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Abstract

Substance use and substance use disorders run in families. While it has long been recognized that the etiology of substance use
behaviors and disorders involves a combination of genetic and environmental factors, two key questions remain largely unanswered: (1) the
intergenerational transmission through which these genetic predispositions are passed from parents to children, and (2) the molecular
mechanisms linking genetic variants to substance use behaviors and disorders. This article aims to provide a comprehensive conceptual
framework and methodological approach for investigating the intergenerational transmission of substance use behaviors and disorders, by
integrating genetic nurture analysis, gene expression imputation, and weighted gene co-expression network analysis. We also additionally
describe two longitudinal cohorts— the Brisbane Longitudinal Twin Study in Australia and the Lifelines Cohort Study in the Netherlands.
By applying the methodological framework to these two unique datasets, our future research will explore the complex interplay between
genetic factors, gene expression, and environmental influences on substance use behaviors and disorders across different life stages and
populations.
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Substance use (SU) and substance use disorders (SUDs) —

including alcohol, nicotine, and cannabis use disorders — run in
families (Bierut et al., 1998; Kendler et al., 2023; Merikangas et al.,
1998). Offspring of parents with SUDs have an increased risk of SU
and SUDs compared to offspring of parents without SUDs (Lieb
et al., 2002; McGovern et al., 2023; Mellentin et al., 2016). Both
genetic and environmental influences are critical in the intergen-
erational transmission of SU and SUDs (Kendler et al., 2012a; Rhee
et al., 2003; Verhulst et al., 2015). Twin and family studies indicate
that genetic factors explain approximately 50% of the phenotypic
variance in SUDs (Deak& Johnson, 2021; Kendler et al., 2008). The
most salient family environmental risks for SU and SUDs include
parental SU, socioeconomic status (SES), parental divorce or death,
parental attitudes and monitoring of SU, parental psychopathol-
ogy, and disrupted family functioning (Barr et al., 2022; Finan
et al., 2015).

Parental genetics, both transmitted and non-transmitted to
offspring, may contribute to rearing environments, which in turn
affect offspring SU. The correlation between the offspring’s

genome and their family environments complicates the separation
of genetic and environmental influences, which have historically
been studied independently. Therefore, the mechanisms through
which parents contribute to their offspring’s risk of SU and SUDs
remain unclear. Furthermore, despite advances in genomewide
association studies (GWAS) identifying multiple genetic variants
associated with SU and SUDs (Hatoum et al., 2023; Johnson et al.,
2020; Pasman et al., 2018; Polimanti et al., 2020; Saunders et al.,
2022; Zhou et al., 2020), the molecular pathways linking genetic
variants to SU and SUDs are still poorly understood.

Here, we provide a comprehensive methodological framework
aiming to (1) disentangle directly transmitted parent-to-offspring
genetics effects from the nontransmitted genetic effects on SU and
SUDs, (2) measure the impact of both transmitted and non-
transmitted parental genetics on offspring SU and SUDs via family
environments, known as ‘genetic nurture’, and (3) elucidate the
molecular pathways from genes to behaviour by leveraging family-
based genomic data and gene expression networks. We note that
the current article is primarily theoretical in nature. While we
describe epidemiological characteristics of two longitudinal
cohorts — the Brisbane Longitudinal Twin Study (BLTS) in
Australia and the Lifelines Cohort Study (Lifelines) in the
Netherlands — that will be used to apply these methods, we
emphasize that this design paper does not include an application to
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these data. Instead, our aim is to provide a comprehensive
roadmap for our intended empirical investigations.

Genes to Behaviors: Using Family-Based Genomic Data to
Disentangle Intergenerational Transmission of SU and SUDs

In an intergenerational context, risk transmission pathways can be
disentangled into (1) genetic transmission, where genetic variants
for SUDs are directly passed from parents to children, and (2)
genetic nurture, where parental genotypes associated with SUDs
affect offspring outcomes indirectly via the rearing environments
(Kong et al., 2018).

