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Abstract

It is shown that barrier functions applied to the dual linear program can be modified to
give multiplier estimates that converge to the solution of the primal problem. Newton's
method is considered for implementing this approach and numerical results presented. It
has been shown that there is a connection between these methods and Karmarkar's
algorithm, but for the class of problems considered further improvements are still
required before those methods become competitive with active set methods.

1. Introduction

Recent developments in linear programming have put an emphasis on methods
which (in contrast to the ubiquitous simplex algorithm) do not make direct and
explicit use of the geometry of the set of feasible points, and spectacular results
have been claimed (and disputed) for one such procedure due to Karmarker [10].
Investigation of this procedure has thrown up links with barrier functions [6] and
with the closely related entropy methods [2]. The present paper considers the
application of these methods to the linear programming problem. The main aim is
to point out their advantages and difficulties, and to report some (limited)
numerical experience.

Consider the linear programming problem

mincrx; X= {x: Ax > b} (LPl)
xejf
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40 M. R. Osborne [2]

where A: Rp -* R" has full column rank p(n > p). The standard barrier
function algorithm for solving this problem and making use of the log barrier
function has the form:

0) Set a < 1, /ij, tol small, and x° feasible
1) Starting from x* compute

x*+1 = arg miaB(x,tik)
X

where

and a, is the / 'th row of A;
ii)

iii) Stop if

Hk+l < tol

else k := k + 1; repeat (i).

Methods of this kind have been analysed extensively for nonlinear programming
problems [4], but it is usual for the successive minimizations in the step equivalent
to (i) above to be ill-conditioned and too expensive for this approach to be
competitive. However, the situation is somewhat different here.

Barrier functions do have some nice properties [4]. For example
i) let x* -» x* as fik -* 0, then x* minimises LP1,

ii) let

«* = M*A(x*), i = 1,2,..., I!, (1.2)

where /-,(x) = a^x - bt. Then

u^uf, i = l,2,...,n

where u* is a Kuhn-Tucker multiplier for the /'th constraint.
REMARK 1.1. Let a be an index set defined by

o = { i : r I ( x ' ) - 0 } . (1.3)

If \a\ > p and dim{a(, / e a } = p then x* is a vertex of the feasible region X. In
this case

l i m ^ v ^ x * , ^ E(»*)2aX (1.4)

is nonsingular. In particular the limiting Hessian has a finite condition number.
This result is in marked contrast to the usual result in the nonlinear programming
problem [5].
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(31 Barrier functions with superfast convergence 41

Rate of convergence results for the nonlinear programming problem are also
known [8]. These are usually derived under the restrictive conditions of

(a) strict complementarity (uf > 0 if r,(x*) = 0), and
(b) second order sufficiency.
They ensure that x* -» x* like O(nk), and are necessary in the sense that if

strict complementarity is relaxed then the convergence rate drops to exactly
O(nY2). However, for LP1 second order sufficiency cannot hold, and strict
complementarity is equivalent to uniqueness in the usual case that \a\ = p [13].
The nonunique case has some interest, and the main results are summarised
below.

THEOREM 1.1. Let LP\ have a connected set of optima {not a singleton) bounded
by vertices of the feasible region X. Let xk -» x*. Then

(i) x* is an interior point of the optimal set,
(ii) the rate of convergence is O(nk), and

(iii) nkV
 2B(xk, nk) -» singular matrix as fik -* 0.

For the standard linear programming algorithms, degeneracy is more of a
problem than nonuniqueness. This occurs when \a\ > p (only the optimal vertex
is relevant here), and typically rate of convergence behaviour of barrier function
methods is unaffected.

EXAMPLE 1.1. Consider the problem

mine.

subject to

1 0 1
- 1 0 1

0 1 1
L 0 -1 1J

x > 0.

This problem has a degenerate optimum (|o| = 4) at x = 0. To determine x(/i) set

0 = V5 = e3
r - /i( — T — ( e i + e a ) T + ^ ( ~ e i + ^V

2 3

This gives

x\ = X2 = 0 . *3 = 4M-

U: = U2 = M3 = M4 = 1 / 4 ,
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and

1 \2 ° °
ju,V 2B = — 0 2 0

16 [O 0 4J
The problem dual to LP1 is

maxb^u; U = (u: ATu = c,u > 0}. (LP2)

The natural barrier function to consider for this problem is

subject to

^ r u = c, (1.6)

and the main result connecting these barrier function formulations is as follows.

