yn,d)

�;
and, moreover, Xn, Yn ∈ D

R
d+[0,∞).

Consider the ODE

U̇ (t) = af (t, U(t)), U(0) = 0, t ≥ 0, (2.6)

where

a = (β − 1)θ
∫ ∞

0
r(θr + 1)−β dr = (β − 1)θ

∫ ∞

0
n2r(nθr + 1)−β dr = 1

θ(β − 2)
.

The following proposition will be proved in Section 3.

Proposition 2.1. There is a unique continuous function U that solves (2.6). The solution
satisfies

sup
t≥0

|U(t)− bt | < ∞.

In the b = a case, we have U(t) = bt , for all t ≥ 0.

Remark 2.1. As an immediate consequence of the above proposition we have thatf (t, U(t)) =
exp{−g(U(t)− bt)} is bounded above and bounded below away from 0, namely,

0 < inf
t≥0

{f (t, U(t))} ≤ sup
t≥0

{f (t, U(t))} < ∞.

Denote

fy(t, y) = ∂

∂y
f (t, y) = − exp{−g(y − bt)}g′(y − bt).

Sinceg′ is bounded from below and above, it follows from the above proposition thatfy(t, U(t))
is also bounded below and bounded above away from 0.

Let

X = (X1, . . . , Xd)
� = a−1(U,U, . . . , U)�, Y = (Y1, . . . , Yd)

� = (U,U, . . . , U)�.
(2.7)

The following is the first main result of this paper.

Theorem 2.1. As n → ∞, (Xn,Yn)
� → (X,Y )� in D

R
2d+ [0,∞), in probability. Further-

more, for any t > 0 and any q ∈ [0, β − 2),

sup
0≤s≤t

nq |Ȳn(s)− U(s)| → 0, (2.8)

in probability, as n → ∞.
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Let V ∈ CR[0,∞) be given as the solution of

V (t) = a

∫ t

0
fy(s, U(s))V (s) ds − aθ2−β

∫ t

0

f (s, U(s))

(t − s)β−2 ds. (2.9)

From Remark 2.1 the solution V of the above linear equation exists and is unique.
Define

Zn,i(t) = n(α+β−3)/2
(
Yn,i(t)− Yi(t)− V (t)

nβ−2

)
, i = 1, . . . , d. (2.10)

Our next result provides the limiting behavior of the processes Zn = (Zn,1, . . . , Zn,d)
�. Note

that Yi(t)+ V (t)/nβ−2 is not the expectation of Yn,i , and, hence, Zn,i in the above equation is
not the conventional centered process of Yn,i . However, from Proposition 2.1 and Theorem 2.1,
one can show Yi(t) = limn→∞ E{Yn,i(t)}. Also, as n increases to ∞, the term V (t)/nβ−2

tends to zero. Thus, the next result can be regarded as a central limit theorem for the scaled and
(nearly) centered process Yn.

Theorem 2.2. As n → ∞, Zn converges in distribution inDRd [0,∞) to Z = (Z1, . . . , Zd)
�,

where Z satisfies

Zi(t) =
∫
B(t)

r ∧ (t−γ (s))�i(ds, dr)+a
∫ t

0
fy(s, U(s))Z̄(s) ds, i = 1, . . . , d, (2.11)

where

�(t) =
∫ t

0
f (s, U(s)) ds, γ (t) = �−1(t), (2.12)

B(t) = [0,�(t)] × [0,∞), Z̄(t) = 1

d

d∑
i=1

Zi(t),

and�1, . . . , �d are independent Gaussian random measures on [0,∞)×[0,∞)with common
control measure ds(β − 1)θ1−βr−β dr .

Integrals with respect to Gaussian random measures characterized by a control measure are
defined, for example, in Chapter 3 of [12].

Remark 2.2. When λ ≡ 1 (constant) or f ≡ 1, note that �n(t) = t and γn(t) = t in (2.5),
Bn(t) = [0, t] × [0,∞) and, hence,

Yn,i(t) = 1

nα−1

∫ t

0

∫ ∞

0
r ∧ (t − s)ξn,i(ds, dr)

in (2.4). After the change of variables s → s/n and r → r/n, this can be written as

Yn,i(t) = 1

nα

∫ nt

0

∫ ∞

0
r ∧ (nt − s)ξn,i

(
d

(
s

n

)
, d

(
r

n

))

= 1

nα

∫ nt

0

∫ ∞

0
r ∧ (nt − s)ζn,i(ds, dr), (2.13)

where ζn,i is a Poisson random measure with intensity measure nα−1 ds (β−1)θ(θr+1)−β dr .
Written as (2.13), nαYn,i can be interpreted as the cumulative workload input in the system
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scaled in time by n and where heavy-tailed workloads are associated with sources arriving at
Poisson rate λn = nα−1. This is the view taken, for example, in [4] and [8]. It is well known
that, after proper normalization and centering, the total workload input converges to fractional
Brownian motion in the so-called fast regime, that is, when

λn

n(β−1)−1
= nα−1

nβ−2 = nα−β+1 → ∞.

This holds when α − β + 1 > 0, which is a part of our assumption (1.9). It is also known that
the normalization of the right-hand side of (2.13) (to the central limit theorem) is

nα

(λnn3−(β−1))1/2
= nα

n(α−β+3)/2
= n(α+β−3)/2,

which coincides with that used in (2.10).

Remark 2.3. Let Z∗ = (Z∗
1 , . . . , Z

∗
d)

� be given as the solution of

Z∗
i (t) = R∗

i (t)+ a

∫ t

0
fy(s, U(s))Z̄

∗(s) ds, (2.14)

where

R∗
i (t) =

∫ t

0

∫ ∞

0
(f (s, U(s)))1/2(r ∧ (t − s))�i(ds, dr), i = 1, . . . , d,

and

Z̄∗(t) = 1

d

d∑
i=1

Z∗
i (t).

One can check that R∗ = (R∗
1 , . . . , R

∗
d)

� and R = (R1, . . . , Rd)
� have the same distribution,

where

Ri(t) =
∫
B(t)

r ∧ (t − γ (s))�i(ds, dr), i = 1, . . . , d.

Consequently, Z and Z∗ are equal in law and, thus, (2.14) gives an alternative representation
for the weak limit of Zn as n → ∞.

The following result shows the moment stabilization property of the admission control
policy g.

Theorem 2.3. The following uniform moment bound holds:

sup
t≥0

E{|Z̄(t)|2} ≤ 2θ1−β

d(β − 2)(3 − β)(aμ)4−β �(4 − β),

where μ := infs≥0{−fy(s, U(s))} ∈ (0,∞) and �(·) is the gamma function.

