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Avoiding Patterns in the Abelian Sense

J. Currie and V. Linek

Abstract. We classify all 3 letter patterns that are avoidable in the abelian sense. A short list of four
letter patterns for which abelian avoidance is undecided is given. Using a generalization of Zimin
words we deduce some properties of ω-words avoiding these patterns.

1 Introduction

The study of words avoiding certain patterns is an area of combinatorics on words
reaching back to at least the turn of the century and the work of Thue. A word in
which no two adjacent subwords are identical is called square-free; thus a square-free
word w can never be written w = xy yz with y a non-empty word. As an example,
orange is square-free, but banana is not, since banana = b an an a contains an twice
in a row.

One quickly checks that the longest square-free words over the alphabet {a, b}
are aba and bab; no word of length 4 or more over a 2 letter alphabet is square-
free. Nevertheless, in 1906 Thue [17] showed that over a 3 letter alphabet, there
are arbitrarily long square-free words. By König’s Tree Lemma, this is equivalent to
saying that there is an infinite square-free sequence on 3 letters. A word in which no
three adjacent subwords are identical is called cube-free. Thue also showed that there
is an infinite cube-free sequence over a 2 letter alphabet. A very readable modern
account of Thue’s work can be found in [3].

Thue’s discoveries have numerous algebraic applications. One such is to the Burn-
side problem for groups. The solution of this problem by Novikov and Adjan [14]
employed a cube-free sequence at a key point. More recently, square-free sequences
have been used to study equational classes of semigroups [4] and non-finitely based
varieties [16]. In this algebraic context, it becomes natural to consider not only
square-free and cube-free words, but words avoiding other patterns.

Via a construction credited to Dilworth by Morse [13], the existence of an infi-
nite square-free sequence on 3 symbols is equivalent to the existence of an infinite
semigroup with 3 generators, obeying the law x2 = e. Similarly, the existence of
an infinite cube-free sequence on 2 symbols is equivalent to the existence of an in-
finite semigroup which obeys the law x3 = e, and has 2 generators. In the study of
semigroup varieties, the following Burnside type question is natural:

Given an arbitrary word p in one or more variables, is there a finitely generated
infinite semigroup satisfying the law p = e?
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Pattern p Smallest k such that
p is k-avoidable

y ∞
y2 (= y y) 3
yn, n ≥ 3 2

Table 1: The k-avoidability of patterns over a one letter alphabet.

LetΣ be a finite alphabet, and letΣ∗ be the free monoid overΣ. ThusΣ∗ consists
of all finite strings of symbols inΣ, called words, with the operation of concatenation.
The word in Σ∗ with no letters, the empty word, is denoted ε. The length of word w
is the number of letters in it, denoted by |w|. Thus |banana| = 6, |ε| = 0. We will
also consider infinite one-way words over Σ of the form w = w1w2w3 · · · , which we
call ω-words. The set of ω-words over Σ is denoted by Σω . Words are finite unless
otherwise indicated. If p = p1 p2 · · · pk is a string and w is a finite or infinite word
then w encounters p if there are words t , v, Xi such that w = tX1X2 · · ·Xkv, each Xi

is non-empty and Xi = X j whenever pi = p j . Equivalently, we say p occurs in w.
We call p a pattern and write w � p if pattern p occurs in w. If p does not occur in
w then we write w �� p and say that w avoids p. Thus ‘banana’ encounters y y, while
‘orange’ avoids y y.

If arbitrarily long words avoiding p exist over an alphabet of size k, then p is k-
avoidable, otherwise p is k-unavoidable. By König’s Tree Lemma, p is k-avoidable if
and only if there is an ω-word on k letters that avoids p.

Thue’s work shows that y y and y y y are avoidable. In fact, everything about avoid-
ing patterns on one letter has been known since 1906. (See Table 1.)

While some patterns are avoidable, others are unavoidable; consider xyx. If w is
a long enough word over a fixed finite alphabet, then w has a repeated letter, say u.
Word w will thus have a subword1 uvu, some word v, and uvu is a coded version of
xyx.

A characterization of avoidable patterns has been given by Zimin [18], and inde-
pendently by Bean et al. [2]. According to Zimin, pattern p over an alphabet of n
letters is avoidable if p is avoided by Zn, where Zn is defined recursively by

Zn =

{
1, n = 1

Zn−1nZn−1, n > 1.

The following problem has been open for 20 years [2]:

Find an algorithm to decide, given an avoidable pattern p, the smallest k such
that p is k-avoidable.

Progress has been made on this problem given restrictions on p. For example,
Cassaigne [6] solved the problem when p is a pattern over a 2 letter alphabet. Cas-
saigne also gives an inventory of the state of knowledge when p is a pattern over a

1In this context, a subword of a word is always contiguous: ana is a subword (2 ways!) of banana, but
aa is not. The opposite of a subword is an extension: banana is an extension of ana.
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Pattern p Smallest k such that
p is k-avoidable

in the abelian sense
y ∞
y2 (= y y) 4
y3 3
yn, n ≥ 4 2

Table 2: The k-avoidability in the abelian sense of yn.

3 letter alphabet. For example, abcbabc is known to be 3-avoidable, but perhaps is
2-avoidable.

In algebraic problems, commutativity is usually a simplifying assumption. In
1961, Erdős [10] asked whether an infinite sequence over a finite alphabet existed
which was non-repetitive in an abelian sense; no 2 adjacent blocks were to be permu-
tations of one another. Not only 1234 1234 is forbidden in such a sequence, but also
1234 2134, since 1234 and 2134 are permutations of each other.

A sequence avoiding y y in this abelian sense was discovered by Evdokimov [11],
but he used an alphabet of 25 letters. The alphabet size was reduced to 5 letters by
Pleasants [15], and not until 1992, to a 4 letter alphabet by Keränen [12]. One checks
that on a 3 letter alphabet there are only finite sequences which are non-repetitive in
this abelian sense. On the other hand, Dekking [9] showed that the smallest alpha-
bet on which y3 was avoidable in this abelian sense had 3 symbols, while 2 symbols
were necessary and sufficient to avoid y4 in the abelian sense. We see then, that our
understanding of avoiding patterns in the abelian sense is only now at the same level
that our understanding of ordinary pattern avoidance was in 1906!

