ON THE INTEGRAL PART OF A LINEAR FORM WITH PRIME VARIABLES

I. DANICIC

The object of this paper is to prove the following:
Theorem. Suppose that λ, μ are real non-zero numbers, not both negative, λ is irrational, and k is a positive integer. Then there exist infinitely many primes p and pairs of primes p_{1}, p_{2} such that

$$
\left[\lambda p_{1}+\mu p_{2}\right]=k p .
$$

In particular $\left[\lambda p_{1}+\mu p_{2}\right]$ represents infinitely many primes.
Here $[x]$ denotes the greatest integer not exceeding x. The proof is based on the following

Principal lemma. Suppose $\lambda_{1}, \lambda_{2}, \lambda_{3}, \gamma$ are real numbers, the λ^{\prime} 's being non-zero and not all of the same sign, and $\lambda_{1} / \lambda_{2}$ being irrational. Then for every $\epsilon>0$ there exists a sequence of integers $N \rightarrow \infty$ such that the number of solutions of the inequality

$$
\left\{\begin{array}{c}
\left|\lambda_{1} p_{1}+\lambda_{2} p_{2}+\lambda_{3} p_{3}+\gamma\right|<\epsilon \tag{*}\\
p_{i} \leqslant N \quad\left(p_{i} \text { prime }\right)
\end{array}\right.
$$

is greater than $C N^{2} /(\log N)^{3}$ where C is a positive number independent of N.
We first deduce the theorem from the lemma. We apply the lemma with

$$
\lambda_{1}=\lambda, \quad \lambda_{2}=-k, \quad \lambda_{3}=\mu, \quad \gamma=-\frac{1}{2}, \quad \epsilon=\frac{1}{2} .
$$

This gives for more than $C N^{2} /(\log N)^{3}$ triples of primes p_{1}, p_{2}, p_{3}

$$
p_{i} \leqslant N, \quad k p_{2}<\lambda p_{1}+\mu p_{3}<k p_{2}+1,
$$

that is

$$
\begin{equation*}
\left[\lambda p_{1}+\mu p_{3}\right]=k p_{2} . \tag{1}
\end{equation*}
$$

Suppose only finitely many primes p_{2}, say d, occur in (1). Then for some fixed $p_{2}(1)$ has more than $C N^{2} / d(\log N)^{3}$ solutions $p_{1}, p_{2}\left(p_{i} \leqslant N\right)$. For given p_{1} there are at most $|\mu|^{-1}+1$ primes p_{3} satisfying (1) and for p_{1} we have at most $C_{1} N / \log N$ choices.

Thus

$$
\left(|\mu|^{-1}+1\right) \frac{C_{1} N}{\log N} \geqslant \frac{C N^{2}}{d(\log N)^{3}}
$$

which gives a contradiction for sufficiently large N.

Received March 1, 1965.

The proof of the principal lemma is based on an adaptation of Vinogradov's method for Goldbach's problem. By replacing the λ_{i} and γ by $\lambda_{i} \epsilon^{-1}$ and $\gamma \epsilon^{-1}$ it suffices to prove the lemma for $\epsilon=1$. Since $\lambda_{1} \lambda_{3}{ }^{-1}$ and $\lambda_{2} \lambda_{3}{ }^{-1}$ are not both rational, we may further suppose that $\lambda_{1}>0, \lambda_{2}<0, \lambda_{3}<0$.

Notation. p indicates primes, $e(\alpha)=e^{2 \pi i \alpha}$.

$$
\begin{aligned}
S(\alpha) & =S(\alpha, N)=\sum_{p \leqslant N} e(\alpha p) \\
I(\alpha) & =I(\alpha, N)=\int_{2}^{N} \frac{e(\alpha x)}{\log x} d x \\
K(\alpha) & =\left(\frac{\sin \pi \alpha}{\pi \alpha}\right)^{2} \\
L & =\log N .
\end{aligned}
$$

Lemma 1. For real θ,

$$
2 \operatorname{Re} \int_{0}^{\infty} e(\theta \alpha) K(\alpha) d \alpha= \begin{cases}0 & \text { if }|\theta| \geqslant 1, \\ 1-|\theta| & \text { if }|\theta| \leqslant 1 .\end{cases}
$$

A proof is given by Davenport and Heilbronn (1, Lemma 4).
Lemma 2. The number of solutions of the inequality (*) (with $\epsilon=1$) is not less than

$$
\operatorname{Re} \int_{0}^{\infty} S\left(\lambda_{1} \alpha\right) S\left(\lambda_{2} \alpha\right) S\left(\lambda_{3} \alpha\right) e(\gamma \alpha) K(\alpha) d \alpha
$$

Proof. This follows from Lemma 1 in the usual way, by multiplying out the trigonometric sums in the integrand and then interchanging summation and integration.