Remark 2.4. The case when there is no admission control corresponds to g ≡ 0. Although
the function g ≡ 0 does not satisfy Assumption 1.1, it can be shown along similar lines that in
this case Theorem 2.1 holds with U(t) = at , and, therefore, supt≥0 |U(t)− bt | will be finite if
and only if b = a. Furthermore, Theorem 2.2 will hold as well (when b = a), but the moment
stabilization property in Theorem 2.3 fails.
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Finally, we consider the asymptotic behavior of Z̄(T + ·) as T → ∞. Here, we restrict
ourselves to the b = a case. Then from Proposition 2.1, (2.11), and (2.12), the limit process in
Theorem 2.2 can be written as

Zi(t) =
∫ t

0

∫ ∞

0
r ∧ (t − s)�i(ds, dr)− κ

∫ t

0
Z̄(s) ds, i = 1, . . . , d,

where κ = ag′(0) ∈ (0,∞).
Let BH = {BH(t), t ≥ 0} be a standard fractional Brownian motion with Hurst parameter

H = (4 − β)/2 ∈ ( 1
2 , 1), namely, BH is a mean zero Gaussian process with covariance

E{BH(t)BH (s)} = 1
2 (t

2H + s2H − |t − s|2H ).
Let Z∞(0) be a normal random variable with mean zero and variance

σ 2
0 := E{|Z∞(0)|2} = θ1−β

d(β − 2)

∫ ∞

0

∫ ∞

0
e−κve−κu|u− v|2−β du dv < ∞,

and let (BH ,Z∞(0)) be jointly Gaussian, and the covariance function of BH and Z∞(0) be

cov(BH (t), Z∞(0)) = θ1−β

σd (β − 2)

∫ t

0

∫ ∞

0
e−κv(u+ v)2−β dv du,

where σ = √
2θ1−β/d (β − 2)(3 − β)(4 − β). Let Z∞ be the fractional Ornstein–Uhlenbeck

process given as the unique solution of

Z∞(t) = Z∞(0)− κ

∫ t

0
Z∞(s) ds + σBH (t). (2.15)

Theorem 2.4. Let b = a and let Z be as in Theorem 2.2. Then, as T → ∞, Z̄(T +·) converges
in distribution in CR[0,∞) to Z∞, given by (2.15). Moreover, the process Z∞ is stationary.

3. Law of large numbers

In this section we will prove Proposition 2.1 and Theorem 2.1.

Proof of Proposition 2.1. Consider the ODE

u̇(t) = a exp{−g(u(t))} − b, u(0) = 0, t ≥ 0. (3.1)

Clearly, a differentiable function u solves (3.1) if and only if U(t) = u(t) + bt solves (2.6).
From Assumption 1.1, the function h(x) = a exp{−g(x)} − b, x ∈ R, is locally Lipschitz. For
each n ∈ N, define hn(x) = h((x ∧ n) ∨ (−n)), x ∈ R. Since hn is a Lipschitz function, for
any n ∈ N, the ODE

u̇(t) = hn(u(t)), u(0) = 0, t ≥ 0 (3.2)

has a unique solution un. Let K be the unique solution of the equation

a exp{−g(K)} − b = 0,

That is, g(K) = log (a/b).
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Then, for all n > |K|, if b > a, un(t) ≤ 0 for all t , and un(t) decreases to K ∈ (−∞, 0); if
b < a, un(t) ≥ 0 for all t , and un(t) increases to K ∈ (0,∞); and, finally, if b = a, un(t) = 0
for all t . Consequently, for any n > |K|,

sup
t≥0

|un(t)| ≤ |K| (3.3)

and un solves (3.1). This proves the existence of solutions.
Now consider uniqueness. Let ũ be another solution of (3.1). Let τ = inf{t : |ũ(t)| ≥

|K| + 1}. From the unique solvability of (3.2) for any n ≥ |K| + 1, ũ(t) = un(t) for all
t ∈ [0, τ ). From (3.3) we now see that τ = ∞. This proves the unique solvability of (3.1) and,
consequently, that of (2.6). Also, as noted above,

sup
t≥0

|U(t)− bt | = sup
t≥0

|u(t)| ≤ |K|

and U(t)− bt = u(t) = 0 for all t if b = a. The result follows.

Next, we present the proof of Theorem 2.1.

Proof of Theorem 2.1. Let ξ̃n,i = ξn,i − ηn be the compensated Poisson random measure
associated with ξn,i , i = 1, . . . , d. Rewrite Xn and Yn as

Xn,i(t) = 1

nα
ξ̃n,i(Bn(t))+ 1

nα
ηn(Bn(t)) = 1

nα
ξ̃n,i(Bn(t))+�n(t),

Yn,i(t) = 1

nα−1

∫
Bn(t)

r ∧ (t − γn(s))ξ̃n,i(ds, dr)

+ 1

nα−1

∫
Bn(t)

r ∧ (t − γn(s))n
α(β − 1)nθ(nθr + 1)−β ds dr. (3.4)

By the change of variables s = ∫ v
0 f (u, Ȳn(u)) du = �n(v), the second term on the right-hand

side of (3.4) equals

n2θ(β − 1)
∫ t

0

∫ ∞

0
f (v, Ȳn(v))(r ∧ (t − v))(nθr + 1)−β dr dv. (3.5)

Consider the inner integral in (3.5). For 0 ≤ v < t , by simple calculation, we see that

θ(β − 1)n2
∫ ∞

0
(r ∧ (t − v))(nθr + 1)−β dr

= θ(β − 1)n2
[∫ t−v

0
r(nθr + 1)−β dr +

∫ ∞

t−v
(t − v)(nθr + 1)−β dr

]

= 1

θ(β − 2)
− 1

θ(β − 2)(nθ(t − v)+ 1)β−2

= a

(
1 − 1

(nθ(t − v)+ 1)β−2

)
.

Therefore, for each i = 1, . . . , d,

Yn,i(t) = 1

nα−1

∫
Bn(t)

r ∧ (t − γn(s))ξ̃n,i(ds, dr)

+
∫ t

0
af (s, Ȳn(s))

(
1 − 1

(nθ(t − s)+ 1)β−2

)
ds.
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Recall the definition of Xi and Yi from (2.7). Then

Xn,i(t)−Xi(t) = 1

nα
ξ̃n,i(Bn(t))+

∫ t

0
f (s, Ȳn(s)) ds −

∫ t

0
f (s, U(s)) ds, (3.6)

Yn,i(t)− Yi(t) = 1

nα−1

∫
Bn(t)

r ∧ (t − γn(s))ξ̃n,i(ds, dr)

+
∫ t

0
a[f (s, Ȳn(s))− f (s, U(s))] ds

− a

∫ t

0

f (s, Ȳn(s))

(nθ(t − s)+ 1)β−2 ds. (3.7)

Let us first show (2.8). Summing over i and normalizing by d, we have

Ȳn(t)−U(t) = 1

d

d∑
i=1

(Yn,i(t)− Yi(t)) = a

∫ t

0
[f (s, Ȳn(s))− f (s, U(s))] ds + Sn(t), (3.8)

where

Sn(t) = 1

d

d∑
i=1

An,i(t)− a

∫ t

0

f (s, Ȳn(s))

(nθ(t − s)+ 1)β−2 ds

= Ān(t)− a

∫ t

0

f (s, Ȳn(s))

(nθ(t − s)+ 1)β−2 ds, (3.9)

and for i = 1, . . . , d,

An,i(t) = 1

nα−1

∫
Bn(t)

r ∧ (t − γn(s))ξ̃n,i(ds, dr).

We will now argue that

nqSn → 0 in probability in DRd [0,∞) for all q ∈ [0, β − 2). (3.10)

Consider first the second term on the right-hand side of (3.9). Since Ȳn(t) ≥ 0 for all t ≥ 0 and
β ∈ (2, 3), from (2.3), we have

∫ t

0

f (s, Ȳn(s))

(nθ(t − s)+ 1)β−2 ds ≤ 1

nβ−2θβ−2

∫ t

0

exp{−g(−bs)}
(t − s)β−2 ds

≤ (sup0≤s≤t exp{−g(−bs)})t3−β

nβ−2θβ−2(3 − β)
.