If X and Y are words then we say that X ∼ Y if and only if the letters of X are
a permutation of the letters of Y . In words, X is abelian equivalent to Y . If p =
p1 p2 · · · pk is a string and w is a finite or infinite word then w encounters p in the
abelian sense if w = tX1X2 · · ·Xkv, each Xi is non-empty and Xi ∼ X j whenever
pi = p j . Equivalently, we say p occurs in w in the abelian sense. We write w |= p if
w encounters p in the abelian sense, w �|= p otherwise. If an ω-word avoiding p in
the abelian sense exists over an alphabet of size k, then p is k-avoidable in the abelian
sense, otherwise p is k-unavoidable in the abelian sense.

From now on we have a distinction between ‘w encounters p’, and ‘w encounters p
in the abelian sense’, etc. In the first case we say by way of emphasis that ‘w encounters
p in the ordinary sense’. Suppose that P is a set of patterns. We extend our definitions,
saying P is k-avoidable (k-avoidable in the abelian sense) if there is an ω-word w on a
k-letter alphabet such that w �� p (w �|= p) for all p ∈ P. We write w �� P (w �|= P).
Let S be a set of words. We say that w avoids subwords in S if no word of S is a subword
of w.

Knowledge of abelian avoidability is in a very primitive state. It is not even known
which patterns are abelian avoidable. We show (Lemma 3) that avoidability in the
abelian sense is not the same as avoidability in the ordinary sense. In Section 3.1
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we completely determine which patterns over a 3 letter alphabet are avoidable in the
abelian sense.

Theorem 1 A pattern p on 3 letters is avoidable in the abelian sense if and only if
Z3 �|= p.

To have the same result on 4 letters (see Section 3.2), it would suffice to show that
the following six patterns are avoidable in the abelian sense.

b1 01020312
b2 01020321
b3 01021303
b4 01023031
b5 010203013
b6 010213020

For these 6 patterns there are considerable restrictions on an ω-word avoiding any
of them. For example, none of these patterns is 4-avoidable in the abelian sense. If
one of these patterns turns out to be avoidable in the abelian sense, then we have an-
other contrast with ordinary avoidance, where no pattern is known to be 5-avoidable,
but not 4-avoidable [1], [8].

The following conjecture seems natural:

Conjecture 2 A pattern p on n letters is avoidable in the abelian sense if and only if
Zn �|= p.

2 Avoidable and Unavoidable Patterns

To begin with, we establish that avoidability in the abelian sense is not the same as
avoidability in the ordinary sense.

Lemma 3 The pattern p = abcabadabacba is avoidable in the ordinary sense, but not
avoidable in the abelian sense.

Proof By Zimin’s criterion, to show that p is avoidable it is enough to show that p
does not occur in Z4 = 121312141213121 in the ordinary sense. Suppose on the
contrary that Z4 has a subword P = ABCABADABACBA where A, B, C and D are
non-empty words. Then 6|A| + 4|B| + 2|C| + |D| = |P| ≤ |Z4| = 15, whence
|A| = |B| = 1. By considering the frequencies of letters in P and Z4 we see that A = 1
and B = 2. We see that the first and second occurrences of AB in P must correspond
to the first and second occurrences of 12 in Z4, hence C = 13. On the other hand
by considering the last and the next to last occurrences of BA in P, we deduce that
C = 31, a contradiction. This shows that p is avoidable in the ordinary sense. On the
other hand, the parsing Z4 = 1, 2, 13, 1, 2, 1, 4, 1, 2, 1, 31, 2, 1 shows that p occurs in
Z4 in the abelian sense, which shows that p is unavoidable in the abelian sense, as Z4

is unavoidable.
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2.1 Avoidable Patterns

A fractional abelian s power is a word of the form uvw where w ∼ u, and |uvw|/|uv| =
s. For example, madam = ma d am is a fractional abelian 5/3 power. We allow v
to be empty in our definition, so it is correct to say that teammate = team mate is
a fractional abelian 2 power, although we prefer to call it an abelian square. Also
allowable is u = w = ε, so it is also correct to say that orange is a fractional abelian 1
power. When u, v and w are all empty the ratio |uvw|/|uv| is not defined, but it makes
sense to say that uvw = ε is a fractional 0 power since x0 = ε in the free monoid, and
this is the convention we will make.

We say that a word w contains a r+ fractional abelian power if w has a subword that
is a fractional s abelian power with s ≥ r. The notation w |= xr+ indicates that w
contains a fractional abelian r+ power. Otherwise w avoids xr+.

Theorem 4 ([7]) Let r ∈ (1, 2]. There is an ω-word w over some finite alphabet such
that w avoids xr+.

Call a word w doubled if each letter of w occurs at least twice in w.

Lemma 5 Let p be a doubled pattern with |p| = l. Suppose q |= p. Then q |= xr+

where r = 1 + (l − 1)−1.

Proof Let p = a1a2 · · · al and suppose that q = uA1A2 · · ·Alv where Ai �= ε for each
i and Ai ∼ A j whenever ai = a j . Let M = max{|Ak| : 1 ≤ k ≤ l}. Since p is doubled
we may choose i < j such that ai = a j and |A j | = M. Let u = Ai , v = Ai+1 · · ·A j−1,
w = A j . Then u ∼ w and

|uvw|

|uv|
= 1 +

|w|

|uv|

= 1 +
|A j |

|Ai · · ·A j−1|

≥ 1 +
|A j |

( j − i)|A j |

≥ 1 +
1

l− 1
.

Thus q |= xr+, where r = 1 + (l − 1)−1.

Lemma 6 Any word w over an n letter alphabet with |w| ≥ 2n contains a doubled
subword.

Proof Let ln, n ≥ 1 be the length of the longest word on n letters with no doubled
subword. We shall prove by induction that ln ≤ 2n − 1. Clearly l1 = 1 = 21 − 1.
Suppose the inequality holds for n and let w be a n+1 letter word. If w has no doubled
subword then some letter, a say, occurs only once in w and w = w1aw2 where w1, w2
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are words on at most n letters. Neither of w1 and w2 can have a doubled subword
since w has no doubled subword. By induction, |w1| ≤ 2n − 1 and |w2| ≤ 2n − 1.
Thus |w| ≤ 2(2n − 1) + 1 = 2n+1 − 1, as desired.