THEOREM 1.2. Let xk minimize B(x,iik), and define uk by (1.2). Then uk

maximizes D(u,iik) subject to the constraints (1.6). Conversely, let uk maximize
(1.5) subject to (1.6) and set irk = \>.k/u

k, s = 1,2,..., n, then mk = rs(x
k) where

xk minimizes B(x, [ik).

PROOF. The necessary conditions for the constrained maximization of D(u, nk)
subject to (1.6) gives

where y is the vector of Lagrange multipliers. This equation is satisfied by y = x*,
w/ = rs(x

k), and this establishes the desired result as B(x,n) is strictly convex
and D(u, n) strictly concave for ju > 0.

REMARK 1.2. This is an important result because it guarantees that
(a) by minimizing B(x, fi) we estimate not only x*: we simultaneously estimate

u* maximizing LP2 to the same order of accuracy, and
(b) the multiplier estimate u* obtained by minimizing B(x,ii) is stable in the

sense that it exactly maximizes D(u,/i) and these maxima generate a sequence
converging to u*.

REMARK 1.3. The log barrier function posseses another attractive property. The
sequence of minima x* obtaining by minimizing B(x, jxk) is independent of the
row scaling of the constraint matrix A. The corresponding result for the dual
variable u is
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[ 51 Barrier functions with superfast convergence 43

The challenge to make barrier function methods competitive is offered on at
least two fronts:

(a) to use rate of convergence information to accelerate convergence of the
method. This is usually attempted using extrapolation techniques [4], [8]. How-
ever, in the next section an alternative approach is suggested that appears
attractive. Also, in section 3 an alternative barrier function closely related to
entropy methods is considered. It offers the potential of even more rapid
convergence.

(b) to reduce the amount of computation involved in each minimization. Here
an implementation of Newton's method is studied in section 4. This has some nice
features (in particular, a line search procedure suggested in [14] proves very
satisfactory). However, the barrier function approach appears to have intrinsic
difficulties.

To check out these ideas the LP problem generator described in [13] has been
used. The numerical results are hmited (actually by the capacity of the computer
used), but they are not incompatible with the suggestions that this class of
methods has potential advantages for very large problems for which the barrier
function minimizations are relatively easy. They do confirm that numerical
problems can occur in the minimizations, and it does appear that these methods
are more subject to ill-conditioning problems than are simplex and its variants.

2. Modified barrier functions

Clearly, if the optimal reference pointed to by the index set a defined by (1.3)
is known then the solutions both to LP1 and LP2 can be obtained by solving

AX = bo (2.1)

and

Al< = c (2.2)

where the subscript a defines the appropriate submatrices and vectors. Thus it is
necessary to continue the sequential minimizations only until the optimal refer-
ence can be identified with sufficient confidence. It turns out that a modification
of the basic barrier function assists this. Let \k+l be an estimate of the multiplier
vector and define

M*(x) = crx - pk t wrf'1 logr,., (2.3)

where »v, > 0 is chosen to transform under row scaling according to

a, -> d,*i => w, -* d-w.
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and where the initial multiplier estimate transforms according to

a, -> dflu => v° -» uf/d,.

Suitable choices include w, = ||a,||, u,° = l/||a,||, / = 1 ,2 , . . . ,« . The main step of
the barrier algorithm becomes

x* = argminM*(x), vk = \ikwiv
k~1/rl{xk)- (2-4)

X

This procedure was suggested in [12] and analysed for general nonlinear program-
ming problems in [9]. The main result in the case that LP1 has a unique solution
is an immediate adaptation of the results of [9].

THEOREM 2.1. Let LP1 have a unique solution with \a\ = p, and let {iik} -» 0.
Then x* —» x*, v* —» v*, and the rate of convergence is given by

\\xk- x*|| = obik), hk- v*|| =

REMARK 2.1. The feature of greatest interest is the superfast convergence of the
multiplier estimates (like \L%akl/2 against noa

k for the unmodified barrier func-
tion). The proof of the rate of convergence result follows on noting that the
estimate is appropriate for the components of x* associated with the inactive
constraints (rs -t* 0). But because v* is dual feasible by definition (from (2.4))

where ac is the complementary index set. The result now follows because the
estimate is correct for the inactive constraints.