Consequently, for every t > 0,

lim
n→∞ n

q

∫ t

0

f (s, Ȳn(s))

(nθ(t − s)+ 1)β−2 ds = 0 almost surely for all q ∈ [0, β − 2). (3.11)

Thus, in order to prove (3.10), it suffices to show that

sup
0≤s≤t

nq |An(s)| → 0 in probability, as n → ∞, (3.12)
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for every q ∈ [0, β − 2) and for every t > 0, where An = (An,1, . . . , An,d)
�. The proof of

(3.12) can be found below, following the proof of this theorem.
From Assumption 1.1, we have that y �→ f (t, y) is a Lipschitz function on R+, uniformly

in t on compact intervals, since

sup
y∈R+

|fy(t, y)| = sup
y∈R+

| − exp{−g(y − bt)}g′(y − bt)| ≤ L exp{−g(−bt)} (3.13)

for all t ∈ [0,∞). The convergence in (2.8) now follows by an application of Gronwall’s
lemma to (3.8).

Finally, we argue that

(Xn,Yn)
� → (X,Y )� in D

R
2d+ [0,∞), in probability, as n → ∞. (3.14)

For n ∈ N, define the filtration {F n
u } as

F n
u = σ {ξ in(A) : A ∈ B([0, u] × [0,∞)), i = 1, . . . , d}.

Then, for each i = 1, . . . , d, ξ̃n,i ([0, u]×[0,∞)) is an {F n
u }-martingale. As an analogue of the

unscaled process in Section 2.1, γn is a continuous, strictly increasing {F n
u }-adapted process.

Consequently, for every t ≥ 0, �n(t) = γ−1
n (t) is a {F n

u }-stopping time. Therefore,

M
(1)
n,i (t) = ξ̃n,i ([0,�n(t)] × [0,∞)) = ξ̃n,i (Bn(t)) (3.15)

is a {Gnt }-martingale, where Gnt = F n
�n(t)

. By Doob’s maximal inequality, for some C > 0,

P

{
sup

0≤s≤t
1

nα
|M(1)

n,i (t)| ≥ ε

}
≤ CE|M(1)

n,i (t)|2
n2αε2

= CE{∫ t0 f (s, Ȳn(s)) ds}
nαε2

≤ C
∫ t

0 exp{−g(−bs)} ds

nαε2 . (3.16)

Combining (3.15) and (3.16) we have, as n → ∞,

P

{
sup

0≤s≤t
1

nα
|ξ̃n,i (Bn(t))| ≥ ε

}
→ 0. (3.17)

Thus, the first term on the right-hand side of (3.6) converges to the zero process, uniformly on
compacts, in probability, as n → ∞. Now (3.14) follows on combining (3.13), (3.17), (3.11),
and (3.12) (with q = 0), and applying Gronwall’s lemma to (3.6) and (3.7).

Proof of (3.12). Recall that, for each i = 1, . . . , d, ξ̃n,i ([0, u] × [0,∞)) is an {F n
u }-

martingale and for every t ≥ 0, �n(t) = γ−1
n (t) is a {F n

u }-stopping time. Observe that

An,i(t) = U(1)
n,i (�n(t)),

where, for i = 1, . . . , d,

U(1)
n,i (u) = 1

nα−1

∫
[0,u]×[0,∞)

r ∧ (t − γn(s))+ξ̃n,i (ds, dr).
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Note that U(1)
n,i (u) is a {F n

u }-martingale with predictable quadratic variation process

1

n2(α−1)

∫
[0,u]×[0,∞)

(r ∧ (t − γn(s))+)2ηn(ds, dr).

Using the change of variables s = ∫ v
0 f (u, Ȳn(u)) du = �n(v), we have, for each t > 0,

E{|An(t)|2} = E

{ d∑
i=1

|U(1)
n,i (�n(t))|2

}

= 1

n2α−2 E

{ d∑
i=1

∫
[0,�n(t)]×[0,∞)

(r ∧ (t − γn(s)))
2ηn(ds, dr)

}

= nθ(β − 1)d

nα−2 E

{∫ t

0

∫ ∞

0
f (v, Ȳn(v))(r ∧ (t − v))2(nθr + 1)−β dr ds

}
.

(3.18)

Splitting the integral over [0,∞) as [0, t−v]∪(t−v,∞) and making the substitution nr �→ r ,
(3.18) can be bounded by

n−αθ(β − 1)d sup
0≤s≤t

{exp{−g(−bs)}}
[∫ t

0

∫ n(t−v)

0
r2(θr + 1)−β dr ds

+
∫ t

0

∫ ∞

n(t−v)
(n(t − v))2(θr + 1)−β dr ds

]
. (3.19)

Integrating the first term on the right-hand side of (3.19), we see that

1

nα

∫ t

0

∫ n(t−v)

0
r2(θr + 1)−β dr ds ≤ n3−β−αt4−β

θβ(3 − β)(4 − β)
.

Since β − 2 < (β + α − 3)/2 (or, equivalently, α > β − 1), we obtain, for all t ≥ 0,

n2q

nα

∫ t

0

∫ n(t−v)

0
r2(θr + 1)−β dr ds → 0 for all q ∈ [0, β − 2). (3.20)

Also, the integration of the second term on the right-hand side of (3.19) shows that

1

nα

∫ t

0

∫ ∞

n(t−v)
(n(t − v))2(θr + 1)−β dr ds ≤ n3−β−αt4−β

θβ(β − 1)(4 − β)
.

Thus, we have

n2q

nα

∫ t

0

∫ ∞

n(t−v)
(n(t − v))2(θr + 1)−β dr ds → 0 for all q ∈ [0, β − 2). (3.21)

Combining (3.18)–(3.21) we conclude that

lim
n→∞ n

2q
E{|An(t)|2} = 0 for all q ∈ [0, β − 2). (3.22)
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We argue next that nqAn=nq(An,1, . . . , An,d)� converges to the zero process inDRd [0,∞),
in probability. In view of (3.22), it suffices to check that {nqAn} is tight. To prove tightness we
will use a standard tightness criterion. Namely, we will show that, for each fixed T > 0 there
exists CT > 0 such that for 0 ≤ h ≤ 1 and h ≤ t ≤ T ,

n4q
E{|An(t + h)− An(t)|2|An(t)− An(t − h)|2} ≤ CT h

2. (3.23)

The above inequality, together with the relative compactness of nqAn(t) for each t ≥ 0 (which
follows from (3.22)), yields tightness of {nqAn} (cf. Theorems 3.8.6 and 3.8.8 of [2]).

Now fix T > 0. In order to show (3.23), it is sufficient to prove that, for any 0 ≤ h ≤ 1 and
0 ≤ t ≤ T ,

n4q
E{|An(t + h)− An(t)|4} ≤ CT h

2. (3.24)

In the following, we use CT > 0 to denote a generic constant depending on T , θ , and β whose
value may vary from line to line. For r, s, h, t ∈ R, denote

ϑh,tn (r, s) = r ∧ (t + h− γn(s))+ − r ∧ (t − γn(s))+.

Define, for i = 1, . . . , d,

U(2)
n,i (u) = 1

nα−1

∫
[0,u]×[0,∞)

ϑh,tn (r, s)ξ̃n,i(ds, dr). (3.25)

Observe that U(2)
n,i (u) is a {F n

u }-martingale with quadratic variation process

1

n2(α−1)

∫
[0,u]×[0,∞)

(ϑh,tn (r, s))2ξn(ds, dr).

Since γn(s) ≤ t if and only if s ≤ �n(t), we have

An,i(t + h)− An,i(t) = U(2)
n,i (�n(t + h)).

Recalling that �n(t + h) is a {F n
u }-stopping time, we have by the Burkholder–Davis–Gundy

inequality (cf. Theorem IV.3.46 of [11]) that for some C > 0,

E{|An,i(t + h)− An,i(t)|4} = E{|U(2)
n,i (�n(t + h))|4}

≤ C

n4(α−1)
E

{(∫
[0,�n(t+h)]×[0,∞)

[ϑh,tn (r, s)]2ξn,i(ds, dr)

)2}
.