Several methods have been developed to disentangle direct
genetic transmission and genetic nurture, including children of
twins, half-sibs, and adoption designs and genotyped parent-
offspring designs (Jami et al., 2021; McAdams et al., 2023). Among
these, the adoption design works because biological parents do not
provide the rearing environments for adoptees, which allows the
separation of the biological parents’ DNA and the environments
that adoptive parents provide (Kendler et al., 2015; Kendler et al.,
2016; Kendler et al., 2012b). Swedish adoption studies have shown
that parenting styles significantly impact the risk for alcohol use
disorder (AUD) in adoptees after adjusting for biological factors
(Kendler et al., 2015). However, nonrandom placement, prior
placements, placement timing, contact between adopted children
and biological parents, and sample representativeness limit the
generalization of adoption studies (Blackwood & Muir, 2010;
Kendler et al., 2012b). Although these limitations can be addressed,
there is no objective means of unconfounding parent-offspring
genetics from parental behaviors and environments without
measured parental and offspring DNA.

Methods analyzing genotyped mother-offspring pairs resolve
the above issue partially by disentangling either maternal or
paternal genetics effects from offspring phenotypes but not both
simultaneously (Eaves et al., 2014; Jami et al., 2020; Qiao et al.,
2020). Our method (Bates et al., 2019; Bates et al., 2018) (Figure 1),
also developed by Kong et al. (2018), solves the above problems by
relying on genotyped family trios to identify and separate
parentally transmitted and nontransmitted alleles (Cordell et al.,
2004; Wheeler & Cordell, 2007). The reassembled transmitted and
nontransmitted parental genomes are used to construct trans-
mitted and nontransmitted polygenic scores (PGSs, individual-
level genetic liability for a trait). A nontransmitted PGS that is
associated with offspring outcomes provides evidence of genetic
nurture, which is unconfounded by the transmitted parent-to-
offspring PGS.

The analysis of nontransmitted alleles has a long history in
animal breeding (Walsh & Lynch, 2018) but was only recently
leveraged tomeasure and interpret their effects on complex human
traits (Bates et al., 2019; Bates et al., 2018; Kong et al., 2018), and
particularly in genetic nurture of educational outcomes and
psychiatric disorders (Frach et al., 2024; Martin et al., 2023;
Shakeshaft et al., 2023; Tubbs & Sham, 2023;Wang et al., 2021). To
our knowledge, genetic nurture studies with respect to SU and
SUDs remain limited. One study found that parental PGS for
smoking initiation explained unique variance in offspring
frequency of tobacco and alcohol use after controlling for
offspring’s own PGS, providing evidence of genetic nurture
(Saunders et al., 2021). A second study found that both transmitted
and nontransmitted PGSs for AUD were associated with riskier
alcohol outcomes via exposure to parental relationship discord and
divorce (Thomas et al., 2023). However, previous studies primarily

require genotyping data for offspring and both parents (parent-
offspring trios), which can reduce the sample size and potentially
introduce selection bias (Martin et al., 2023).We therefore describe
a novel haplotype-based method (see Methods) to differentiate
transmitted and nontransmitted genomes in parent-offspring trios
and pairs, thereby increasing the sample size and generalizability.
This method has been validated and replicated genetic nurture
effects on educational attainment in the Lifelines Cohort Study
(Trindade Pons et al., 2024).