The remaining lemmas are devoted to establishing a lower bound for the expression in Lemma 2. For ease of reference we shall refer to Prachar's book (3).

Throughout ρ will denote a positive constant, which will be fixed later. C, C_{1}, \ldots denote positive numbers independent of N.

Lemma 3. If a and q are integers, α is real, and

$$
|\alpha-a / q|<1 / q T_{1}
$$

where

$$
T_{1}=C_{1} N L^{-\rho}, \quad(a, q)=1, \quad L^{\rho}<q \leqslant T_{1}
$$

then

$$
|S(\alpha)|<C N L^{(9 / 2)-\frac{1}{2} \rho} .
$$

Proof. This follows at once from (3, Chapter VI, Theorem 6.1) (Vinogradov's estimate).

Lemma 4. If a and q are integers, $(a, q)=1,1 \leqslant q \leqslant L^{\rho}, \alpha$ is real, and

$$
\alpha=(a / q)+\beta, \quad|\beta|<q^{-1} T_{1}^{-1}, \quad T_{1}=C_{1} N L^{-\rho}
$$

then

$$
|S(\alpha)-\{\mu(q) / \phi(q)\} I(\beta)|<C N \exp \left(-A L^{\frac{1}{2}}\right)
$$

where A is an absolute positive constant, and $\mu(q)$ and $\phi(q)$ are the Möbius and Euler functions respectively.

Proof. This follows at once from (3, Chapter VI, Theorem 3.3) on replacing

$$
\sum_{2 \leqslant n \leqslant N} \frac{e(n \beta)}{\log n}
$$

by $I(\beta)$. The error introduced by this is $O\left(1+L^{\rho-1}\right)$, which is negligible.
Lemma 5.

$$
|I(\alpha)|< \begin{cases}C N L^{-1} & \text { all } \alpha, \\ C N^{\frac{1}{2}} L^{-1} & \text { for }|\alpha| \geqslant N^{-\frac{1}{2}} \\ |\alpha|^{-1} L^{-1} & |\alpha|<N^{-\frac{1}{2}}\end{cases}
$$

Proof. The first estimate follows from $|I(\alpha)| \leqslant|I(0)|$; the second and third are proved by integrating by parts.

Lemma 6. The volume of the 3 -dimensional body B defined by

$$
\left|\lambda_{1} x_{1}+\lambda_{2} x_{2}+\lambda_{3} x_{3}\right|<\frac{1}{2}, \quad 2 \leqslant x_{i} \leqslant N(i=1,2,3)
$$

is greater than $C N^{2}$.
Proof. We chose a positive constant δ which satisfies

$$
\left(1+\frac{1}{4}\right) \lambda_{1}\left|\lambda_{2}\right|^{-1} \delta<1, \quad \frac{1}{2} \lambda_{1}\left|\lambda_{3}\right|^{-1} \delta<1, \quad\left(1+\frac{1}{2}+\frac{1}{4}\right) \delta<\frac{1}{2}
$$

The three intervals

$$
\begin{aligned}
& \frac{1}{4} \delta N-\frac{1}{2} \lambda_{1}{ }^{-1}<x_{1}<\left(1+\frac{1}{4}+\frac{1}{2}\right) \delta N+\frac{1}{2} \lambda_{1}{ }^{-1}, \\
& \frac{3}{4} \lambda_{1}\left|\lambda_{2}\right|^{-1} \delta N<x_{2}<\left(1+\frac{1}{4}\right) \lambda_{1}\left|\lambda_{2}\right|^{-1} \delta N, \\
& \frac{1}{4} \lambda_{1}\left|\lambda_{3}\right|^{-1} \delta N<x_{3}<\frac{1}{2} \lambda_{1}\left|\lambda_{3}\right|^{-1} \delta N
\end{aligned}
$$

lie in $(2, N)$ if N is sufficiently large, and have lengths at least $\lambda_{1}{ }^{-1}, C_{1} N$, and $C_{2} N$ respectively. These inequalities therefore define a box of volume greater than $C N^{2}$. Remembering that $\lambda_{1}>0, \lambda_{2}<0, \lambda_{3}<0$, it is at once verified that for such x_{i} we also have