Combining the last two lemmas and Theorem 4 gives us the following.

Lemma 7 Any pattern p on n letters with |p| ≥ 2n is avoidable in the abelian sense.

We shall see that the avoidability of fractional abelian powers has further im-
plications for the abelian avoidance of general patterns. Let p be a pattern and let
r ∈ [1, 2]. We say that p forces xr+ if w |= p implies w |= xr+, and we write p � xr+.
If p = ε then p does not force any positive powers, since p may occur in the empty
string and the empty string contains no positive powers (by our earlier convention).
However, the empty string is just x0, so certainly ε � x0+. If p �= ε then trivially
p � x1+, and hence also p � x0+. Having dealt with the degenerate cases let us now
show that abacbab� x3/2+.

Lemma 8 The pattern abacbab forces x3/2+.

Proof Suppose w = tA1B1A2CB2A3B3z where the Ai , Bi and C are non-empty words
and A1 ∼ A2 ∼ A3, B1 ∼ B2 ∼ B3. If |A1| ≥ |B1|, then |A1B1A2|/|A1B1| ≥ 3/2, so w
contains the 3/2+ power A1B1A2. Otherwise, |B1| > |A1|, and w contains the 3/2+
power B2A3B3.

Let w be an ω-word avoiding x3/2+ powers. Then w avoids abacbab. This method
of showing avoidability can be generalized:

Let p = p1 p2 · · · pn be a pattern with letters pi . Suppose that p is unavoidable
in the abelian sense. Fix r ∈ (1, 2], and let w be an ω-word avoiding xr+. Since p
is unavoidable, let P = P1P2 · · ·Pn be a subword of w where the Pi are non-empty,
and Pi ∼ P j if pi = p j . Given r, and then P, define the P-length of a subword
T = pi pi+1 · · · p j of p to be |T|P = |Pi| + |Pi+1| + · · · + |P j |. Suppose that XY Z is a
subword of p, with X ∼ Z. Since w avoids xr+, we must have |XY Z|P/|XY |P < r, or
what is the same

|Z|P < (r − 1)|XY |P.(1)

From the pattern p we then get a whole system of inequalities, one for each fractional
power XY Z of p with X ∼ Z.

Now let p be an arbitrary pattern, and let r ∈ [1, 2]. For each distinct letter p j

of p introduce a variable, l j , which stands for the length of a string corresponding to
letter p j in an occurrence of p. For each subword T = pi pi+1 · · · p j of p we define
lT to be the sum lpi + lpi+1 + · · · + lp j . According to (1) above we create a system of
inequalities S(p, r) as follows:

S(p, r) : {lZ < (r − 1)lXY : p = αXY Zβ,X ∼ Z}.
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In the case where r ∈ (1, 2] we exploit the fact that lX = lZ and rewrite the system
S(p, r) in the equivalent form

S(p, r) : {[(r − 1)−1 − 1]lX < lY : p = αXY Zβ,X ∼ Z}.

Henceforth it is tacitly understood that if r = 1 the first form of the system is to be
used, and the second, tidier form is to be used for all r ∈ (1, 2].

Clearly, if r = 1 then system S(p, r) is inconsistent, since the l j are integer vari-
ables. In the case that p is unavoidable, we see that the system S(p, r) is consistent
for each r ∈ (1, 2] by taking lp j = |p j |P for each letter p j of p as above. In the
case of the simplest avoidable pattern, p = aa, and the largest exponent, r = 2,
the system S(aa, 2) defined above is just the inconsistency 0 < 0, which shows that
any ω-word avoiding x2+ powers automatically avoids p. More interesting is the case
where r ∈ (1, 2). For example, consider again Lemma 8, where p = abacbab and
r = 3/2. There (r − 1)−1 − 1 = 1 and the fractional abelian powers in p are aba,
abacba, bacb, bacbab, bacba, acba, abacbab and bab. The system S(abacbab, 3/2) is

la < lb(2)

la < lb + la + lc + lb(3)

la + lb < la + lc(4)

lb < la + lc(5)

lb < la + lc + lb + la(6)

lb + la < lc + lb(7)

lb + la < lc(8)

la < lc + lb(9)

la + lb < la + lc + lb(10)

lb < la.(11)

One immediately notices that the last inequality is the inversion of the first in-
equality. This is a contradiction! We deduce that abacbab is avoidable, and in fact
that abacbab� x3/2+, in accordance with Lemma 8. When S(p, r) is inconsistent we
say that p has an inversion. All nonempty patterns have an inversion for r = 1, the
trivial inversion. Typically when we speak of a pattern having an inversion we mean
a nontrivial inversion with r ∈ (1, 2]. Note that the inequalities involving the vari-
able lc are of no use in deducing the inconsistency of S(abacbab, 3/2). This is because
variable lc occurs only on the right hand side of the inequalities and it may be taken to
be arbitrarily large. Indeed, for no value of r ∈ (1, 2] will the presence of the variable
lc affect the consistency of the system, as we invite the reader to check. The fact that
letter c occurs just once in p is what confines the singular appearances of variable lc
to the right hand sides of the inequalities. It makes sense to delete the inequalities
involving lc, and we should like to effect this deletion by deleting the letter c from
abacbab. This motivates the discussion of the following paragraph.
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Let p1 = a1a2 · · · an and p2 = b1b2 · · · bm be patterns with occurrences w =
uA1A2 · · ·Anv |= p1 and w = sB1B2 · · ·Bmt |= p2. The occurrences of p1 and p2 are
consistent if Ai ∼ B j whenever ai = b j , and in that case we write w |= p1 p2. This
leads to a generalization of the notion of a pattern, where we define an abelian oc-
curence of p = p1 p2 · · · pn in w to consist of occurences of patterns p1, p2, . . . , pn

in w that are mutually consistent in pairs. We say that p1, p2, . . . , pn are the n com-
ponents of p, and that p is connected if n = 1 and disconnected if n > 1.