Genes to Functions: Using Functional Genomics to Identify
the Molecular Mechanisms Underlying SUDs

The success of our method depends on well-powered GWAS to
calculate PGSs from transmitted and nontransmitted parental
genomes. Despite advances in GWAS, we do not fully understand
the cascade of biological changes linking genetic variants to SU and
SUDs. This can be addressed with gene expression (GE), which
plays a critical role in the development of human diseases
(Hindorff et al., 2009; Liu, 2011; Schadt et al., 2005). Expression
quantitative trait loci (eQTL, Nica &Dermitzakis, 2013) are genetic
variants (usually SNPs) that may contribute to disease suscep-
tibility via influencing gene expression, consequently providing a
direct link between GWAS and GE studies (Franke & Jansen, 2009;
Liu, 2011). eQTL analyses can discern transcriptome adaptations
(Bhattacharya & Mariani, 2009; Gu et al., 2002) and reveal the
mechanisms by which genetic variants contribute to SU and SUDs
(Lehrmann & Freed, 2008), depending on their genomic location
(e.g., transcription factor binding sites, splice sites, or other
regulatory regions). Since most GWAS variants reside outside
protein-coding regions, eQTLs affect cell functions through subtle
modification of gene transcription and translation (Shastry, 2009).
Assessing eQTLs in linkage disequilibrium with SNPs associated
with a trait is crucial to explain the functional significance of
GWAS loci. However, most approaches for GE and eQTL analyses
are limited to reduced statistical power, higher type I error
(Langfelder & Horvath, 2008; Langfelder et al., 2013), and inability
to capture genetic interactions underpinning psychiatric disorders
(Zhi et al., 2013).

These limitations can be addressed by multivariate network-
based methods such as weighted gene co-expression network
analysis (WGCNA; Langfelder & Horvath, 2008; Oldham et al.,
2008). WGCNA identifies genes driving traits by classifying gene
sets into ‘network modules’ based on their expression and

Figure 1. Pathways from parentally transmitted and nontransmitted polygenic risk
score (PGS) to offspring substance use (SU) and substance use disorders (SUDs).
Note: A significant pathway from nontransmitted PGSs to offspring SU and SUDs is
evidence of genetically nurtured environments that are unconfounded by transmitted
PGS. The model can be extended to the gene expression imputation data, whereby
transmitted and non-transmitted module eigengene are substituted for the trans-
mitted and nontransmitted PGSs, respectively.
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connectivity patterns. These patterns are summarized in a single
quantitative metric, the ‘module eigengene’ (ME), which can be
used to test for associations with SU and SUD. However, WGCNA
requires GE data that cannot be easily obtained from brain tissues
in large samples. Unlike GWAS studies, which now reach sufficient
sample sizes to detect small effects (Levey et al., 2023; Saunders
et al., 2022), available GE data from brain tissues, including Gene
Tissue Expression (GTEx; Lonsdale et al., 2013), is based on
relatively small sample sizes.

In the last decade, GE imputation approaches, such as
PrediXcan (Gamazon et al., 2015), summary data-based
Mendelian randomization (Gusev et al., 2016), FUSION (Zhu
et al., 2016), and our own JPEGMIX2 (Chatzinakos et al., 2018),
have been developed to circumvent these limitations and identify
trait-GE associations. GE imputation bridges the gap between large
GWAS data and underpowered transcriptome studies by
integrating genotypes and expression data collected on the same
individuals from reference data such as GTEx (Gamazon et al.,
2015). This approach builds predictive models to estimate
heritable, genetically regulated components of GE, which can be
stored as external weights to impute genetically regulated GE in
independent samples (Gusev et al., 2016). However, most existing
GE imputation methods suffer from low to moderate accuracy,
often due to high genomic complexity in certain regions, or the
tissue- and cell-type specificity of GE (de Leeuw et al., 2023;
Wainberg et al., 2019). To address this, we aim to improve the
accuracy of GE imputations and use them to evaluate higher order
interactions between imputed expression data at the network level
(see Methods). Our approaches enable the imputation of GE in
both transmitted and nontransmitted genomes, organizing them
into ‘imputed gene network’ for further analysis of associations
with SU and SUDs.

