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An arithmetic remarkon
entire periodic functions

Kurt Mahler

For every posit ive number u , there exists an odd entire

transcendental function

2^+1

7z=0

with rat ional integral coefficients a, such that

fU+w) = f{z) .

1.

Denote by

2h+l
2y ——

h=0 h

an odd entire function with real coefficients c, where, in particular,

The odd powers of g(z) al low the s im i l a r developments

2h+l

°nh (2h+l)l (n " °' 1> 2' •

and here

(1) cnn> 22n+1 ( n = 0 , 1 , 2 , . . . ) .
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Next le t

where b^, b , b , . . . denote real numbers which are determined by the

following construction.

We have

°° °° 27i+l

*•> • J o »- J o '* fe

say, and here the new coefficients a, are given by

% =
 nlQ

 bn%h "! = 0 ' 1 ' 2' - I •

It is thus possible to choose the coefficients b successively such that

0 < b 5 2~ , and aQ 5 1 is an integer,

and that for n S 1 , on account of ( l ) ,

(2) 0 < b 5 2~^2n+1' , and a * 0 is an integer.
n n

By this construction, f{z) becomes an entire transcendental function

of 2 . On putting

MM = max | / ( s ) | , MM = max
\z\=r |z|=r

by (2),

« 1
and therefore

(3) MM < exp{MQM/2) .
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2 .

In the result so obtained, choose now

g(z) = sln{2-nz/Q) ,

where fi i s a constant satisfying

0 < fi £ IT .

Then g{z) is an odd entire function with the period Q ,

g{z+Q) = g(z) ,

and i t has a power series

°° 2/z+l

where a = 2ir/fi i 2 as required. The preceding construction leads

therefore to an odd entire transcendental function

n=0

of period ft , and with non-vanishing integral coefficients a, . The
n

maximum modulus M(r) of this function evidently satisfies the inequality

M(r) < exp
2

for by the choice of g(z) ,

3.

The following result can now be proved.

THEOREM. Let u be an arbitrary positive constant. There exist tuo

•ive constants <.

f(z) of period u ,

positive constants c and r and an odd entire transcendental function

= f(z) ,
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such that the coefficients a-, in

2h+\

are rational integers not zero, and that further

c\z\
| / ( 3 ) | < ee if \z\ > rQ .

Proof. The assertion has already been established if 0 < w S ir .

If, however, to > IT , then choose for k so large a positive integer that

the quantity ft = (i)/k satisfies the inequality 0 < ft S ir . The theorem

is then valid with ft instead of w ; but a function of period ft has

also the period w = fcft .

The interest of the theorem lies in the fact that all the function

values

/(T)Uu)) ,
A = 0, 1, 2, ...

IT = 0, 1, 2, ...,

are rational integers. It is implicit in a theorem by Schneider [7, p. U

Satz 12] that an entire transcendental function of bounded order and of

period u) cannot have this property.

A similar proof allows to show that there exists an entire function

G(z) such that the function

F(
r(a)

and all its derivatives assume rational integral values at all integral

points.
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