Writing ξn,i = ξ̃n,i + ηn, the above can be bounded by

2C

n4(α−1)
E

{∫ �n(t+h)

0

∫ ∞

0
[ϑh,tn (r, s)]4nαθ(β − 1)n(nθr + 1)−β dr ds

}

+ 2C

n4(α−1)
E

{(∫ �n(t+h)

0

∫ ∞

0
[ϑh,tn (r, s)]2nαθ(β − 1)n(nθr + 1)−β dr ds

)2}
. (3.26)

Denote, for r, s, h, t ∈ R,

ϑ̃h,tn (r, s) = r ∧ (t + h− s)+ − r ∧ (t − s)+.
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By a change of variables, the first term on the right-hand side of (3.26) equals

2C

n4(α−1)
E

{∫ t+h

0

∫ ∞

0
f (s, Ȳn(s))[ϑ̃h,tn (r, s)]4nαθ(β − 1)n(nθr + 1)−β dr ds

}
.

Using the estimate f (s, Ȳn(s))) ≤ sup0≤s≤T+1{exp{−g(−bs)}} < ∞ and (A.1) from Lemma
A.1 in Appendix A, the above can be bounded by

CT n
5−β−3αh6−β. (3.27)

For the second term on the right-hand side of (3.26), by a change of variables once more, equals

2C

n4(α−1)
E

{(∫ t+h

0

∫ ∞

0
f (s, Ȳn(s))[ϑ̃h,tn (r, s)]2nαθ(β − 1)n(nθr + 1)−β dr ds

)2}
,

which can similarly be bounded by

CT n
6−2β−2αh2(4−β), (3.28)

using (A.2) in Lemma A.1. Observing that

β − 2 < 1
4 min{β + 3α − 5, 2β + 2α − 6} and min{6 − β, 2(4 − β)} > 2,

and combining (3.27) and (3.28), we conclude that (3.24) holds for every q ∈ [0, β − 2). This
completes the proof of (3.12).

4. Central limit theorem

In this section we prove Theorem 2.2. From (2.9) and (3.7), we can write (2.10) as

Zn,i(t) =
∫
Bn(t)

(r ∧ (t − γn(s)))�n,i(ds, dr)

+ a

∫ t

0
n(α+β−3)/2

[
f (s, Ȳn(s))− f (s, U(s))− fy(s, U(s))

V (s)

nβ−2

]
ds

− n(α+β−3)/2
∫ t

0

af (s, Ȳn(s)) ds

(nθ(t − s)+ 1)β−2 + n(α−β+1)/2
∫ t

0

aθ2−βf (s, U(s)) ds

(t − s)β−2 ,

(4.1)

where, with σn = n(α−β+1)/2,

�n,i(A) = n(α+β−3)/2

nα−1 ξ̃n,i (A) = σ−1
n ξ̃n,i(A)

is a random signed measure on [0,∞)× [0,∞), i = 1, . . . , d. Note that

var(�n,i(A)) = nβ−1m× νn(A), i = 1, . . . , d, for A ∈ B(R2+)

with m× νn(A) < ∞. Note also that

f (s, Ȳn(s))− f (s, U(s))− fy(s, U(s))
V (s)

nβ−2

= (Ȳn(s)− U(s))

∫ 1

0
[fy(s, U(s)+ x(Ȳn(s)− U(s)))− fy(s, U(s))] dx

+
(
Ȳn(s)− U(s)− V (s)

nβ−2

)
fy(s, U(s)).
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Thus, the middle term on the right-hand side of (4.1) equals

a

∫ t

0
n(α+β−3)/2(Ȳn(s)− U(s))

∫ 1

0
[fy(s, U(s)+ x(Ȳn(s)− U(s)))− fy(s, U(s))] dx ds

+ a

∫ t

0
fy(s, U(s))Z̄n(s) ds,

where, recall, Z̄n(s) = (1/d)
∑d
i=1 Zn,i(s). Let

Rn,i(t) =
∫
Bn(t)

(r ∧ (t − γn(s)))�n,i(ds, dr), i = 1, . . . , d, (4.2)

Cn(t) = a

∫ t

0
n(α+β−3)/2(Ȳn(s)− U(s))

×
∫ 1

0
[fy(s, U(s)+ x(Ȳn(s)− U(s)))− fy(s, U(s))] dx ds, (4.3)

Dn(t) = n(α−β+1)/2
∫ t

0

aθ2−βf (s, U(s)) ds

(t − s)β−2 − n(α+β−3)/2
∫ t

0

af (s, Ȳn(s)) ds

(nθ(t − s)+ 1)β−2 . (4.4)

Letting Rn(t) = (Rn,1(t), . . . ,Rn,d(t))
�, where Rn,i(t) = Rn,i(t)+Cn(t)+Dn(t), we can

rewrite equation (4.1) as

Zn,i(t) = Rn,i(t)+ a

∫ t

0
fy(s, U(s))Z̄n(s) ds, i = 1, . . . , d. (4.5)

Proof of Theorem 2.2. Define ψ : DRd [0,∞) → DRd [0,∞) by

[ψ(x)]i (t) = xi(t)+ a

∫ t

0
fy(s, U(s))ψ(x)(s) ds, i = 1, . . . , d, x ∈ DRd [0,∞),

where ψ(x) = (1/d)
∑d
i=1[ψ(x)]i . Then, ψ is a continuous mapping from DRd [0,∞) to

DRd [0,∞). Also, from (4.5) we see that Zn = (Zn,1, . . . , Zn,d)
� = ψ(Rn).

Combining Lemmas 4.2, 4.3, and 4.1 below, we see that Rn converges to R=(R1, . . . , Rd)
�

in distribution in DRd [0,∞), where

Ri(t) =
∫
B(t)

(r ∧ (t − γ (s)))�i(ds, dr), i = 1, . . . , d, (4.6)

and �i , i = 1, . . . , d, is as in Theorem 2.2. The result now follows from the continuous
mapping theorem.

The next three lemmas were used in the proof of Theorem 2.2 above.

Lemma 4.1. Let Rn = (Rn,1, . . . , Rn,d)
� and R = (R1, . . . , Rd)

� be as given by (4.2) and
(4.6), respectively. As n → ∞, Rn converges to R in distribution in DRd [0,∞).

Proof. Let R̃n = (R̃n,1, . . . , R̃n,d)
�, where

R̃n,i(t) =
∫
B(t)

[r ∧ (t − γ (s))]�n,i(ds, dr), t ≥ 0.
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Since �n(t) is an {F n
u }-stopping time for each t ≥ 0, 1[0,�n(t)](s)[r ∧ (t − γn(s))] is F n

s -
predictable. Thus, applying the isometry property of the stochastic integral and recalling the
definition of νn in (1.7), we obtain

E{Rn,i(t)− R̃n.i(t)}2

= E

∫ ∞

0

∫ ∞

0
(1[0,�n(t)](s)[r ∧ (t − γn(s))]
− 1[0,�(t)](s)[r ∧ (t − γ (s))])2nβ−1νn(dr) ds

≤ 2E

{∫ ∞

0

∫ ∞

0
1[0,�n(t)](s)[r ∧ (t − γn(s))− r ∧ (t − γ (s))]2 θ(β − 1)nβ

(nθr + 1)β
dr ds

}

+ 2E{|�n(t)−�(t)|}
∫ ∞

0
(r ∧ t)2θ(β − 1)nβ(nθr + 1)−β dr. (4.7)

Now we consider the first term on the right-hand side of (4.7). From the definitions of γn
and γ we see, for any s ≥ 0,

s =
∫ γn(s)

0
f (z, Ȳn(z) dz =

∫ γ (s)

0
f (z, U(z)) dz.