Overall, this article aims to provide a comprehensive conceptual
framework and methodological approach for investigating the
intergenerational transmission of SU and SUDs, by integrating
genetic nurture analyses, GE imputation, and WGCNA. We also
additionally describe two longitudinal cohorts — the Brisbane
Longitudinal Twin Study in Australia and the Lifelines Cohort
Study in the Netherlands. By combining novel methodologies with
unique datasets and advanced analytical techniques, we aim to
provide new insights into how genetic and environmental factors
shape SU, SUDs and associated disease risks across different life
stages and populations.

Data Overview

To achieve the above aims, we will use phenotypic and genomic
data from BLTS in Australia and Lifelines in the Netherlands. A
detailed description of the BLTS SU and SUD phenotypic and
genomic data are provided elsewhere (Couvy-Duchesne et al.,
2018; Gillespie et al., 2013). Thus, only a brief description is
provided below. A broad, general description of Lifelines is also
provided elsewhere (Klijs et al., 2015; Scholtens et al., 2015; Sijtsma
et al., 2022). Here, we provide a detailed report of all available
Lifelines genomic data, SU and SUDs data.

Brisbane Longitudinal Twin Study

The BLTS was launched in 1992 to study melanocytic nevi and
comprises over 7000 young adult twins, siblings and parents with
longitudinal assessments when twins were aged 12, 14, 16, 21 and
25 years (Couvy-Duchesne et al., 2018; Gillespie et al., 2013;
Wright & Martin, 2004). We rely on SU and SUD and

environmental risk data from the ‘19UP’ online self-report survey
of N= 2876 subjects comprising n= 2142 twins and n= 734
nontwin siblings (67% female, mean age= 25.9 years, SD = 3.6)
(Couvy-Duchesne et al., 2018; Gillespie et al., 2013). In addition to
demographic, general and mental health items, the survey assessed
lifetime alcohol, nicotine and cannabis use, as well as Diagnostic
and Statistical Manual of Mental Disorders-IV (DSM-IV) and
DSM-5 criteria for alcohol and cannabis use disorders (American
Psychiatric Association, 1994, 2013), and the Fagerström Test for
Nicotine Dependence (FTND; Heatherton et al., 1991). As
reported in detail elsewhere, the rates of lifetime alcohol, nicotine
and cannabis use were 98.7%, 60.3% and 61.3% for males, 97%,
50.5%, 48.9% for females respectively (Gillespie et al., 2013). In
terms of SUDs, the rates of lifetime DSM-IV cannabis abuse,
cannabis dependence, alcohol abuse, and alcohol dependence were
17.0%, 9.8%, 40.2% and 35.4% for males, 7.7%, 4.6%, 29.2% and
22.6% for females respectively (Couvy-Duchesne et al., 2018). Such
significantly higher rates of SUDs in males have been repeatedly
reported in previous studies (Brady & Randall, 1999; Grant et al.,
2015; Khan et al., 2013; McHugh et al., 2018). The 19UP study also
included self-report indicators of parental and family environ-
ments, such as household SES, family functioning (parental marital
history, parental and sibling absences and separations, parental
involvement, and parental bonding), family and peer group
deviance including peer SU, and religious behaviors (Table 1).

Lifelines Cohort Study

Lifelines is an ongoing multidisciplinary prospective population-
based cohort study examining in a unique three-generation design
the health and health-related behaviors of 167,729 persons living in
the north of the Netherlands. The study employs a broad range of
investigative procedures to assess biomedical, socio-demographic,
behavioral, physical and psychological factors that contribute to
the health and disease in the general population, with a special
focus on multimorbidity and complex trait genetics. The data for
the current project were collected in three waves: baseline (2006–
2013), wave 2 (2014–2017) and wave 3 (2019–2023). The design
and rationale for Lifelines have been described in detail elsewhere
(Scholtens et al., 2015; Sijtsma et al., 2022).

Baseline data were collected from 167,729 participants aged
from 6months to 93 years. During the baseline recruitment period,
individuals aged between 25 and 50 years were invited through
their general practitioners to participate in the study. All persons
who consented to participate were asked to provide contact details
and to invite their family members, that is, partners, parents and
children, resulting in a three-generation study. In addition, adults
were also given the option of registering and participating online in
the Lifelines study. The Lifelines website details ongoing research
and data collection: https://wiki.lifelines.nl/doku.php.