$$
\left|\lambda_{1} x_{1}+\lambda_{2} x_{2}+\lambda_{3} x_{3}\right|<\frac{1}{2},
$$

which proves the lemma.
Lemma 7. Let

$$
J_{1}=\operatorname{Re} \int_{0}^{T_{1}-1} S\left(\lambda_{1} \alpha\right) S\left(\lambda_{2} \alpha\right) S\left(\lambda_{3} \alpha\right) e(\gamma \alpha) K(\alpha) d \alpha
$$

where $T_{1}=C_{1} N L^{-\rho}$. Then $J_{1}>C N^{2} L^{-3}$.
Proof. Let $\lambda=\max _{i}\left|\lambda_{i}\right|$. In the interval of the integral we have

$$
\left|\lambda_{i} \alpha\right| \leqslant\left|\lambda_{i}\right| T_{1}^{-1} \leqslant \lambda C_{2} N^{-1} L^{\rho} .
$$

Hence, by Lemma 4 with $a=0, q=1$,

$$
\left|S\left(\lambda_{i} \alpha\right)-I\left(\lambda_{i} \alpha\right)\right|<C N \exp \left(-A L^{\frac{1}{2}}\right) \quad(i=1,2,3)
$$

Since $0 \leqslant K(\alpha) \leqslant 1$, we may replace each $S\left(\lambda_{i} \alpha\right)$ in J_{1} by $I\left(\lambda_{i} \alpha\right)$ with an error at most

$$
3 N^{2} T_{1}^{-1} C N \exp \left(-A L^{\frac{1}{2}}\right)<C_{3} N^{2} L^{\rho} \exp \left(-A L^{\frac{1}{2}}\right)
$$

since trivially $\left|S\left(\lambda_{i} \alpha\right)\right| \leqslant N,\left|I\left(\lambda_{i} \alpha\right)\right| \leqslant N$.
In the resulting expression

$$
\operatorname{Re} \int_{0}^{T_{1}-1} I\left(\lambda_{1} \alpha\right) I\left(\lambda_{2} \alpha\right) I\left(\lambda_{3} \alpha\right) e(\gamma \alpha) K(\alpha) d \alpha
$$

we replace $e(\gamma \alpha)$ by 1 with an error less than

$$
\int_{0}^{T_{1}-1} N^{3}|e(\gamma \alpha)-1| d \alpha \leqslant|\gamma| N^{3} \int_{0}^{T_{1}-1} \alpha d \alpha<C N^{3} T_{1}^{-2}=C_{2} N L^{2 \rho}
$$

In the resulting expression

$$
J_{2}=\operatorname{Re} \int_{0}^{T_{1}-1} I\left(\lambda_{1} \alpha\right) I\left(\lambda_{2} \alpha\right) I\left(\lambda_{3} \alpha\right) K(\alpha) d \alpha
$$

we replace the upper limit of integration by ∞ with an error

$$
\int_{T_{1}-1}^{\infty}\left|I\left(\lambda_{1} \alpha\right) I\left(\lambda_{2} \alpha\right) I\left(\lambda_{3} \alpha\right)\right| K(\alpha) d \alpha
$$

By Lemma 5 this is less than

$$
\begin{gathered}
C\left\{\int_{T_{1}-1}^{N^{-\frac{1}{2}}} L^{-3} \alpha^{-3} d \alpha+\int_{N^{-\frac{1}{2}}}^{1} N^{3 / 2} L^{-3} d \alpha+\int_{1}^{\infty} N^{3 / 2} L^{-3} K(\alpha) d \alpha\right\} \\
<C\left\{L^{-3} T_{1}{ }^{2}+L^{-3} N^{3 / 2}+L^{-3} N^{3 / 2}\right\}<C N^{2} L^{-3-2 \rho}
\end{gathered}
$$

Thus

$$
\begin{equation*}
\left|J_{1}-J_{3}\right|<C N^{2} L^{-3-2 \rho}, \tag{2}
\end{equation*}
$$

where

$$
J_{3}=\operatorname{Re} \int_{0}^{\infty} I\left(\lambda_{1} \alpha\right) I\left(\lambda_{2} \alpha\right) I\left(\lambda_{3} \alpha\right) K(\alpha) d \alpha
$$