If p = p1 p2 · · · pn is a disconnected pattern and r ∈ [1, 2] we define S(p, r) to
be S(p1, r) ∪ S(p2, r) ∪ · · · ∪ S(pn, r). The next lemma should come as no surprise.

Lemma 9 Let p �= ε be a connected or disconnected pattern, c a letter of p that occurs
at most once in each component of p, and p ′ the pattern that results from p upon deleting
letter c. Then for any r ∈ (1, 2] the systems S(p, r) and S(p ′, r) are both consistent or
both inconsistent.

Proof Let the system Sc(p, r) consist of those inequalities in S(p, r) that involve the
variable lc. Then S(p, r) = Sc(p, r) ∪ S(p ′, r). Clearly if S(p ′, r) is inconsistent then
S(p, r) is inconsistent. If on the other hand the system S(p ′, r) is consistent then
we see that the variable lc occurs only on the right hand side of the inequalities of
Sc(p, r), and then exactly once in each inequality. This means that a given solution
of the system S(p ′, r) can be extended to a solution of S(p, r) by taking lc sufficiently
large. This shows that the two system are both consistent or both inconsistent. The
proof is complete.

Even if Lemma 9 cannot be applied there are still simplifications that can be made.
Consider the substring abacba of the pattern p = abacbab. The two parsings a bacb a
and ab ac ba show that abacba is both a fractional 6/5 and a fractional abelian 3/2
power. These two powers yield the inequalities (3) and (4) in S(abacbab, 3/2) above.
Clearly inequality (4) implies inequality (3), and this will still be the case if we vary
r ∈ (1, 2], so naturally we delete the weaker inequality. In general let p = αXY Zβ =
α ′X ′Y ′Z ′β ′ with X ∼ Z and X ′ ∼ Z ′. For strings s and t we say that s is lighter
than t if the multiset of letters of s is strictly contained in the multiset of letters of
t , and we write s � t . For example, abac � cbaadcad, but abac �� caadcad. This
gives a partial ordering of the substrings of p. We say that the fractional power XY Z
supersedes the fractional power X ′Y ′Z ′ if X ′ � X and Y � Y ′, and at least one of
X ′ � X or Y � Y ′ holds. We write X ′Y ′Z ′ ≺ XY Z if XY Z supersedes X ′Y ′Z ′.
Finally, we prune S(p, r) to the equivalent system

S(p, r) ′ : {[(r − 1)−1 − 1]lX < lY : p = αXY Zβ,X ∼ Z, and XY Z is ≺-maximal}.

For example, the system S(abcba cbabc, 3/2) ′ consists of just two inequalities, and is
inconsistent. We define the inversive threshold, r(p), of a pattern p �= ε by the formula

r(p) = inf{r ∈ [1, 2] : S(p, r) ′ is inconsistent},(12)

and by convention we set r(ε) = 0. Note that r(p) is defined for all patterns p,
since S(p, 1) is inconsistent for any p �= ε. Equivalently, for a nonempty pattern
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p = p1 p2 · · · pn we can define r(p) as

r(p) = inf
l

max

{
lXY Z

lXY
: pk = αXY Zβ,X ∼ Z, 1 ≤ k ≤ n

}
,(13)

where the infimum is taken over all functions l that assign positive integer lengths to
the letters of p. We now describe an algorithm based on Lemma 9 that gives a lower
bound for r(p).

Given a pattern, p, we let m(p) denote the multiset of letters of p, so
m(abacdabebaca) = {a, a, a, a, a, b, b, b, c, c, d, e}. Given a function, l, that assigns
positive integer lengths to the letters of p and two sub-multisets U ,V ⊂ m(w) we
say that U is longer than V under l if the sum of the lengths of the letters in U is
larger than the sum of the lengths of the letters in V . With l : a �→ 1, b �→ 2,
c �→ 3, d �→ 4, e �→ 5 we have that {a, a, b, b} is longer than {a, d}, but shorter
than {a, c, c}. Given p = αXY Zβ, X ∼ Z, and a letter j of X consider all assign-
ments l with l j ≥ li for all letters i in XY Z. In an occurrence of p where l gives
the lengths of the strings corresponding to letters of p, what fractional power can
we guarantee XY Z will correspond to? The answer is (k + 2)/(k + 1), where k ≥ 1
is the smallest integer for which there is a partition m(Y ) = Y1 ∪ Y2 ∪ · · · ∪ Yk

such that m(X) is longer than each m(Yi) under l. Specifically, since all we know
is that l j is largest among all li , this means that for 1 ≤ m ≤ k there are par-
titions m(X) = J ∪ O and m(Yi) = J ′ ∪ O ′ such that J consists of all the let-
ters j in X, O ′ ⊆ O and | J| ≥ | J ′|. We write R j(X,Y,Z) = (k + 2)/(k + 1).
For example, for p above we have Rc(abac, dabe, baca) = 4/3, since we have the
partition m(dabe) = {a, b, d} ∪ {e}, and no shorter partition will do. Similarly
Ra(abac, dabe, baca) = 4/3 and Rb(abac, dabe, baca) = 5/4.

Given a non empty pattern p = p1 p2 · · · pn and a letter j of p define r j(p) by

r j(p) = max{R j(X,Y,Z) : pk = αXY Zβ,X ∼ Z, 1 ≤ k ≤ n, and j occurs in X}.

Thus ra(abacabc) = 3/2, rb(abacabc) = 5/4 and rc(abacabc) = 4/3. Continuing
with this example, suppose that w |= abacabc. If la is the largest among la, lb, lc then
the string in w corresponding to aba is a 3/2+ power. Similarly, if lb is the largest
then bacab corresponds to a string in w that is a 5/4+ power, and if lc is largest then
cabc corresponds to a 4/3+ power. We conclude that abacabc � x5/4+, as 5/4 is the
minimum of 3/2, 4/3 and 5/4. From this discussion it is clear that if we define

r(p) = min{r j(p) : j a letter of p},(14)

then p forces a r(p)+ power. If we define r(p) to be the largest fractional abelian
power in p then this is clearly an upper bound for r(p), since the infimum of equa-
tion 13 includes the function that assigns length 1 to each letter. We now have an
algorithm for bounding r(p) from below:

Theorem 10 Given a pattern p = p1 p2 · · · pn the following algorithm returns a
lower bound on the inversive threshold, r(p):
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Step 0. If p = ε return(0).
Step 1. While (∃ letter c occurring at most once in each component of p)

delete letter c from p.
Step 2. If p = ε return(1),

else return(r(p)).