Overall, among the baseline respondents, 49% of the
participants (n= 81,652) were invited through their general
practitioners, 38% (n= 64,489) via participating family members
and 13% (n= 21,588) self-registered via the Lifelines website
(Scholtens et al., 2015; Sijtsma et al., 2022). Participants were then
invited for follow-up assessments every 5 years, including
laboratory and biometrical assessments, and comprehensive
questionnaires. Between assessments, follow-up questionnaires
are completed approximately once every 1.5−2.5 years. In the
current study, there are 143,595, 89,812 and 57,633 adult
participants with available SU or SUD data from baseline, wave
2, and wave 3 respectively. The number of participants at wave 3
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will increase as the entire data release since summer of 2024. We
note that some variables of interest have a considerable attrition
rate, due to nonresponse in (one of) the follow-up assessments,
withdrawal of participation or mortality (Sijtsma et al., 2022),
which is often the case in large general population cohort studies.

Substance Use and Substance Use Disorders

In Lifelines, SU and SUDs were measured by self-reported
questionnaires. Tobacco and alcohol use were measured across all
three waves. Cannabis use were measured at wave 2 and 3. SUDs
were measured at wave 3.

Substance Use

Tobacco use includes measures of smoking status (e.g., never/
current/former smokers) and amount of tobacco consumed (Du
et al., 2022). Cigarettes per day was defined as the average number
of cigarettes smoked per day, either as a current or former smoker.
Pack-years of smoking were calculated by multiplying the amount
smoked per day (of the different tobacco products, including
cigarettes/roll-ups, cigarillos, cigars, grams of pipe tobacco) by the
number of years the person has smoked (e.g., 1 pack= 20
cigarettes). Alcohol use was assessed as part of a food frequency
questionnaire (FFQ) developed by Wageningen University
(Brouwer-Brolsma et al., 2022). Two questions referred to the
frequency and quantity of alcohol consumed in the past month:
‘How often did you drink alcoholic drinks in the past month?’
(ranging fromNot in the last month to 6–7 days per week), and ‘On
days that you drank alcohol, how many glasses did you drink on
average?’ (from 1 to 12 or more). These questions were split up for
different kinds of alcoholic beverages (beer, alcohol-free beer, red
wine/rose, white wine, sherry, distilled wine, other alcoholic
beverages). Based on these questions, an average daily alcohol
consumption score (gram per day) was calculated (Mangot-Sala
et al., 2021).

Lifetime cannabis use were defined using two questions: (1)
‘Have you ever used drugs? (Yes/No/I prefer not to answer that)’,
and if yes, (2) ‘Have you ever used cannabis, such as weed,
marijuana, hashish? (Yes/No)’. The answer categories were
recoded to ever (1) versus never (0) used cannabis. Frequency of
cannabis use was assessed using the questions, ‘How often did you
use cannabis in your entire life or in the past 12months?’ (from 0 to
40 times or more).

Detailed sample characteristics are presented in Table 2. At
baseline, the mean age of 143,595 adult participants was 44.5 years
(SD= 12.8, range= 18−93) and 58.5% of the sample were women.
The prevalence of ever smoking at baseline (52.1% for females,
56.6% for males) in Lifelines is higher than the prevalence of ever
smoking (22.4% for females, 22.8% for males) in the Netherlands
Twin Register study (NTR) based on young adult twins aged 18
−25 years (Vink & Boomsma, 2011), but falls within the range of
the general Dutch population based on the Dutch Central Bureau
of Statistics (CBS, 2014). According to CBS, the prevalence of ever
smoking among males was 31.6% under 23 years old, 55.4% in the
25−44 years group, 65.2% in the 45–64 years group and 79.1% in
the ≥65 years group. Among females, this was respectively 26.1%,
47.8%, 60.8% and 52.2%.