The key point is that v * -»u* maximizing LP2. Thus the minimizing sequence
generated by Mk provides an auxiliary sequence converging superfast to the
maximizer of LP2. This result is obtained without any artificial inspection and
selection process or the need for an explicit extrapolation procedure and recovers
the best result possible for extrapolation procedures.

The barrier function minimized by v* follows from (2.4) by inspection. We
have

v* = argmaxiV^v)
V

subject to (1.6), where

Nk(y) = brv + iik f w,vk~l log(O- (2-6)

REMARK 2.2. This dual barrier function has the interesting feature that the
effective barrier parameter penalising the active constraints is relatively very small
because of the weighting by vk~l. Experience suggests that the use of small
weighting parameters for the constraints tending to zero makes minimization
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difficult. Thus it is a further bonus that the minimization of Mk(x) does not
involve such small parameters associated with the active constraints and can be
expected to be relatively easier.

3. The exponential barrier

In [3] a procedure very similar to that considered in the previous section is
developed from entropy methods. However, it can be derived directly by our
arguments. Here, instead of a log barrier, exponentials are used to define the
penalising objective function associated with LP1. The basic form of this ex-
ponential barrier function is

£(x, ft) = crx + n £ e-
r<W^ (3.1)

where wt > 0 is chosen to make the minimizer of E(x, (i) independent of row
scaling of the constraint matrix (as before w, = ||a,|| will do). In this case the main
step of the algorithm computes

xfc = argmin£(x, nk)
X

and

U. C , / l , Z . , . . . , r I . I J . Z . I
Wj

Convergence results are essentially the same as for the log barrier function.

THEOREM 3.1. (i) Let {iik} -> 0 and {xk} -» x*. Then x* minimizes LP\ and
{u*} -» u* maximizing LP2.

(ii) Let LP\ have a unique solution. Then

I, 111!*- U*||= Oil

where

p = min{r,(x*)/w,., i e ac) (3.3)

is independent of the row scaling of A.

PROOF, (i) The standard argument [4] shows that {cTxk} is decreasing and that
lim{x*} feasible. It is now easy to show that x* must minimize LP1.

(ii) For / e a, uk -» uf > 0 only if r,.(x*) = O(fik). Thus
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and the first result follows because Aa has full rank (uniqueness implies \a\ > p
so that x* is a vertex of X). The second part follows on noting that

AT
a(u

k
a - u*a) = -AT

aM
k< = O(e-"*'),

as u* satisfies (1.6).
Note that u* is dual feasible, but feasibility (except in the hmit) is not forced on

x*. In fact, if u* > 1/w, then it follows from (3.2) that r/\k) < 0. In this sense
the exponential defines a soft barrier, in contrast to the log barrier which defines
a hard barrier. However, u* is necessarily dual feasible, and we can show that it
maximizes a hard barrier function. Assume that is has the form

i - i

Then rninirnizing F subject to (1.6) gives

1 = 1

Equating terms gives

or, using (3.2),

/ / (" , ) = -l
Thus

/,(«) = -(wlogw,M- u).

Note that /, is strictly concave on « > 0 so that uniqueness of the maximum,
which is assumed implicitly in this development, is justified.

The trick used in the previous section of weighting the barrier terms to obtain a
more rapidly convergent sequence of dual variables can be used here also. Let
v*"1 be an estimate of the dual vector and consider the barrier function

G*(x) = crx + nk £ wtf-^e-'W^. (3.4)
i=i

The main step of the algorithm computes

\k = argminG*(x),
X

and

vk = of-Vie*)/"*"., i = 1,2,.... n. (3.5)

As usual x* is independent of the row scaling of A provided

a,. -> dp, => w, -» d,wh of -» vf/d,.

These conditions are satisfied by setting w, = ||a,||, vf = l/||a,||.
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[91 Barrier functions with superfast convergence 47

The rate of convergence result now becomes the following.

THEOREM 3.2. Let LP\ have a unique solution, uf > 0 for i e a, and p be given
by (3.3). Then

and

- v*||= (3.6)

REMARK 3.1. The use of Gk is suggested in [3] for solving linear programming
problems. The spectacular rate of convergence result (3.6) is not noted, but the
comment is made that the dual maximization problem for v k which considers the
objective function

w,\ v,log - o,

is slowly convergent. This should be compared with Remark 2.2. Also conver-
gence will be through infeasible points when using Gk if some multipliers increase
to their limiting values.