In particular, p has a nontrivial inversion if and only if Step 1 does not reduce p to
the empty string.

Theorem 10 gives a combinatorial characterization of patterns that have inver-
sions and it is also very easy to implement. That there are patterns p with r(p) <
r(p) < r(p) can be seen by taking p = aba cbc bacb, for which r(p) = 4/3,
r(aba cbc bacb) =

√
2 and r(p) = 3/2. The determination of r(p) is a fascinat-

ing open problem, but one that appears difficult.

2.2 Unavoidable Patterns

In seeking to show that a pattern p is unavoidable, one naturally investigates what
kind of additional structure may be imposed on an ω-word avoiding p. An ω-word
w is recurrent if every finite subword of w occurs infinitely often in w. If for each finite
subword of a recurrent word w there is a bound on the distance between consecutive
occurrences of that subword, then we say that w is recurrent with bounded gaps.

Theorem 11 Let P be a set of patterns. If P is k-avoidable in the abelian sense then
there is an ω-word on k letters that avoids P in the abelian sense and has the additional
property of being recurrent with bounded gaps.

Proof For definiteness, let Σ = {1, 2, 3, . . . , k}. Let

S = {S ⊂ Σ∗ | ∃w ∈ Σω w �|= P and w avoids subwords in S}.

First notice that the set S is not empty. Since P is k-avoidable, let w ∈ Σω avoid
P. Let q be a pattern in P. It follows that w avoids the word 1|q| as a subword, since
1|q| |= q. Thus {1|q|} ∈ S.

We will show that the partial order (S,⊆) is chain complete. Let {Sα}α∈I be a
chain in the partial order, and put S =

⋃
α Sα. We claim that S ∈ S. To see this let

Sn ⊆ S be the set of all strings in S of length ≤ n. Since Sn is finite and {Sα}α∈I is a
chain, we have Sn ⊂ Sγ for some γ ∈ I. Since Sγ ∈ S there is a u ∈ Σω that avoids P
in the abelian sense and avoids subwords in Sγ , hence u avoids subwords in Sn. The
prefix of length n of u, un, also avoids P in the abelian sense, and furthermore un

contains no string of S as a substring. Each word in the set {un}n≥1 ⊆ Σ∗ therefore
avoids P and avoids subwords in S. By König’s infinity lemma there is an ω-word
v ∈ Σω with both of these properties, that is v avoids P and avoids subwords in S.
Therefore S ∈ S, establishing our claim and proving that (S,⊆) is chain complete.
By Zorn’s lemma, let Ŝ ∈ S be a maximal element and let w ∈ Σ∗ avoid P in the
abelian sense and avoid subwords in Ŝ.
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We claim that w is recurrent. Otherwise, some subword s occurs only finitely
often in w. This means that some suffix w ′ of w does not contain s as a subword
while avoiding P in the abelian sense. Then w ′ avoids subwords in Ŝ∪{s} ∈ S. Since
Ŝ ∪ {s} is strictly larger than Ŝ, we have a contradiction. Therefore, w avoids P in the
abelian sense and is recurrent.

If some subword s of w has arbitrarily long gaps between its occurrences in w, then
w has arbitrarily long subwords which avoid the subword s. By König’s infinity lemma
there is an ω-word w ′ on k letters that avoids P and avoids subwords in Ŝ ∪ {s} ∈ S,
again contradicting the maximality of Ŝ. Therefore w is recurrent with bounded gaps.
The proof is complete.

If w is a recurrent word and a pattern p occurs in w, then the substring of w
that gives the occurence of p is repeated farther out in w, so we have two identical
occurences of p in w separated by a non-empty substring. If 2 is some letter not in
p corresponding to the separating substring then p2p occurs in w. Again, p2p3p2p
occurs in w, where 3 is a letter different from 2 and not a letter of p, and so on. A
definition is in order:

Definition 12 Let p be a word, none of whose letters is in N+. The n-th Zimin
word seeded with p is recursively defined by Z1(p) = p and Zn(p) = Zn(p)(n)Zn(p),
n ≥ 2.

Thus Z4(abc) = abc2abc3abc2abc4abc2abc3abc2abc, for example. Of course the
ordinary Zimin words Zn = Zn(1), n ≥ 1 are also seeded Zimin words. We now
introduce functions ρ, λ, ι on words over the positive integers. Functions ρ and λ are
morphisms generated by their action on integers:

ρ(i) = i + 1

λ(i) =

{
i − 1, i > 1

ε, i = 1.

Function ι is given by

ι(w1w2w3 · · ·wn) = 1w11w2 · · · 1wn1,

where the wi are positive integers.

Remark 13 Let π, κ be patterns over the positive integers with κ = κ1 · · ·κn, π =
π ′K1K2K3 · · ·Knπ

′′
where Ki ∼ K j if κi = κ j . We have

1. ρ(π) |= ρ(κ)
2. ι(π) |= ι(κ) if neither of π and κ contains the letter 1
3. λ(π) |= λ(κ) if κi = 1 whenever Ki = 1.

We also see that Zn = ι
(
ρ
(
λ(Zn)

))
for all n. The following lemmas about Zimin

words are readily established by induction:
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Lemma 14 If ABC is a subword of Zn and A ∼ C, then B contains some integer
greater than any integer in A.

Lemma 15 If Zn |= p for some n ≥ 1 then p is unavoidable in the abelian sense.

We now give an application of Theorem 11 that generalizes Lemma 15 above.
Suppose that Zn(p) |= q for some n and that p is unavoidable on k letters in the
abelian sense. Then q is also unavoidable in the abelian sense on k letters. Otherwise
by Theorem 11 there is a recurrent ω-word w on k letters that avoids q, and then
w |= Zn(p) |= q, a contradiction. If Zn(p) |= q for some n then we shall say that p
generates q and write p → q. Note that this relation is reflexive and transitive, but not
symmetric. Let Uk be the set of patterns on k letters that are unavoidable. We have
proven the following:

Theorem 16 If p ∈ Ur and p → q, then q ∈ Ur.