Consequently, ∫ γ (s)

0
f (z, U(z)) dz−

∫ γn(s)

0
f (z, U(z)) dz

=
∫ γn(s)

0
f (z, Ȳn(z)) dz−

∫ γn(s)

0
f (z, U(z)) dz. (4.8)

Since f (z, U(z)) is bounded below away from 0 (see Remark 2.1), there exists a c > 0 such
that ∣∣∣∣

∫ γ (s)

0
f (z, U(z)) dz−

∫ γn(s)

0
f (z, U(z)) dz

∣∣∣∣ ≥ c|γ (s)− γn(s)|. (4.9)

On the other hand, from (3.13), we obtain, for any s ≤ �n(t) (equivalently, γn(s) ≤ t),

∣∣∣∣
∫ γn(s)

0
f (z, Ȳn(z)) dz−

∫ γn(s)

0
f (z, U(z)) dz

∣∣∣∣
≤ L sup

0≤z≤γn(s)
|Ȳn(z)− U(z)|

∫ γn(s)

0
exp{−g(−bu)} du

≤ L sup
0≤s≤t

|Ȳn(s)− U(s)|
∫ t

0
exp{−g(−bu)} du. (4.10)

Combining (4.8)–(4.10) we have

1[0,�n(t)](s)|γn(s)− γ (s)| ≤ L

c
sup

0≤s≤t
|Ȳn(s)− U(s)|

∫ t

0
exp{−g(−bu)} du.

Using (2.8) we now obtain

1[0,�n(t)](s)|γn(s)− γ (s)| → 0
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in probability, as n → ∞. An application of the dominated convergence theorem now shows
that

lim
n→∞ E

{∫ ∞

0

∫ ∞

0
1[0,�n(t)](s)[r ∧ (t − γn(s))− r ∧ (t − γ (s))]2 θ(β − 1)nβ

(nθr + 1)β
dr ds

}

= 0.

Thus, the first term on the right-hand side of (4.7) converges to 0 as n → ∞.
Next, we consider the second term on the right-hand side of (4.7). By the dominated

convergence theorem, we have by using the fact that β ∈ (2, 3),

lim
n→∞

∫ ∞

0
(r∧ t)2θ(β−1)nβ(nθr+1)−β dr =

∫ ∞

0
(r∧ t)2θ1−β(β−1)r−β dr < ∞. (4.11)

Note that

0 ≤ min{�(t),�n(t)} ≤ max{�(t),�n(t)} ≤
∫ t

0
exp{−g(−bs)} ds.

Consequently,

|�n(t)−�(t)| ≤ 2
∫ t

0
exp{−g(−bs)} ds.

Also, from (3.13) we have

|�n(t)−�(t)| ≤ L sup
0≤s≤t

|Ȳn(s)− U(s)|
∫ t

0
exp{−g(−bs)} ds.

Thus, (2.8) and the dominated convergence theorem yield

lim
n→∞ E{|�n(t)−�(t)|} = 0. (4.12)

Combining (4.11) and (4.12) it follows that the second term on the right-hand side of (4.7)
converges to 0 as n → ∞.

Combining the above observations it follows that, for each i = 1, . . . , d and t ≥ 0,

lim
n→∞ E{Rn,i(t)− R̃n.i(t)}2 = 0. (4.13)

Note that

R̃n.i(t) =
∫

[0,∞)×[0,∞)

n(β−α−1)/2 1B(t)(s, r)(r ∧ (t − γ (s)))ξ̃n,i(ds, dr).

For each fixed i = 1, . . . , d, we will now show the weak convergence of the finite-
dimensional distribution of R̃n,i . For any 0 < t1 < · · · < tk < ∞, denote f n(s, r) =
(f n1 (s, r), . . . , f

n
k (s, r))

� where f nj (s, r) = n(β−α−1)/2 1B(tj )(s, r)(r ∧ (tj − γ (s)), j =
1, . . . , k. Then

R̃n,i(tj ) =
∫

[0,∞)×[0,∞)

f nj (s, r)ξ̃n,i(ds, dr).
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One can show by a change of variables that

lim
n→∞

∫
[0,∞)×[0,∞)

f nj (s, r)f
n
l (s, r)ηn(ds, dr)

= lim
n→∞

∫ tj∧tl

0

∫ ∞

0
f (s, U(s))[r ∧ (tj − s)][r ∧ (tl − s)]nβ(β − 1)

× θ(nθr + 1)−β dr ds

=
∫ tj∧tl

0

∫ ∞

0
f (s, U(s))[r ∧ (tj − s)][r ∧ (tl − s)](β − 1)θ1−βr−β dr ds

= E{Ri(tj )Ri(tl)}.

Since |f n| ≤ n(β−α−1)/2tk and limn→∞ n(β−α−1)/2 = 0, we deduce that 1{|f n|>ε} = 0 for large
enough n, and, hence, for each ε > 0 and j , if n is large enough,

∫
[0,∞)×[0,∞)

1{|f n|>ε} |f nj (s, r)|2ηn(ds, dr) = 0.

From Theorem 6.1 of [6] it now follows that

(R̃n,i(t1), . . . , R̃n,i(tk))
� �⇒ (Ri(t1), . . . , Ri(tk))

�

as n increases to ∞, for each i = 1, . . . , d. Since R̃n has independent components, it follows
that the finite-dimensional distributions of R̃n converge to those of R. Using (4.13), we then
obtain that the finite-dimensional distributions of Rn converge to those of R.

Thus, in order to prove the lemma it suffices to show that {Rn} is tight in DRd [0,∞), for
which, it suffices to prove the following estimate: for each fixed T > 0 there exists a constant
CT > 0 such that for 0 ≤ h ≤ 1 and 0 ≤ t ≤ T

E{|Rn(t + h)− Rn(t)|4} ≤ CT h
2.

Recall the definition of U(2)
n,i in (3.25). Then

Rn,i(t + h)− Rn,i(t) = n(α+β−3)/2U(2)
n,i (�n(t + h)) = n(α+β−3)/2(An,i(t + h)− An,i(t)).

From (3.26), (3.27), and (3.28), we now have

E{|Rn(t + h)− Rn(t)|4} = n4(α+β−3)/2
E{|An(t + h)− An(t)|4}

≤ Cn2α+2β−6(n5−β−3αh6−β + n6−2β−2αh2(4−β))
= C(n−(α−β+1)h6−β + h2(4−β))
≤ Ch2,

where the last inequality follows from α > β − 1 and 2 < β < 3. This proves the desired
tightness and the result follows.

Lemma 4.2. Let Cn be as given in (4.3). As n → ∞, sup0≤s≤t |Cn(s)| → 0, in probability,
for every t ≥ 0.
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Proof. From Assumption 1.1, we have

|fyy(t, y)| = |exp{−g(y − bt)}[g′(y − bt)]2 − exp{−g(y − bt)}g′′(y − bt)|
≤ (L2 + L) exp{−g(y − bt)}
≤ (L2 + L) exp{−g(−bt)}
=: c(t)

for all y ∈ [0,∞). Consequently, y �→ fy(t, y) is a Lipschitz function on R+, uniformly in t
in compact intervals. Therefore,

|Cn(t)| ≤ a

∫ t

0
c(s)(n(α+β−3)/4|Ȳn(s)− U(s)|)2 ds.

The result now follows by noting that (α + β − 3)/4 < β − 2 (see (1.9)) and using (2.8).

Lemma 4.3. Let Dn be as given in (4.4). As n → ∞, sup0≤s≤t |Dn(s)| → 0, in probability,
for every t ≥ 0.