The order of convergence behaviour of the different barrier functions is
compared in Table 3.1 for the barrier parameter sequence \ik = iLoa

k. The entries
in this table follow immediately from the previous discussion. For example
consider the Mk barrier function. If

min/7(x*)/w( = w,

TABLE 3.1. Barrier functions convergence rates (j»t = noa
k ) .

Barrier Function

B
Mk

E
Gk

Convergence Order

ak

a*'/2

(e-i/-)*
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then i
from
then (using 2.4) an estimate of the order of convergence as k -» oo is obtained
from

= O(ak1/2)

in the sense that vk/{a + e)k2/2 -» 0 for any fixed e > 0.

4. A modified Newton's method

Newton's method applied to minimize F(x), where F can be any one of our
barrier functions, and stabilized by requiring that the successive values of F(xk)
decrease is considered here in the form:

(i) Compute

) T , (4.1)

(ii) compute

X' = argmin/tx' + XV),
A

(iii) set

(iv) check convergence.
The quantities which must be computed for the different barrier functions are

displayed in Table 4.1.
Several points can be made immediately.

(i) The limiting condition number of V 2F depends only on the optimal vertex
and is independent of the barrier parameter \x. This should be contrasted with
cases usually considered in nonlinear programming where the limiting condition
number is infinite [5].

(ii) The standard log barrier function has a different limiting form to the
others, which are all identical. Potentially the appearance of the squared multi-
pliers could exacerbate differences in scale between the individual terms in the
case of some relatively small multipliers.
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TABLE 4.1. Quantities required for Newton's method.

49

F

B

Mk

Ek

G"

M*V2F

l r'

n

1 r'

n _ fkw.

limMt-o^V2F

y ",* T

V "* T

L, —a,a;
a '

Y»? T
a '

F

B

Mk

Ek

Gk

-VFT+c
n

1 r'
n

r,

n _ Pkwt

L Wi a,
r,

n ——

1

o

o

o

o

(iii) The Newton correction is independent of the row scaling of the constraints.
This is true also of the iteration modified to include a line search, since the
minimizing condition determining X is vF(x + Xh)h = 0 and vF is independent
of the scaling of the constraints.

REMARK 4.1. Unfortunately the nice representations of the limiting quantities
in Table 4.1 may give somewhat misleading information about the behaviour of
the Newton iteration. The problem is that these are based on converged values,
while the Newton iteration must deal necessarily with perturbed quantities. Thus
it is important to be able to say something about the growth resulting from these
perturbations. Here an indication can be obtained by considering the Kantaro-
vich lower bound for the radius of the sphere of attraction about the solution [11].
This is
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where

K>\\V3F\\, 5=||V2
JF-1||, T,=||v2

JF-1vFr||
and

$ = t]8K< 1/2.

As R cannot exceed the distance from the constraint set, the rate of convergence
result gives R = G(fik) at most, implying that

8K=0{ml)
at least. This expression is unbounded as [ik -» 0. This suggests at least the
possibility of difficulty, and this has tended to be confirmed by our numerical
experiments.

The equation to be solved to find h* has the general form (compare Table 4.1)

ATD\A\t = -nk{c - ATD2e), (4.2)

where Dl and D2 are diagonal matrices. Also, ATD\A is positive definite
provided LP1 has a unique solution, so that an obvious strategy is to proceed by
making a Choleski factorization. However, this has proved to be reasonably
ill-conditioned, in the sense that occasional failures have occurred in solving
members of the class of problems considered in the next section (this tends to
confirm the suggestion of Remark 4.1). Another possibility is to note that if u is
known satisfying

c = A T \ \ , (1.6)

then (4.2) becomes

ATD\A\t = ATDl{-v.k{D^n - D;lD2e)},

which is equivalent to the least squares problem

minsrs; s = D^h + pkD;l(u - D2e). (4.3)
h

Note that u is not uniquely specified by the constraint equation (1.6). One way to
proceed which avoids forming /)f1u by direct calculation (potentialy awkward as
elements of D1 tend to zero with the inactive constraint multipliers) considers the
problem

minllD^ul2; A^^D^u) = c. (4.4)