An alternative, constructive way of looking at this result is the following: The
polynomial pr( j) =

∑ j
i=1

(i+r−1
r−1

)
counts the number, up to abelian equivalence, of

non-empty words of length ≤ j on r letters. If |w| = 2m + k, k ≥ 0 then there are
k(k + 1)/2 factorizations of w of the form w = uX1 yX2v, where |X1| = |X2| = m,
y �= ε, and u, v may be empty. The function k(n) = � 1

2 (−1 +
√

8n + 9)� then gives
the smallest k such that a string of length 2m + k contains at least n + 1 disjoint, non-
adjacent pairs of strings of length m. Now suppose that p → q and p ∈ Ur. Then
there is a minimum length �1 such that p occurs in any string on r letters of length �1.
We regard 2 occurrences of p = a1a2 · · · an to be the same up to abelian equivalence
if for each i the block corresponding to ai in the first occurrence is a permutation
of the block corresponding to ai in the second occurrence. Let n1 be the number of
ways p can occur in a string of length �1, up to abelian equivalence. Any string on
r letters of length �2 = 2�1 + k(n1) then contains an occurrence of Z2(p), and there
are at most n2 = n1 pr(�2− 2|p|) different occurrences (up to abelian equivalence) of
Z2(p) in such a string. In this way, by recursively defining � j = 2� j−1 + k(n j−1) and
n j = n j−1 pr

(
� j − 2|Z j−1(p)|

)
for j ≥ 2, we see that Zt (p) occurs in any string on r

letters of length �t . Since p → q we have Zn(p) |= q for some n, and it follows that q
occurs in any string on r letters of length �n.

The next two lemmas are devoted to proving that if p → q then Zt (p) |= q, where
t is the number of distinct letters in q. Thus the problem of deciding if one pattern
generates another one is decidable.

Lemma 17 Suppose that q has t distinct letters and Zk |= q for some k. Then Zt |= q.

Proof Let t , k be as above, and take the letters of q to be positive integers. We will
prove the theorem by induction on t . Suppose t = 1. Without loss of generality,
q = 1r for some r ≥ 1. However, Zk |= q, and Zk is free of abelian squares. It follows
that q = 1, and Z1 |= q. The theorem thus holds for t = 1. From now on, assume
without loss of generality that both 1 and 2 are letters of q.

Now suppose that t ≥ 2 and the theorem holds for 1, 2, . . . , t − 1. We will use
induction on k. In the case where k ≤ t we have Zt |= Zk |= q, and the theorem
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holds. Suppose then that k > t . Fix an occurrence of q = q1q2 · · · qn in Zk; say
Zk = uR1R2 · · ·Rnv where Ri ∼ R j whenever qi = q j .

If λ(Ri) �= ε for each i then λ(Ri) ∼ λ(R j) whenever qi = q j and Zk−1 = λ(Zk) |=
λ(R1R2 · · ·Rn) |= q. By induction, Zt |= q, and we are done.

Suppose then that λ(Ri0 ) = ε for some i0, i.e., Ri0 = 1. We can suppose without
loss of generality that qi0 = 1. We now wish to use the special structure of Zk. Every
second letter of Zk is a 1. If for some j we have |R j | even, then either we can write
R j = 1Q j for some word Q j , or we can write R j = Q j1 for some word Q j . Further, if
Rk ∼ R j , then either Rk = 1Qk or Rk = Qk1 where Qk ∼ Q j . Analogous observations
hold when |R j | is odd.

Form a new pattern r = r1r2 · · · rn as follows:

r j =




1, if R j = 1

1q j1, if R j = 1Q j1 for some word Q j �= ε

1q j , if R j = 1Q j for some word Q j �= ε not ending in a 1

q j1, if R j = Q j1 for some word Q j �= ε not starting with 1

q j , if R j neither starts nor ends with a 1.

We see that r has at most t distinct letters, one of which is a 1, since Ri0 = 1. By
construction, R1R2 · · ·Rn is an occurrence of r, and r |= q. By Remark 13, Zk−1 =
λ(Zk) |= λ(r). Since 1 is a letter of r, Zt−1 |= λ(r) by induction. It follows that
Zt = ι

(
ρ(Zt−1)

)
|= ι
(
ρλ(r)

)
|= q, so we get Zt |= q. This completes the proof by

induction.

We can prove a more general version of the above lemma.

Theorem 18 Suppose that q has t distinct letters and Zk(p) |= q. Then Zt (p) |= q.

Proof For definiteness we assume that the letters of p and q are from disjoint alpha-
bets and that these two alphabets contain no integers. We may assume that k > 1.
Fix an occurrence of q = q1q2 · · · qn in Zk(p); say Zk(p) = αR1R2 · · ·Rnβ where
Ri ∼ R j whenever qi = q j . Let δ be an operator that replaces substrings p by the let-
ter 1. Thus, for example, δ

(
Zk(p)

)
= Zk. It is possible that substrings p that overlap

would render δ undefined, but we shall never apply δ in such a situation.

Case 1 Each Ri contains at least one integer. Let ε be an operator that deletes the
letters of p. Then Zk−1 |= λε

(
Zk(p)

)
= λε(α)λε(R1)λε(R2) · · ·λε(Rn)λε(β). Fur-

ther, the λε(Ri) are non-empty, and λε(Ri) ∼ λε(R j ) whenever qi = q j . Thus
Zk−1 |= q. By Lemma 17 we find that Zt |= q, where t is the number of letters in
q, hence Zt (p) |= Zt |= q, so Zt (p) |= q, as desired.

Case 2 Each Ri contains only letters from p. In this case, Zt (p) |= p |= q, hence
Zt (p) |= q, as desired.