At wave 2, the mean age of 89,812 adult participants was 50.3
years (SD= 13.0, range= 18−96). The 11.3% prevalence of lifetime
cannabis use in Lifelines (9.5% for females, 13.8% for males) is
comparable to the 12.3% in a general population sample aged
18−64 years from Netherlands Mental Health Survey and
Incidence Studies (NEMESIS, 8.3% for females, 16.1% for males;
Vega et al., 2002), which is a psychiatric epidemiological cohort
study based on random sampling of individuals from the Dutch
population register (Basisregistratie Personen). However, our
estimate of lifetime cannabis use is lower than the 26.9% among
subjects aged 18 to 65 years from the NTR (24.7% and 36.2% for
females and males aged 21−40 years; Stringer et al., 2016; Vink
et al., 2010). This may be due to differences in the sample
characteristics, age ranges, regional differences in cannabis use,
and different assessments for lifetime cannabis use. For example, in
Lifelines, participants were asked (1) if they ever used drugs, and if
yes, did they (2) ever use cannabis (weed, marijuana, hashish) in

Table 1. Measurements of parenting behavior, family environments and
substance use outcomes

Parenting and family environments BLTS Lifelines

Socioeconomic status

SES (household) × ×

Educational attainment (parents and offspring) × ×

Employment history/status (parents and offspring) × ×

Urban and rural parental home × ×

Family functioning

Parental marital history × ×

Parental absencea × ×

Parental involvement and availability b × ×

Number of siblings × ×

Parental bonding × ×

Family and peer deviance

Cotwin, sibling and parental history of drug use × ×

Peer group deviance × –

Behavioral and emotional regulation

adolescent behavioral and emotional regulation – ×

Religious behaviors

Religious upbringing (offspring’s childhood) × –

Church attendance (offspring’s childhood) × –

SU and SUD outcomes

Nicotine

Lifetime use, age at initiation or age at regular use × ×

Frequency currently/when using the most × ×

FTND criteria × ×

Alcohol

Lifetime use, age at initiation or age at regular use × ×

Frequency in the past year – ×

DSM-IV abuse/dependence or DSM-5 AUD criteria × ×

Cannabis

Lifetime use, age at initiation or age at regular use × ×

Frequency in the past year /when using the most × ×

DSM-IV abuse/dependence or DSM-5 CUD criteria × –

Note: aDue to divorce, separation, death, placed in foster care, or left early to live alone.
bIncludes step and adoptive parents.
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Table 2. Descriptive characteristics of lifelines participants

Mean ± SD or n (%) Baseline Wave 2 Wave 3a

Sex Total Female Male Total Female Male Total Female Male

143,595 84,003 (58.5) 59,592 (41.5) 89,812 53,120 (59.1) 36,692 (40.9) 57,633 34119 (59.2) 23514 (40.8)

Age (years) 44.5 ± 12.8 44.1 ± 12.7 45.2 ± 12.8 50.3 ± 13.0 49.7 ± 13.0 51.2 ± 13.1 56.1 ± 12.4 55.3 ± 12.3 57.3 ± 12.4

Nicotine use

Smoking status

Never smoker 66,019 (46.0) 40,208 (47.9) 25,811 (43.4) 41,206 (45.9) 25,523 (48.1) 15,683 (42.7) 25,785 (44.8) 15,662 (46.0) 10,123 (43.1)

Ever smoker 77,373 (54.0) 43,669 (52.1) 33,704 (56.6) 48,601 (54.1) 27,592 (51.9) 21,009 (57.3) 31,848 (55.2) 18,457 (54.0) 13,391 (56.9)

Current smoker 29,858 (20.8) 16,325 (19.5) 13,533 (22.7) 13,635 (15.2) 7515 (14.1) 6120 (16.7) – – –