Both this problem and (4.3) can be solved by using a single factorization of DXA.
REMARK 4.2. One possible choice for u which seems as if it should be attractive

is u* = v*"1. However, this has proved unsatisfactory in the numerical experi-
ments. The likely reason is that the current minimization is not carried out
accurately enough. In fact the test to terminate the current minimization has been
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that .8 < X < 1.2. Replacing this by a test on vF to try and force greater
accuracy in u (for example, ||vF(x)||/||vir(x'c~1)|| < tol) appeared to require
rather tight tolerances and a consequent greater number of iterations in each
minimization step. Remark 4.1 is probably again relevant.

The second step of the computation involves carrying out the line search to
determine A*. It has proved convenient to follow a suggestion made in [14], and to
use local approximations of special form to L(X) = (dF/dX)(x + Ah). There are
two cases.

(a) Log barrier. Let wt > 0, i = 1,2,..., n,

LM-d+t-^-j., (4.5)
i—i '

and define the interpolation <j>(t, X) by

» ( ^ M = fi + a _ x - r ' (4'6)

where

and

a = nun a .
/, «,>0

(b) Exponential barrier. Let w,a, > 0, i'• = 1,2,..., n, max, a, > 0, and

-wo+t ",ea'\ (4.7)
1 = 1

and define the interpolation <j>(t, A) by

<(,(/,A) = f1 + f2ea', (4.8)

where

and
a = maxa;.

The line search algorithm generates a sequence of points Xs starting with A0 = 0
according to the rule

Xs+1 = &Tg{<t>(t,Xs) = 0 } . (4.9)

This condition can be solved explicitly. Specifically:
(a) log barrier.

^ = L(A') - ( a - X°)L'(XS), Si = (« - A')2L'(A'),

Ai+1 = (a - XS)L(X')/(L{XS) - ( a - A')L'(A')).
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(b) exponential barrier.

fx = L(A') - L'(\')/a, f2 = L'{\')/a,

\s+1 = log(l - aL(\')/L'(\'))/a.

The utility of this line search procedure is guaranteed by the following result.

THEOREM 4.1. Let L(0) < 0, and let the conditions stated in the definitions of
L ( X) be satisfied. Then

(i) (a) log barrier:

<p{t,Xs) >L(t + Xs), 0^t<a-Xs,

(b) exponential barrier:

<t>(t,Xs)>L(t + Xs), 0 < r ;

(ii) the line search procedure is convergent. Specifically, let

Then

X1 < X2 < ••• < Xs < X*,

and

lim Xs = A*;
s—»oo

(iii) the rate of convergence is second order.

PROOF. Part (i) follows by elementary computations. Part (ii) follows from
L(0) < 0, (i), and the property that L(X) increases monotonically to oo as X -+ a
(log barrier), or X -> oo (exponential barrier). Part (iii) also follows by direct
computation which shows that

as L(XS) -> 0.

REMARK 4.3. The identifications required in order to compute </> are easily
made,

(a) Let

1 = 1
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Then
n

L{K) = c h+ }_ , ,

and

holds if h points in a direction in which the / 'th constraint is violated,
(b) Let

= cTx

Then

L(X) = crh + t ~ fhe-rMV^e-tf
/=i

so that
/ ( T ) 2 0,

and

— minaya = -

Thus a > 0 provided any constraint is violated in the direction determined by h.
This is not necessary as the approach to the minimum can be through infeasible
points unless uf < 1, / = 1,2,...,«. It can always be achieved by scaling c
suitably.

REMARK 4.4. In the case that Newton's method is used to solve the minimiza-
tion problem then the first step of the line search can be carried out immediately.
This follows because (the case of the log barrier is typical)

L(0) =

L'(0) = hrv2B(x)h

so that
(a) log barrier: X1 = a/( l + a), and
(b) exponential barrier: X1 = log(l + a)/a.
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5. Numerical experiments

Numerical results reported by Karmarkar and by those working both on the
implementation of his algorithm and on related methods appear to relate to a
small set of comparatively large, sparse problems concerning which there seems to
be a consensus regarding their suitability and relevance. Here an alternative
approach is adopted. Barrier methods are applied to solve sequences of randomly
generated test problems constructed by the procedure described in [13], and this
permits rather different kinds of information to be obtained. For example, one
may determine:

(a) how the work required to solve members of this class of problems varies as
functions of n and p.