Case 3 Some Ri contain only letters from p, but some Ri contain integers. In this
second case, as we read from left to right across the pattern q we will encounter n ≥ 1
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letters x1, x2, . . . , xn which correspond to those Ri in Zk(p) that contain integers. Fac-
tor q as q = q1x1q2x2 · · · qnxnqn+1, and factor Zk(p) as Zk(p) = αQ1X1Q2X2 · · ·
QnXnQn+1β where Xi ∼ X j whenever xi = x j and the qi are sub-patterns of q whose
occurrences on the Qi are compatible. None of the letters x j appears in any qi . Some
of the qi may be empty, but under our assumption at least one of them is not. We
factor each string Xi as Xi = uiX ′i vi , i = 1, 2, . . . , n where X ′i begins with the first
integer in Xi and ends with the last integer in Xi . One or both of ui , vi may be empty,
but if xi = x j then uivi ∼ u jv j . Putting in the factorizations of the Xi we have

Zk(p) = αQ1(u1X ′1v1)Q2(u2X ′2v2) · · ·Qn(unX ′nvn)Qn+1β

= α ′(v0Q1u1)X ′1(v1Q2u2)X ′2 · · · (vn−1Qnun)X ′n(vnQn+1un+1)β ′

= α ′pX ′1 pX ′2 p · · · pX ′n pβ ′,

where the strings v0, un+1 are borrowed from α and β respectively to complete the
formation of the interspersing p’s.

The above factorization shows that Zk = δ
(

Zk(p)
)
|= 1x11x21 · · · 1xn1 = q ′

(recall the definition of the δ operator after Theorem 18). By Lemma 17 we have
Zt ′ |= q ′, where t ′ is the number of letters in q ′.

Claim 19 We can find an occurrence of q ′ in Zt ′ such that 1 in q ′ corresponds to 1 in
Zt ′ .

Proof of Claim Write Zt ′ as UA1Y1A2Y2 · · ·AnYnAn+1V where Ai ∼ A j for all i, j,
while Yi ∼ Y j if xi = x j . By Lemma 14, each Yi contains an integer higher than every
integer in A1. If A1 = 1, then we are done. Otherwise, none of the Ai or Yi are 1, so
by Remark 13,

Zt−1 |= λ(Zt ′)

= λ(UA1Y1A2Y2 · · ·AnYnAn+1V )

|= λ(A1)λ(Y1)λ(A2)λ(Y2) · · ·λ(An)λ(Yn)λ(An+1)

|= q ′

and the result can be established by induction.

Say then that Zt ′ = α1Y11Y21 · · · 1Yn1β where Yi ∼ Y j whenever xi = x j . This
yields an occurrence of q ′ in Zt ′(p) = α ′pY1 pY2 p · · · pYn pβ ′ where 1 in q ′ corre-
sponds to p in Zt ′(p). Since p = vi−1Qiui for i = 1, 2, . . . , n + 1 we have

Zt ′(p) = α ′(v0Q1u1)Y1(v1Q2u2)X2(v2Q3u3) · · · (vn−1Qnun)Yn(vnQn+1un+1)β ′

= α ′ ′Q1(u1Y1v1)Q2(u2X2v2)Q3 · · ·Qn(unYnvn)Qn+1β
′ ′

= α ′ ′Q1Y ′1 Q2Y ′2 Q3 · · ·QnY ′nQn+1β
′ ′
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where Y ′i = uiYivi for i = 1, 2, . . . , n. Since uivi ∼ u jv j and Yi ∼ Y j whenever
xi = x j we have Y ′i ∼ Y ′j whenever xi = x j . Furthermore, for each i we may construct
an occurrence of qi on the string Qi in such a way that all of these occurrences are
compatible, simply by copying from the initial occurrence of q in Zk(p). We have
now constructed an occurrence of q in Zt ′(p).

Recall that at least one qi is not empty, and the letters comprising the qi are dis-
joint from the letters x1, x2, . . . , xn. Thus in passing from q = q1x1q2 · · · qnxnqn+1 to
x1x2 · · · xn at least one letter is lost, and then by forming q ′ = 1x11x21 · · · 1xn1 one
letter is gained, so t ′ ≤ t . Finally we have Zt (p) |= Zt ′(p) |= q, hence Zt (p) |= q, as
desired.

Combining Theorem 16 with Theorem 18 we have:

Corollary 20 If p ∈ Ur and p → q, then q occurs in the abelian sense in any string on
r letters of length �t , where �t is defined in the proof of Theorem 16 and t is the number
of distinct letters in q.

We now describe an idea that is useful in reducing the amount of backtracking
needed to show that a pattern is unavoidable in the abelian sense on a given number
of letters. If p and q do not contain the letter x then one may argue as in the proof
of Theorem 16 that p q ∈ Uk implies pxq ∈ Uk, and hence both of these patterns
require the same number of letters.

Lemma 21 If p and q are patterns not containing the letter x then p q ∈ Ur if and
only if pxq ∈ Ur.

Proof If pxq ∈ Ur then clearly p q ∈ Ur. Suppose that p q ∈ Ur but that pxq /∈ Ur.
By Theorem 11 there is a recurrent ω-word w that avoids pxq. However, p q ∈ Ur so
p q occurs in the abelian sense in w. The recurrence of w gives us two identical oc-
currences of p q, which together yield an abelian occurrence of pxq, a contradiction.
Therefore p q ∈ Ur implies pxq ∈ Ur and the proof is complete.

To illustrate how Lemma 21 can be used consider the problem of showing that
p = 01021 ∈ U2. The string 001100100 avoids p and has length 9, but p1 = 010 1
occurs in any string of length 5 on 2 letters. Indeed, occurrences of p1 are equivalent
to occurrences of p2 = 010, which is equivalent to p3 = 0 0, which is the same as
p4 = 0, and the latter is certainly unavoidable.

3 Patterns on 3 and 4 Letters

3.1 The Case of 3 Letters

By Lemma 7, any pattern on 3 letters of length 8 or more is avoidable in the abelian
sense. By [11] abelian squares are avoidable, hence so is any pattern encountering an
abelian square. We need therefore only examine patterns of length at most 7 that are
free of abelian squares. These are generated in Figure 3.1, where we assume that all
patterns start with 01.
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2
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2

Figure 1: Words on {0, 1, 2} starting with 01 and avoiding abelian squares.

We find that the patterns 0102010, 012010 and 01202 all occur in the abelian sense
in Z3, while on the other hand the patterns 0102101, 010212 and 0121012 have in-
versions, as they force x

3
2 +, x

4
3 + and x

5
4 + respectively. It follows from our analysis that

a pattern p on 3 letters is avoidable in the abelian sense if and only if Z3 �|= p.