Proof. Note that

Dn(t) = n(α−β+1)/2
(∫ t

0

aθ2−βf (s, U(s))
(t − s)β−2 ds − nβ−2

∫ t

0

af (s, U(s))

(nθ(t − s)+ 1)β−2 ds

)

+ n(α−β+1)/2
(
nβ−2

∫ t

0

af (s, U(s))

(nθ(t − s)+ 1)β−2 ds

− nβ−2
∫ t

0

af (s, Ȳn(s))

(nθ(t − s)+ 1)β−2 ds

)
. (4.14)

For the first term, note that

0 <
∫ t

0

aθ2−βf (s, U(s))
(t − s)β−2 ds − nβ−2

∫ t

0

af (s, U(s))

(nθ(t − s)+ 1)β−2 ds

=
∫ t

0
aθ2−βf (s, U(s))

(
1

(t − s)β−2 − 1

(t − s + 1/nθ)β−2

)
ds

≤ aθ2−β

3 − β
sup

0≤s≤t
{exp{−g(−bs)}}

(
1

nθ

)3−β
. (4.15)

For the second term, from the Lipschitz property of f (see (3.13)), we have∣∣∣∣nβ−2
∫ t

0

af (s, U(s))

(nθ(t − s)+ 1)β−2 ds − nβ−2
∫ t

0

af (s, Ȳn(s))

(nθ(t − s)+ 1)β−2 ds

∣∣∣∣
≤

∫ t

0

aθ2−βLe−g(−bs) | Ȳn(s)− U(s)|
(t − s + 1/nθ)β−2 ds

≤ aθ2−βLt3−β

3 − β
sup

0≤s≤t
{exp{−g(−bs)}} sup

0≤s≤t
{|Ȳn(s)− U(s)|}. (4.16)

Combining (4.14)–(4.16), we have

sup
0≤s≤t

|Dn(s)| ≤ C[n(α+β−5)/2 + n(α−β+1)/2|Un(s)− U(s)|].

From (1.9) we see that (α + β − 5)/2 < 0 and (α − β + 1)/2 < β − 2. The result follows
using (2.8).
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5. The moment stabilization property

In this section, we will prove Theorem 2.3. Let Z be as in Theorem 2.2 and let R =
(R1, . . . , Rd)

� be the Gaussian process introduced in (4.6). Then Z̄ = (1/d)
∑d
i=1 Zi satisfies

Z̄(t) = R̄(t)+ a

∫ t

0
fy(s, U(s))Z̄(s) ds, (5.1)

where R̄ = (1/d)
∑d
i=1 Ri . Note that R̄ is a zero mean Gaussian process. We begin by

computing the covariance functions of Ri , i = 1, . . . , d, and R̄. The proof is omitted due to
space constraints.

Lemma 5.1. The covariance functions of the Gaussian processes Ri , i = 1, . . . , d, and R̄ are
given respectively by

cov(Ri(s), Ri(t)) = E{Ri(s)Ri(t)}
= θ1−β

∫ s

0

∫ t

0

∫ u∧v

0
exp{−g(U(z)− bz)}(u ∨ v − z)1−β dz du dv,

(5.2)

and cov(R̄(s), R̄(t)) = cov(Ri(s), Ri(t))/d, for any s, t ≥ 0.

In the next lemma, we provide a bound on the second moments of the increment of the
Gaussian processes Ri , i = 1, . . . , d, and R̄.

Lemma 5.2. For any s, t ≥ 0, the following bound holds:

E{|Ri(t)− Ri(s)|2} ≤ 2K1θ
1−β

(β − 2)(3 − β)(4 − β)
(t − s)4−β, (5.3)

where K1 := sups≥0{exp{−g(U(s) − bs)}}. The bound (5.3) also holds with Ri replaced by
R̄ when its right-hand side is divided by d .

Consequently, the Gaussian processes R1, . . . , Rd, R̄ have versions that are Hölder contin-
uous of any order ρ ∈ (0, (4 − β)/2) on [0, T ] for all T > 0.

Proof. Fix 0 ≤ s ≤ t < ∞. From Lemma 5.1, for each i = 1, . . . , d,

E{|Ri(t)− Ri(s)|2} = θ1−β
∫ t

s

∫ t

s

∫ u∧v

0
exp{−g(U(z)− bz)}(u ∨ v − z)1−β dz du dv

≤ K1θ
1−β

β − 2

∫ t

s

∫ t

s

[|u− v|2−β − (u ∨ v)2−β ] du dv

≤ 2K1θ
1−β

β − 2

∫ t

s

∫ t

v

(u− v)2−β du dv

= 2K1θ
1−β

(β − 2)(3 − β)(4 − β)
(t − s)4−β. (5.4)

This completes the proof of (5.3). The result for R̄ is now immediate. The last statement in the
lemma now follows from Kolmogorov’s continuity criterion.

The proof of Theorem 2.3 relies on an explicit representation for the solution of (5.1). For
that we begin with an indefinite integral of a deterministic function with respect to the Gaussian
process R̄.
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Denote by E the linear span of indicator functions of the form 1(s,t] : R+ → R, 0 ≤ s ≤
t < ∞. Consider the inner product on E given by

〈1(0,s], 1(0,t]〉HR̄
= cov(R̄(s), R̄(t)) =

∫ s

0

∫ t

0
ρ(u, v) du dv,

where, by (5.2),

ρ(u, v) =
⎧⎨
⎩
θ1−β

d

∫ u∧v

0
exp{−g(U(z)− bz)}(u ∨ v − z)1−β dz if u �= v,

0 if u = v.

We denote by HR̄ the Hilbert space obtained as the closure of E with respect to this inner product.
Define R̄ : E → L2(�,F ,P) as

R̄(1(0,t])) = R̄(t), 0 ≤ t < ∞,

where the definition is extended to all E by linearity. Clearly, E{|R̄(φ)|2} = 〈φ, φ〉HR̄
for all

φ ∈ E . We can now extend the definition of R̄ to all HR̄ by isometry. Occasionally, we will
use the notation

R̄(φ) =
∫ ∞

0
φ(t) dR̄(t), φ ∈ HR̄.

For any φ, φ̃ ∈ E , it holds that

〈φ, φ̃〉HR̄
=

∫ ∞

0

∫ ∞

0
φ(u)φ̃(v)ρ(u, v) du dv. (5.5)

It can be shown that HR̄ contains all measurable functions φ on R+ satisfying

∫ ∞

0

∫ ∞

0
|φ(u)||φ(v)|ρ(u, v) du dv < ∞, (5.6)

and that equality (5.5) holds for φ, φ̃ that satisfy (5.6).
This type of isometry is considered in [9] (see Chapter 5) and [1] with respect to fractional

Brownian motion and general Gaussian processes respectively.

Remark 5.1. If φ : [0,∞) → R is continuous, then, for any t > 0, the function φt defined by
φt (·) = 1[0,t](·)φ(·) satisfies (5.6). Consequently, φt is in HR̄ and we write, formally,

R̄(φ)(t) := R̄(φt ) =
∫ t

0
φ(s) dR̄(s). (5.7)

Remark 5.2. If φ(·) is Hölder continuous of order ρ1 > 1 − (4 − β)/2 on [0, t], for every
t > 0, as a result of Young’s integration theory [13], the pathwise Riemann–Stieltjes integral∫ t

0 φ(s) dR̄(s) exists, since R̄ is Hölder continuous of any order ρ ∈ (0, (4 − β)/2). Zähle [14]
showed (see Proposition 4.4.1 therein) that R̄(φ)(t) is Hölder continuous of the same order as
R̄ on [0, T ], for every T > 0. The indefinite integral R̄(φ)(·) on the right-hand side of (5.7)
coincides with the pathwise Riemann–Stieltjes integral.