Now

$$
\begin{aligned}
J_{3}= & \operatorname{Re} \int_{0}^{\infty} K(\alpha)\left\{\int_{2}^{N} \int_{2}^{N} \int_{2}^{N} \frac{e\left(\alpha\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}+\lambda_{3} x_{3}\right)\right)}{\log x_{1} \log x_{2} \log x_{3}} d x_{1} d x_{2} d x_{3}\right\} d \alpha \\
= & \operatorname{Re} \int_{2}^{N} \int_{2}^{N} \int_{2}^{N}\left(\log x_{1} \log x_{2} \log x_{3}\right)^{-1} \\
& \times \int_{0}^{\infty} e\left\{\alpha\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}+\lambda_{3} x_{3}\right)\right\} K(\alpha) d \alpha d x_{1} d x_{2} d x_{3} \\
= & \int_{2}^{N} \int_{2}^{N} \int_{2}^{N}\left(\log x_{1} \log x_{2} \log x_{3}\right)^{-1} \\
& \quad \times \frac{1}{2} \max \left(0,1-\left|\lambda_{1} x_{1}+\lambda_{2} x_{2}+\lambda_{3} x_{3}\right|\right) d x_{1} d x_{2} d x_{3}
\end{aligned}
$$

by Lemma 1. Hence

$$
J_{3} \geqslant \frac{1}{4} \int_{2}^{N} \int_{2}^{N} \int_{2}^{N}\left(\log x_{1} \log x_{2} \log x_{3}\right)^{-1} f\left(x_{1}, x_{2}, x_{3}\right) d x_{1} d x_{2} d x_{3}
$$

where f is the characteristic function of the body B defined in Lemma 6. By that lemma

$$
J_{3} \geqslant \frac{1}{4} L^{-3} \int_{2}^{N} \int_{2}^{N} \int_{2}^{N} f\left(x_{1}, x_{2}, x_{3}\right) d x_{1} d x_{2} d x_{3}>C L^{-3} N^{2}
$$

This together with (2) gives

$$
J_{1}=J_{3}+\left(J_{1}-J_{3}\right)>C_{2} N^{2} L^{-3}
$$

The next lemma is similar to Lemma 13 in the paper (2) by Davenport and Roth.
Lemma 8. If M runs through those real numbers for which $M(\log M)^{-(5 / 2) \rho}$ runs through the denominators of the continued fraction for $\lambda_{1} /\left|\lambda_{2}\right|, N=[M]$, then for

$$
\lambda N^{-1} L^{\rho}<\alpha<L^{3}, \quad \lambda=\max \left(\lambda_{1}^{-1},\left|\lambda_{2}\right|^{-1}\right)
$$

we have $\min \left(\left|S\left(\lambda_{1} \alpha\right)\right|,\left|S\left(\lambda_{2} \alpha\right)\right|\right)<C N L^{(9 / 2)-\frac{1}{2} \rho}$.
Proof. If Q is a denominator of the continued fraction for $\lambda_{1} /\left|\lambda_{2}\right|$, then by Legendre's law of best approximation

$$
\left|\left(\lambda_{1} / \lambda_{2}\right) q-a\right|>\frac{1}{2} Q^{-1}
$$

for all integers a, q with $1 \leqslant q<Q$; cf. footnote in (2, p. 94). For every α there are integers a_{i}, q_{i} such that

$$
\begin{array}{r}
\left(a_{i}, q_{i}\right)=1, \quad\left|\lambda_{i} \alpha-\left(a_{i} / q_{i}\right)\right|<q_{i}^{-1} L^{\rho} N^{-1}, \quad 1 \leqslant q_{i} \leqslant N L^{-\rho} \\
\quad(i=1,2)
\end{array}
$$

Put

$$
\beta_{i}=\lambda_{i} \alpha-\left(a_{i} / q_{i}\right) .
$$

For the α in the interval under consideration we cannot have $a_{1}=0$ or $a_{2}=0$, for otherwise for $i=1$ or 2

$$
N^{-1} L^{\rho}<\left|\lambda_{i}\right| \alpha<L^{\rho} N^{-1}
$$

a contradiction. Further, if $q_{i}>L^{\rho}$ for $i=1$ or 2 , then the required estimate follows from Lemma 3. Hence we may suppose that $q_{i} \leqslant L^{\rho}(i=1,2)$. Hence by Lemma 4