3.2 The Case of Four Letters

First of all, by Lemma 7 we need only consider patterns on 4 letters of length ≤ 15.
Of course, this still leaves over 415 possibilities, so further reductions are necessary.
By permuting letters, we need only consider patterns that begin with p1 = 0102,
p2 = 0120, p3 = 0121 or p4 = 0123. Using an implementation of the algorithm in
Theorem 10 we reject an extension of a pi that has a nontrivial inversion, since such
a pattern is abelian avoidable.

As the length of a pattern increases the chances of it having an inversion also in-
creases, and a short pattern is more likely to be unavoidable. It turns out to be the
case that the number of patterns of a given length that do not fall under the purview
of Lemma 15 or Theorem 10 first increases and then decreases in the manner of a
normal distribution. There are 132 such patterns in total if we regard two patterns
as the same when one can be obtained from the other by permuting letters and/or
reversing. These 132 pattern make up the B-list (“B” for “bad”, because for these
patterns we cannot decide abelian avoidability). How these patterns are distributed
according to length is shown in Table 3.2.

If we partially order the B-list by the relation p ≤ q if and only if q |= p or qR |= p
then we find that there are exactly six minimal elements, which necessarily includes
all four of the patterns of length 8 in the B-list. Each of the 132 patterns essentially
encounters one of the six patterns given in Table 3.2. If we could show those six
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length ≤ 7 8 9 10 11 12 13 14 15 total
# of patterns 0 4 18 36 39 24 9 2 0 132

Table 3: Frequency distribution of the B-list.

b1 01020312
b2 01020321
b3 01021303
b4 01023031
b5 010203013
b6 010213020

Table 4: The six minimal patterns in the B-list.

patterns are abelian avoidable then it would follow that all patterns on 4 letters which
do not encounter Z4 are avoidable.

This last list of six we shall refer to as the short B-list.

4 Analysis of the Short B-List

In this section we will analyse the patterns of the short B-list and give some of their
properties. The main outcome of our exploration is a lower bound on the number
of letters needed to avoid these patterns and a further reduction of the B-list due to
symmetries present in the patterns.

4.1 Symmetries

Let pR denote the reverse of the pattern p, for example abcbaacR = caabcba. If
w = pxq, where p and q are words not containing the letter x then pxqR is a conjugate
of w. The word w = abcadcabeabaa then has 2 conjugates: w1 = abcadaabaebac and
w2 = abcadcabeaaba. The word w is a palindrome if w = wR.

Lemma 22 If p, q do not contain the letter x and p is a palindrome then f = pxq ∈
Uk if and only if f̄ = pxqR ∈ Uk.

Proof By Lemma 21 f ∈ Uk if and only if p q ∈ Uk, which is equivalent to qR p =
qR pR = (p q)R ∈ Uk which is equivalent to f̄ = pxqR ∈ Uk by Lemma 21.

Note that if Conjecture 2 is true then it would follow that pxq is unavoidable if and
only if pxqR is unavoidable, p, x and q as in the hypotheses of Lemma 22. However,
the statement of Lemma 22 is more specific since it involves k, the alphabet size. It is
natural to make the following
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Conjecture 23 If p, q do not contain the letter x then f = pxq ∈ Uk if and only if
f̄ = pxqR ∈ Uk.

Given k, Lemma 22 says that the patterns 01021303 and 01023031 are both k-
unavoidable or both k-avoidable in the abelian sense. This is also the case for
010203013 and 010213020, since 010213020R is a conjugate of 010203013 with a
palindromic prefix. This further reduces the short B-list to (say) the short, short
B-list consisting of 01020312, 01020321, 01021303 and 010203013.

4.2 Minimal Lengths and Minimal Alphabets

In order to apply some of our lemmas to the patterns in the short, short B-list we
need to find some patterns that generate these. We define the spectrum of p, denoted
Spec(p), as the set of all patterns that generate p. Since the property of one pattern
generating another is transitive, we seek to find minimal elements of the spectrum
of a pattern. Thus if p → q and f |= p then f → q, and we will not use f in our
computations.

We find that Z4(00) |= 01021303, 010203013. Also, Z3(00) |= 01020312,
01020321. Thus 00 is in the spectra of these patterns. By the computation we did
in Figure 3.1, all strings on 3 letters of length 8 or more contain an abelian square, so
we look for shorter strings in the spectra. The only patterns in the tree of Figure 3.1
that do not occur in Z3 are g1 = 0102101, g2 = 0121012 and g3 = 010212. These
therefore are the only patterns that can generate patterns on the short B-list. We find
that 010212 does not generate any bi , but that 0102101, 0121012 are in the spectra of
all bi . Also, no pattern on 4 letters of length 7 or less can generate any bi , since these
patterns either occur in Z4 or encounter one of the gi . We find that no patterns in
{b1, b2, b3, b5} can generate any other pattern in this set. We have

Lemma 24 The patterns b1 and b2 occur in the abelian sense in any string of length
214 over a 3 letter alphabet, the patterns b3 and b5 occur in any string of length 208143
over a 3 letter alphabet.

Proof Apply Lemma 20 with r = 3, p = 00, �1 = 8, and n1 = 13 to obtain �3 = 214
and �4 = 208143.

Lemma 25 All patterns in the short B-list are unavoidable on 4 letters.

Proof Utilizing a back tracking algorithm we find that the longest word on 4 letters
that begins with 0102 and avoids in the abelian sense both 0102101 and 0121012 has
length 54. Next we find that a longest string on 4 letters that begins with 0120 and
avoids 0102101, 0121012 and aba as a substring has length 29. Finally we see that the
longest string on 4 letters avoiding our patterns and with each four consecutive letters
distinct has length 7. This proves that 0102101 and 0121012 are not simultaneously
avoidable on 4 letters, hence all patterns in the short B-list are unavoidable on four
letters since they each have 0102101 and 0121012 in their spectra.
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This last result again underscores the difference between the abelian case and the
ordinary case, as no pattern is known which is avoidable in the ordinary sense yet
requires more than 4 letters to be avoided.
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