(b) how this work compares with the estimates for active set methods presented
in [13], and

(c) how the selection of tuning constants affects the performance of the
algorithm. The test problems are obtained by sampling from a shifted Pareto
distribution

F(P) = (1 - 2p)/(p - 1) +(1 - RND)**(-l/p),

where RND is a uniform random number generator on [0,1], and p = 1.2. This
distribution has finite first moment only and is skewed. It appears to produce
more difficult problems than did other distributions tested. Also, it does not meet
the requirements of the recent average case results reported in [1] and [7]. To
obtain a first feasible point x° it is convenient to add a slack variable and
penalise the objective function (this is described in [13]). A suitable penalty can be
calculated during problem set up, so that no additional computing is needed to
adjust this. The numerical results obtained in [13] for the projected gradient
algorithm are very well modelled in the range p = 5*2s~1, s = 1,2,...,5,
n = 5 • 2', t = 5 , . . . , 6 by an expression for the number of active set updates
having the form

N = p + BpA log n/p (5.1)

with B = .358, and A = 1.37. In fact, the standard deviation of the residuals for
this estimate is less than one update. The data is obtained by taking the median of
100 replications for each value of n, p.

The number of iterations (number of search directions h* generated) for the
barrier function calculations are reported in Tables 5.1 and 5.2. These give the
median of ten replications for the values of n and p indicated. The number of
replications and the ranges of n and p were limited by both the speed and
memory of the microprocessor used. A certain amount of preliminary tuning went
into obtaining these results, and while the final strategy may not be optimal it was
certainly easy to do much worse. First the data matrix [A |b] was scaled to have
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TABLE 5.1. Performance of Mk barrier function on simulated data
(median of 10 replications).

55

71

P

5

10

20

10

15

20

15.5

18

40

19.5

20

26

80

19

27.5

TABLE 5.2. Performance of Gk barrier function on simulated data
(median of 10 republications).

n
P

5

10

20

10

16

20

15

20

40

22.5

21

32.5

80

21.5

30

column norms 1, and then the rows of A are scaled to have norm 1 (this simplifies
the choice of w,, u?) as is c. For the log barrier /ix is chosen to minimise
|| VM 1(x°)|| (this is recommended in [4]) provided this is positive. Otherwise it is
chosen to be .5E — 3 which proves to be of the same order of magnitude as the
values obtained by the other procedure. For the exponential barrier function, this
device leads to a nonlinear problem determining pv and it proved simpler to set fi
using the size of the elements of r as a guide. The rule adopted is ^ = .03
max,|/-,(x°)|. The value a = .5 was chosen to reduce fi after each minimization
after some experimentation. The computation is stopped when the optimal
reference is located to sufficient accuracy. Because the rate of convergence of the
multiplier estimates is of direct interest, the test w^+i) > lE3uv(p+2-) is used
where v is an index set pointing to the elements of u sorted into decreasing order.
(Note that the use of the slack variable implies \a\ — p + 1). An alternative is to
test if a = {j'(l), v(2), ...,v(p + l)} gives uo > 0 in (2.2). A strategy of this kind
is an essential component of the Karmarkar algorithm. It asks only weak
convergence of the multiplier estimates.

The results tend to favour the log barrier function but have certain features in
common. For example, the first two minimizations tend to take up the bulk of the
computation. Presumably this implies

(a) that the initial feasible point generated by adding a slack variable is not
particularly appropriate, and

(b) because u° does not come from a minimization step the choice of u1 after
the first minimization corresponds to a substantial change in the problem to be
solved. The most surprising difference proved to be in the significantly fewer
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TABLE 5.3. Typical results for Mk barrier function

(case p = 5, n = 10, components of u* ordered).