We now proceed to the proof of Theorem 2.3.
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Proof of Theorem 2.3. Define

φ(t) := exp

{
−a

∫ t

0
fy(z, U(z)) dz

}
, φ̃(t) = exp

{
a

∫ t

0
fy(z, U(z)) dz

}
.

Then, the derivatives of φ and φ̃ are

φ′(t) = −afy(t, U(t))φ(t), φ̃′(t) = afy(t, U(t))φ̃(t).

Remark 2.1 implies that φ′ and φ̃′ are bounded on any compact interval and, hence, φ and φ̃
are locally Lipschitz continuous. From Remark 5.2, the indefinite integral

R̄(φ)(t) =
∫ t

0
φ(s) dR̄(s) =

∫ t

0
exp

{
−a

∫ s

0
fy(z, U(z)) dz

}
dR̄(s)

is well defined as a Riemann–Stieltjes integral, and, for every T > 0, R̄(φ)(t) is Hölder
continuous on [0, T ] of any order ρ ∈ (0, (4 − β)/2).

It follows from Theorems 3.1 and 4.4.2 of [14] that

φ̃(t)R̄(φ)(t) =
∫ t

0
φ̃(s)φ(s) dR̄(s)+ a

∫ t

0
fy(s, U(s))φ̃(s)R̄(φ)(s) ds

= R̄(t)+ a

∫ t

0
fy(s, U(s))φ̃(s)R̄(φ)(s) ds,

which implies that φ̃(t)R̄(φ)(t) solves (5.1). Thus, the solution Z̄ to (5.1) can be written
explicitly as

Z̄(t) = φ̃(t)R̄(φ)(t)

= exp

{
a

∫ t

0
fy(z, U(z)) dz

} ∫ t

0
exp

{
−a

∫ s

0
fy(z, U(z)) dz

}
dR̄(s).

By the isometry of the mapping R̄, we have, on letting φt (u) = φ(u) 1[0,t](u),

E{|Z̄(t)|2} = |φ̃(t)|2
∫ ∞

0

∫ ∞

0
φt (u)φt (v)ρ(u, v) du dv

= |φ̃(t)|2
∫ t

0

∫ t

0
φ(u)φ(v)ρ(u, v) du dv

=
∫ t

0

∫ t

0
exp

{
a

∫ t

u

fy(z, U(z)) dz

}
exp

{
a

∫ t

v

fy(z, U(z)) dz

}
ρ(u, v) du dv.

Recall the definition of μ from the statement of Theorem 2.3. From Remark 2.1, μ ∈ (0,∞).
Then, by a calculation similar to (5.4), we have, for all t ≥ 0,

θβ−1
E{|Z̄(t)|2} ≤

∫ t

0

∫ t

0
e−aμ(t−u)e−aμ(t−v)ρ(u, v) du dv

≤ 2

d(β − 2)

∫ t

0

∫ t

v

e−aμ(t−v)(u− v)2−β du dv

≤ 2

d(β − 2)(3 − β)(aμ)4−β �(4 − β).

The result follows.
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6. Fractional Ornstein–Uhlenbeck process

We now proceed to the proof of Theorem 2.4. Throughout this section we take b = a. From
Proposition 2.1 it follows that

U(t) = bt, f (t, U(t)) = 1, fy(t, U(t)) = −g′(0)

for all t ≥ 0. For notational simplicity, we will only present the proof for the θ = 1 case.
In this special case, the SDE (5.1) can be written as

Z̄(t) = R̄(t)− a

∫ t

0
g′(0)Z̄(s) ds = R̄(t)− κ

∫ t

0
Z̄(s) ds, (6.1)

where κ = aμ = ag′(0) > 0, and

R̄(t) = 1

d

d∑
i=1

∫ t

0

∫ ∞

0
r ∧ (t − s)�i(ds, dr)

for any t ≥ 0.
From Lemma 5.1, it follows that the covariance of R̄ is given by

cov(R̄(s), R̄(t)) = E{R̄(s)R̄(t)} = 1

d

∫ s

0

∫ t

0

∫ u∧v

0
(u ∨ v − z)1−β dz du dv

= 1

d(β − 2)

∫ s

0

∫ t

0
(|u− v|2−β − (u ∨ v)2−β) du dv,

and, from Lemma 5.2, we recall that the sample paths of the process R̄ are Hölder continuous
on [0, T ] of order ρ, for any ρ ∈ (0, (4 − β)/2).

Recalling the definition of the indefinite integrals with respect to the Gaussian process R̄,
the solution of the SDE in (6.1) can be explicitly written as

Z̄(t) = e−κt
∫ t

0
eκs dR̄(s).

We now consider the asymptotic behavior of the process Z̄(t) as t → ∞. For T , t ≥ 0, let
R̄T (t) = R̄(T + t)− R̄(T ). From (6.1), we can write

Z̄(T + t) = Z̄(T )+ R̄T (t)− κ

∫ t

0
Z̄(T + s) ds.

Recall the parameters σ 2
0 and σ (also recall that θ = 1). The proof of the following lemma is

omitted due to space constraints.

Lemma 6.1. We have

(a) lim
T→∞ E{|Z̄(T )|2} = σ 2

0 .

(b) For any t ≥ s ≥ 0,

lim
T→∞ E{R̄T (t)R̄T (s)} = σ 2

2
[t4−β + s4−β − (t − s)4−β ].
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(c) For any t ≥ 0,

lim
T→∞ cov(Z̄(T ), R̄T (t)) = lim

T→∞ E{Z̄(T )R̄T (t)}

= 1

d (β − 2)

∫ t

0

∫ ∞

0
e−κv(u+ v)2−β dv du.

Proof of Theorem 2.4. Define ϕ : CR[0,∞) → CR[0,∞) by

[ϕ(x)](t) = x(t)− κ

∫ t

0
[ϕ(x)](s) ds.

Then, ϕ is a continuous mapping from CR[0,∞) to CR[0,∞).
For any t, T ≥ 0, denote R̄T (t) = Z̄(T )+ R̄T (t). Then R̄T is a Gaussian process with

continuous trajectories and Z̄(T + ·) = ϕ(R̄T )(·). Therefore, in order to prove that Z̄(T + ·)
converges in distribution in CR[0,∞) to Z∞, it suffices to show the convergence of R̄T to
Z∞(0) + σBH (·), where Z∞(0), BH , and σ are as defined earlier. From Lemmas 6.1, it
follows that the finite-dimensional distributions of R̄T converge to those of Z∞(0)+ σBH (·).
It thus suffices to verify that {R̄T (·)}T>0 is tight in CR[0,∞). By the Cauchy–Schwartz
inequality and (5.3) for R̄, it follows that, for any h ≥ 0, t ≥ h, and T ≥ 0,

E{|R̄T (t + h)− R̄T (t)||R̄T (t)− R̄T (t − h)|}
≤ (E|R̄(T + t + h)− R̄(T + t)|2)1/2(E|R̄(T + t)− R̄(T + t − h)|2)1/2

≤ 2h4−β

d (β − 2)(3 − β)(4 − β)
.

Note that 4 − β > 1, since β < 3. The desired tightness now follows from standard results
(cf. Theorems 3.8.6 and 3.8.8 of [2]). This proves the convergence of Z̄(T + ·) to Z∞(·). The
stationarity of Z∞ is now immediate. The result follows.