Former smoker 47,515 (33.1) 27,344 (32.6) 20,171 (33.9) 34,966 (38.9) 20,077 (37.8) 14,889 (40.6) – – –

Start age (years) 16.5 ± 3.6 16.3 ± 3.5 16.7 ± 3.8 16.7 ± 4.04 16.5 ± 3.8 16.9 ± 4.4 16.6 ± 3.9 16.5 ± 3.6 16.8 ± 4.1

Packyears 11.6 ± 10.8 10.2 ± 9.7 13.3 ± 11.9 12.1 ± 11.3 10.7 ± 10.2 14.1 ± 12.4 12.2 ± 11.3 10.9 ± 10.6 14.2 ± 12.0

Cigarette per day 11.2 ± 6.6 10.4 ± 6.1 12.6 ± 6.9 10.9 ± 6.5 10.0 ± 6.0 12.0 ± 7.0 10.8 ± 6.6 10.0 ± 6.1 12.0 ± 7.0

Alcohol use

Daily alcohol intake 6.8 ± 8.7 4.6 ± 6.4 9.9 ± 10.5 – – – – – –

Drinking frequency

Not this month 29,119 (20.3) 23102 (27.6) 6017 (10.1) 15,191 (17.0) 11,749 (22.2) 3442 (9.4) 12,260 (21.4) 9142 (26.9) 3118 (13.3)

1 day a month 9034 (6.3) 6590 (7.9) 2444 (4.1) 6651 (7.4) 4854 (9.2) 1797 (4.9) 3514 (6.1) 2576 (7.6) 938 (4.0)

2–3 days a month 21,663 (13.2) 12,551 (15.0) 6355 (10.7) 12,755 (14.2) 8587 (16.2) 4168 (11.4) 7911 (13.8) 5275 (15.5) 2636 (11.2)

1 day a week 21,704 (15.1) 12,115 (14.5) 9548 (16.1) 12,787 (14.3) 7172 (13.5) 5615 (15.3) 8158 (14.2) 4573 (13.5) 3585 (15.3)

2–3 days a week 34,222 (23.9) 15,666 (18.7) 1556 (31.2) 22,320 (24.9) 11,093 (20.9) 11,227 (30.6) 15,677 (27.3) 7769 (22.9) 7908 (33.7)

4–5 days a week 14,732 (10.3) 6825 (8.1) 7907 (13.3) 9645 (10.8) 4695 (8.9) 4950 (13.5) 5104 (8.9) 2472 (7.3) 2632 (11.2)

6–7 days a week 15,582 (10.9) 6969 (8.3) 8613 (14.5) 10,264 (11.5) 4826 (9.1) 5438 (14.8) 4787 (8.3) 2163 (6.4) 2624 (11.2)

Drinking quantity 2.7 ± 1.8 2.2 ± 1.3 3.3 ± 2.2 2.46 ± 1.61 2.07 ± 1.18 2.94 ± 1.91 2.28 ± 1.49 1.95 ± 1.11 2.70 ± 1.78

Cannabis useb – – –

Lifetime use, yes 10,038 (11.3) 5030 (9.5) 5008 (13.8) – –

Lifetime frequency – –

0 time 79,030 (88.7) 47,691 (90.4) 31,339 (86.2)

1 time 628 (0.7) 425 (0.8) 203 (0.6)

2–3 times 1620 (1.8) 998 (1.9) 622 (1.7)

4–5 times 1255 (1.4) 702 (1.3) 553 (1.5)

6–10 times 1367 (1.5) 748 (1.4) 619 (1.7)

11–19 times 1107 (1.2) 558 (1.1) 549 (1.5)

20–39 times 1185 (1.3) 574 (1.1) 611 (1.7)

(Continued)

Tw
in

Research
and

H
um

an
G
enetics

287

https://doi.org/10.1017/thg.2024.46 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/thg.2024.46


Table 2. (Continued )