$$
\begin{aligned}
\left|S\left(\lambda_{i} \alpha\right)\right| & <\left(1 / \phi\left(q_{i}\right)\right)\left|I\left(\beta_{i}\right)\right|+C N \exp \left(-A L^{\frac{1}{2}}\right) \\
& <\left|\beta_{i}\right|^{-1} L^{-1}+C N \exp \left(-A L^{\frac{1}{2}}\right)<C_{1}\left|\beta_{i}\right|^{-1} L^{-1}
\end{aligned}
$$

by Lemma 5 since $\left|\beta_{i}\right|<q_{i}^{-1} L^{\rho} N^{-1}<N^{-\frac{1}{2}}$. If the result to be proved is false, it follows from this that

$$
\begin{equation*}
N L^{(9 / 2))^{\frac{1}{2} \rho}}<C_{1}\left|\beta_{i}\right|^{-1} L^{-1} \quad(i=1,2) \tag{3}
\end{equation*}
$$

Now

$$
\left(\lambda_{1} / \lambda_{2}\right) a_{2} q_{1}-a_{1} q_{2}=q_{1} q_{2}\left(\beta_{1}+\beta_{2}\right)
$$

Since $q_{i} \leqslant L^{p}$, (3) gives

$$
\begin{align*}
\left|\left(\lambda_{1} / \lambda_{2}\right) a_{2} q_{1}-a_{1} q_{2}\right| & \leqslant q_{1} q_{2}\left(\left|\beta_{1}\right|+\left|\beta_{2}\right|\right) \tag{4}\\
& <2 C_{1} q_{1} q_{2} N^{-1} L^{-(11 / 2)+\frac{1}{2} \rho}<C N^{-1} L^{-(11 / 2)+(5 / 2) \rho} .
\end{align*}
$$

We put $q=\left|a_{2} q_{1}\right|, a= \pm a_{1} q_{2}$, the sign being chosen so that

$$
\left|\left(\lambda_{1} / \lambda_{2}\right) q-a\right|=\left|\left(\lambda_{1} / \lambda_{2}\right) a_{2} q_{1}-a_{1} q_{2}\right| .
$$

By (4),

$$
\left|\left(\lambda_{1} / \lambda_{2}\right) q-a\right|<C N^{-1} L^{-(11 / 2)+(5 / 2) \rho}
$$

and

$$
1 \leqslant q=\left(\left|a_{2}\right| / q_{2}\right) q_{1} q_{2}<C_{2} L^{3+2 \rho}
$$

since $\left|\lambda_{2} \alpha\right|<\left|\lambda_{2}\right| L^{3}$ and a_{2} / q_{2} is near $\lambda_{2} \alpha$. Putting

$$
Q=M(\log M)^{-(5 / 2) \rho},
$$

we have in particular

$$
1 \leqslant q<Q,\left|\left(\lambda_{1} / \lambda_{2}\right) q-a\right|<1 / 2 Q
$$

Since Q is a denominator of the continued fraction for $\lambda_{1} /\left|\lambda_{2}\right|$, this contradicts Legendre's law of best approximation. Hence (3) is false and the lemma is proved.

Lemma 9. If $\lambda \neq 0$, then

$$
\int_{0}^{\infty}|S(\lambda \alpha)|^{2} K(\alpha) d \alpha<C N L^{-1}
$$

Proof.

$$
|S(\lambda \alpha)|^{2}=\sum_{p_{1} \leqslant N} \sum_{p_{2} \leqslant N} e\left\{\lambda \alpha\left(p_{1}-p_{2}\right)\right\} .
$$

Hence by Lemma 1, the integral is less than the number of solutions of

$$
\left|\lambda\left(p_{1}-p_{2}\right)\right|<1, \quad p_{1}, p_{2} \leqslant N
$$

For given p_{1} this gives at most $2|\lambda|^{-1}+1$ choices for p_{2} and hence the number of solutions is at most

$$
\pi(N)\left(2|\lambda|^{-1}+1\right)<C N L^{-1}
$$

Lemma 10. If N, ρ, and λ are the same as in Lemma 8, then

$$
\int_{\lambda N^{-1} L^{\rho}}^{L^{3}}\left|S\left(\lambda_{1} \alpha\right) S\left(\lambda_{2} \alpha\right) S\left(\lambda_{3} \alpha\right)\right| K(\alpha) d \alpha<C N^{2} L^{(7 / 2)-\frac{1}{2} \rho}
$$