7. Conclusions

An infinite source Poisson arrival model with heavy-tailed workload input distributions has
been extensively used for modeling data packet traffic in communication networks. In this paper
we introduce, in the context of such a model, a natural family of admission control policies that
keep the associated scaled cumulative workload asymptotically close to a prespecified linear
trajectory, uniformly over time. A law of large numbers for the scaled workload is proved
and fluctuations studied by establishing a functional central limit theorem for suitable scaled
and centered workload processes. The moment stabilization property of the control policy is
demonstrated by establishing that the asymptotic second moment of the scaled and centered
workload process is uniformly bounded in time. The slope of the linear trajectory represents the
system processing rate and, thus, such control policies yield, uniform in time, reliability bounds
on probabilities of processor underutilization and overload. Finally, a stationary Ornstein–
Uhlenbeck process driven by a fractional Brownian motion with Hurst parameter H > 1

2 is
obtained as the large time limit of the asymptotic scaled and centered workload process.

Appendix A. Auxiliary results

Recall that 2 < β < 3 and α > β − 1. Also, recall the notation ϑh,tn (r, s) and ϑ̃h,tn (r, s)

introduced in the proof of Theorem 2.1. The following lemma provides a key estimate for the
proof of the theorem.
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Lemma A.1. There exists a constant C > 0 depending only on β and θ , such that, for any
0 ≤ h ≤ 1 and h ≤ t < ∞, we have the following estimates:

1

n4(α−1)

∫ t+h

0

∫ ∞

0
[ϑ̃h,tn (r, s)]4nα+1(nθr + 1)−β dr ds ≤ Cn5−β−3αh6−β (A.1)

and

1

n4(α−1)

(∫ t+h

0

∫ ∞

0
[ϑ̃h,tn (r, s)]2nα+1(nθr + 1)−β dr ds

)2

≤ Cn6−2β−2αh2(4−β). (A.2)

Proof. We first prove (A.1). We can write the left-hand side of (A.1) as

1

n4(α−1)

∫ t+h

t

∫ ∞

0
[r ∧ (t + h− s)]4nα+1(nθr + 1)−β dr ds

+ 1

n4(α−1)

∫ t

0

∫ ∞

0
[r ∧ (t + h− s)− r ∧ (t − s)]4nα+1(nθr + 1)−β dr ds. (A.3)

We now bound the two terms in (A.3) separately. In the following, we use C > 0 to denote a
generic constant depending only on β and θ ; the value of C may change from one line to the
next. Using (nθr + 1)−β < (nθr)−β , we have, on splitting the inner integral in the first term
in (A.3) as [0, t + h− s] ∪ (t + h− s,∞),

1

n4(α−1)

∫ t+h

t

∫ ∞

0
[r ∧ (t + h− s)]4nα+1(nθr + 1)−β dr ds

≤ nα−β+1

n4(α−1)

∫ t+h

t

∫ t+h−s

0
r4−β dr ds + nα−β+1

n4(α−1)

∫ t+h

t

∫ ∞

t+h−s
(t + h− s)4r−β dr ds

= Cn5−β−3α
∫ t+h

t

(t + h− s)5−β ds ≤ Cn5−β−3αh6−β. (A.4)

For the second term in (A.3), we have, on splitting the inner integral as [0, t − s] ∪ (t − s, t +
h − s] ∪ (t + h − s,∞), noting that the contribution from the first summand is zero and the
changing of variables, that

1

n4(α−1)

∫ t

0

∫ ∞

0
[r ∧ (t + h− s)− r ∧ (t − s)]4nα+1(nθr + 1)−β dr ds

= 1

n4(α−1)

∫ t

0

∫ h+s

s

(r − s)4nα+1(nθr + 1)−β dr ds

+ 1

n4(α−1)

∫ t

0

∫ ∞

t+h−s
h4nα+1(nθr + 1)−β dr ds. (A.5)
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For the first term on the right-hand side of (A.5), we change the order of integration and obtain

1

n4(α−1)

∫ t

0

∫ h+s

s

(r − s)4nα+1(nθr + 1)−β dr ds

≤ 1

n4(α−1)

∫ h

0

∫ r

0
(r − s)4nα+1(nθr + 1)−β ds dr

+ 1

n4(α−1)

∫ t+h

h

∫ r

r−h
(r − s)4nα+1(nθr + 1)−β ds dr

≤ Cnα−β+1

n4(α−1)

∫ h

0
r5−β dr + Cnα−β+1

n4(α−1)

∫ t+h

h

h5
(
r + 1

nθ

)−β
dr

≤ Cn5−β−3αh6−β, (A.6)

since (h + 1/nθ)1−β − (t + h + 1/nθ)1−β < (h + 1/nθ)1−β < h1−β for all n ∈ N and
θ ∈ (0,∞).

For the second term on the right-hand side of (A.5), we have

1

n4(α−1)

∫ t

0

∫ ∞

t+h−s
h4nα+1(nθr + 1)−β dr ds ≤ Cnα−β+1

n4(α−1)

∫ t

0

∫ ∞

t+h−s
h4r−β dr ds

≤ Cn5−β−3αh6−β. (A.7)

Combining (A.3)–(A.7), the bound (A.1) follows.

Next, we show (A.2). The left-hand side of (A.2) is bounded by

2

n4(α−1)

(∫ t+h

t

∫ ∞

0
[r ∧ (t + h− s)]2nα+1(nθr + 1)−β dr ds

)2

+ 2

n4(α−1)

(∫ t

0

∫ ∞

0
[r ∧ (t + h− s)− r ∧ (t − s)]2nα+1(nθr + 1)−β dr ds

)2

. (A.8)

We bound the first term in (A.8) by splitting the inner integral as [0, t+h− s]∪ (t+h− s,∞),
as

2

n4(α−1)

(∫ t+h

t

∫ ∞

0
[r ∧ (t + h− s)]2nα+1(nθr + 1)−β dr ds

)2

≤ Cn2(α−β+1)

n4(α−1)

(∫ t+h

t

∫ t+h−s

0
r2−β dr ds

)2

+ Cn2(α−β+1)

n4(α−1)

(∫ t+h

t

∫ ∞

t+h−s
(t + h− s)2r−β dr ds

)2

≤ Cn6−2β−2α
(∫ t+h

t

(t + h− s)3−β ds

)2

≤ Cn6−2β−2αh2(4−β). (A.9)

For the second term in (A.8), by a change of variables, we obtain, on splitting the inner integral
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as [0, t − s] ∪ (t − s, t + h− s] ∪ (t + h− s,∞),

2

n4(α−1)

(∫ t

0

∫ ∞

0
[r ∧ (t + h− s)− r ∧ (t − s)]2nα+1(nθr + 1)−β dr ds

)2

≤ 4

n4(α−1)

(∫ t

0

∫ h+s

s

(r − s)2nα+1(nθr + 1)−β dr ds

)2

+ 4

n4(α−1)

(∫ t

0

∫ ∞

t+h−s
h2nα+1(nθr + 1)−β dr ds

)2

. (A.10)

By changing the order of integration, the first term on the right-hand side of (A.10) is bounded
as

4

n4(α−1)

(∫ t

0

∫ h+s

s

(r − s)2nα+1(nθr + 1)−β dr ds

)2

≤ 8

n4(α−1)

(∫ h

0

∫ r

0
(r − s)2nα+1(nθr + 1)−β ds dr

)2

+ 8

n4(α−1)

(∫ t+h

h

∫ r

r−h
(r − s)2nα+1(nθr + 1)−β ds dr

)2

≤ Cn6−2α−2βh2(4−β). (A.11)

The second term on the right-hand side of (A.10) can be bounded as

4n2(α−β+1)

n4(α−1)

(∫ t

0

∫ ∞

t+h−s
h2r−β dr ds

)2

≤ Cn6−2α−2β
(∫ t

0
h2(t + h− s)1−β ds

)2

≤ Cn6−2α−2βh2(4−β). (A.12)

The bound in (A.2) now follows from (A.8)–(A.12).
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