[18]

uk

1

2

3

4

5

6

7

8

9

10

11

Its

1

3.3194 E - 01

3.2013 E - 01

2.1790 E - 01

1.7948 E - 01

1.1438 E - 1

4.0753 E-2

3.6003 £ - 2

3.3256 £ - 2

1.6042 E-2

1.4390 £ - 2

1.4355 E-2

5

2

3.5510 £ - 1

3.2725 E - 1

2.0066 E - 1

1.8001 E - 1

1.7936 E - 1

5.5661 £ - 2

3.2011 E - 3

1.4129 E - 3

8.8311 £ - 4

8.6083 £ - 4

7.3971 £ - 4

7

3

3.5188 £ - 1

3.1852 E - 1

1.9493 £ - 1

1.7873 £ - 1

1.7650 E - 1

5.4401 £ - 2

1.2342 £ - 4

2.9869 £ - 5

2.7504 £ - 5

2.1154 £ - 5

8.3293 £ - 6

3

4

3.5240 £ - 1

3.1866 £ - 1

1.9460 £ - 1

1.7867 £ - 1

1.7657 £ - 1

5.4371 £ - 2

2.4257 £ - 6

4.9292 £ - 7

2 7090 £ - 7

2.6192 £ - 7

4.7157 £ - 8

2

minimization steps required by the log barrier function. The exponential barrier
function takes more steps (that generally prove easier to minimize), apparently
having more trouble isolating the active constraints, but the final rate of conver-
gence proves enormously fast in accordance with the predications. However, the
Newton iteration proved harder to control with occasional cases of overflow in
the exponential evaluations. Details of progress are given for the two barrier
functions applied to one example in Tables 5.3 and 5.4.

REMARK 5.1. The above observations have a direct analogue in the results of
[9]. There it is noted that a smooth, stable trajectory can be associated with the
modified log barrier function, and that this trajectory is aproached by the
computed minima sufficiently rapidly to justify the use of extrapolation tech-
niques to refine these solution estimates provided the first few points are ignored.

The justification for the recent interest in barrier methods for linear program-
ming stems from the hope that they will prove superior to active set methods for
important ranges of values of p and n. Such a conclusion would be clear for the
results presented here if, for example, the number of iterations showed little or no
tendencey to grow with n and p. For if this number of steps is N then a
break-even point would be reached when

N(np2) = (p + BpAlogn/p)ynp,

where ynp measures the work per step in the active set method, and np2 is taken
as the cost of solving the least squares problem (representing a Householder
factorization of DXA for example). But our figures give no such assurance. Thus it
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TABLE 5.4. Typical results for Gk barrier function

(case p — 5, n = 10, components of u* ordered).

57

1

2

3

4

5

6

7

8

9

10

11

Its

1

3.1284 E - 1

2.6916 E - 1

2.3304 E - 1

1.9929 E - 1

1.7544 E - 1

5.1710 £ - 2

2.1400 £ - 2

1.5441 £ - 2

1.4072 £ - 2

1.3876 £ - 2

9.4166 £ - 3

6

2

3.4969 £ - 1

2.6157 £ - 1

2.6092 £ - 1

2.5382 £ - 1

1.8104 £ - 1

5.5678 £ - 2

2.0933 £ - 2

9.3825 £ - 3

6.4766 £ - 3

1.3469 E - 3

2.8836 £ - 5

4

3

3.3252 £ - 1

2.8504 £ - 1

2.6833 £ - 1

2.2856 £ - 1

2.0296 E - 1

8.5156 £ - 2

4.0046 £ - 3

6.9780 £ - 4

1.6381 £ - 5

1.2782 £ - 6

1.6081 £ - 10

2

4

3.2279 £ - 1

3.1670 £ - 1

2.0554 £ - 1

2.0105 £ - 1

1.8324 £ - 1

5.1391 £ - 2

1.7213 £ - 3

3.8903 £ - 7

1.4601 £ - 11

5.2607 £ - 13

4.5206 £ - 21

2

5

3.5631 E - 1

3.1926 £ - 1

1.9452 £ - 1

1.7912 £ - 1

1.7876 £ - 1

5.5294 £ - 2

1.5172 £ - 8

3.8387 £ - 13

1.1260 £ - 21

4.8380 £ - 25

8.0040 £ - 42

2

is necessary to consider the possibility of reducing the effective value of N. There
appears some scope for doing this, and possibilities include keeping DXA constant
for several iterations, or updating to take account only of the largest change in Dx

at each step. The problem is that the Newton iteration is fairly sensitive (compare
Remark 4.1) so that worthwhile strategies may prove elusive. But it is perhaps
worth noting that Karmarkar improved his complexity estimate by this kind of
device.
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