Proof. By Lemma 8, the integral is less than

$$
C N L^{(9 / 2)-\frac{1}{2} \rho}\left\{\int_{0}^{\infty}\left|S\left(\lambda_{2} \alpha\right)\right| S\left(\lambda_{3} \alpha\right)\left|K(\alpha) d \alpha+\int_{0}^{\infty}\right| S\left(\lambda_{1} \alpha\right) S\left(\lambda_{3} \alpha\right) \mid K(\alpha) d \alpha\right\} .
$$

By Cauchy's inequality, the first of the two integrals is

$$
\leqslant\left\{\int_{0}^{\infty}\left|S\left(\lambda_{2} \alpha\right)\right|^{2} K(\alpha) d \alpha \int_{0}^{\infty}\left|S\left(\lambda_{3} \alpha\right)\right|^{2} K(\alpha) d \alpha\right\}^{\frac{1}{2}}<C N L^{-1}
$$

by Lemma 9 . The same estimate holds for the second integral and the result follows.

Lemma 11. If $A>4$, then

$$
\int_{A}^{\infty}|S(\lambda \alpha)|^{2} K(\alpha) d \alpha \leqslant \frac{16}{A} \int_{0}^{\infty}|S(\lambda \alpha)|^{2} K(\alpha) d \alpha
$$

Proof. This is a special case of (2, Lemma 2).
Lemma 12.

$$
\int_{L^{3}}^{\infty}\left|S\left(\lambda_{1} \alpha\right) S\left(\lambda_{2} \alpha\right) S\left(\lambda_{3} \alpha\right)\right| K(\alpha) d \alpha<C N^{2} L^{-5}
$$

Proof. By Hölder's inequality the integral is $\leqslant\left(L_{1} L_{2} L_{3}\right)^{1 / 3}$, where

$$
L_{i}=\int_{L^{3}}^{\infty}\left|S\left(\lambda_{i} \alpha\right)\right|^{3} K(\alpha) d \alpha
$$

Using the trivial estimate $\left|S\left(\lambda_{i} \alpha\right)\right|<C N L^{-1}$ and Lemma 11,

$$
L_{i} \leqslant C N L^{-1} \int_{L^{3}}^{\infty}\left|S\left(\lambda_{i} \alpha\right)\right|^{2} K(\alpha) d \alpha \leqslant C_{1} N L^{-4} \int_{0}^{\infty}\left|S\left(\lambda_{i} \alpha\right)\right|^{2} K(\alpha) d \alpha
$$

and this by Lemma 9 is $\leqslant C N^{2} L^{-5}$.
Proof of the Principal Lemma. We shall prove that if N runs through the sequence specified in Lemma 8 and $\rho=15$, then

$$
J \equiv \operatorname{Re} \int_{0}^{\infty} S\left(\lambda_{1} \alpha\right) S\left(\lambda_{2} \alpha\right) S\left(\lambda_{3} \alpha\right) e(\gamma \alpha) K(\alpha) d \alpha>C N^{2} L^{-3}
$$

We divide the interval of integration into three subintervals E_{1}, E_{2}, E_{3} where

$$
\begin{aligned}
& E_{1}: 0<\alpha<\lambda N^{-1} L^{\rho}, \\
& E_{2}: \lambda N^{-1} L^{\rho}<\alpha<L^{3}, \\
& E_{3}: L^{3}<\alpha,
\end{aligned}
$$

where λ is defined in Lemma 8. By Lemma 7, the integral over E_{1} is $>C N^{2} L^{-3}$. The integral over E_{2} is in absolute value

$$
<C N^{2} L^{(7 / 2)-(15 / 2)}=C N^{2} L^{-4}
$$

by Lemma 10. By Lemma 12 the integral over E_{3} is in absolute value less than $C N^{2} L^{-5}$. Hence

$$
J>C N^{2} \mathrm{~L}^{-3}
$$

and this with Lemma 2 proves the Principal Lemma.
One might conjecture that if λ is positive and irrational, then $[\lambda p]$ represents infinitely many primes.

References

1. H. Davenport and H. Heilbronn, On indefinite quadratic forms in five variables, J. London Math. Soc., 21 (1946), 185-193.
2. H. Davenport and H. Roth, The solubility of certain Diophantine inequalities, Mathematika, 2 (1955), 81-96.
3. K. Prachar, Primzahlverteilung (Berlin, 1957).

Bedford College,
London University