Mean ± SD or n (%) Baseline Wave 2 Wave 3a

Sex Total Female Male Total Female Male Total Female Male

40 times or more 2938 (3.3) 1078 (2.0) 1860 (5.1)

Past year frequency – – – – – –

0 time 87,067 (97.6) 51,860 (98.2) 35,207 (96.8)

1 time 526 (0.6) 263 (0.5) 263 (0.7)

2–3 times 484 (0.5) 230 (0.4) 254 (0.7)

4–5 times 232 (0.3) 105 (0.2) 127 (0.3)

6–10 times 175 (0.2) 77 (0.1) 98 (0.3)

11–19 times 122 (0.1) 57 (0.1) 65 (0.2)

20–39 times 141 (0.2) 50 (0.1) 91 (0.3)

40 times or more 430 (0.5) 153 (0.3) 277 (0.8)

SUDsc – – – – – –

FTND 2.2 ± 2.2 2.1 ± 2.2 2.4 ± 2.2

Lifetime DSM-5 AUDd 8015 (14.7) 2873 (9.1) 5142 (22.6)

Diagnosis, yes

Severity

Non-AUD 35,923(66.1) 21,184 (67.1) 14,739 (64.7)

mild 5973 (11.0) 2175 (6.9) 3798 (16.7)

moderate 1465 (2.7) 503 (1.6) 962 (4.2)

severe 548 (1.0) 184 (0.6) 364 (1.6)

Note: SD, standard deviation. 1 packyear: using 20 cigarettes per day for 1 year, or using 1 cigarette per day for 20 years; Daily alcohol intake: grams/day; Drinking quantity: glasses/day. FTND: Fagerström Test for Nicotine Dependence. AUD: Alcohol Use
Disorder.
aThe number of participants at wave 3 will increase as the entire data release since summer of 2024.
bData on cannabis use were assessed since the second assessment,
cOnly the third assessment;
dThe prevalence of DSM-5 AUD was based on 54,369 participants who reported ever drink alcohol and had DSM-5 AUD data available.
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their entire life. The prevalence of lifetime cannabis use is likely
underestimated in Lifelines due to underreporting if a participant
did not classify cannabis as drugs. In NTR, the participants were
asked what age they initiated cannabis use with answer categories:
(1) 11 years and younger, (2) 12−13, (3) 14−15, (4) 16−17, (5) 18
years or older and (6) never. The answer categories were recoded to
Ever (1) versus Never (0) used cannabis.

Substance Use Disorders

Alcohol and nicotine use disorders data were collected from self-
reported questionnaires at wave 3. Alcohol use disorder (AUD)
was assessed using the 11 diagnostic criteria from the DSM-5
(American Psychiatric Association, 2013). Lifetime DSM-5 AUD
diagnosis required endorsing a minimum of two criteria in the 12
months preceding the questionnaire or previously. Consistent with
DSM-5 criteria, lifetime AUD severity levels were categorized as
non-AUD (<2 criteria), mild (2−3 criteria), moderate (4−5
criteria), or severe (≥6 criteria).

Nicotine dependence was assessed using the Fagerström Test
for Nicotine Dependence (FTND; Heatherton et al., 1991). The
FTND includes six items to evaluate the quantity of cigarette
consumption, the compulsion to use and nicotine dependence; for
instance, ‘How soon after you woke up did you smoke your first
cigarette?’ The scores were summed to yield a total FTND score of
0−10, the higher the score, the stronger the nicotine dependence.

Finally, the 14.7% prevalence of lifetime DSM-5 AUD in
Lifelines (9.1% for females, 22.6% for males) is comparable to the
12.8% in subjects aged 18−75 years from the NEMESIS (7.9% for
females, 17.8% for males; Ten Have et al., 2023).

Genomic Data in Lifelines

Genotyping and Imputation

Lifelines participants were genotyped with the Illumina CytoSNP-
12v2 array (n= 15,400), Infinium Global Screening Array® (GSA)
MultiEthnic Disease Version 1.0 (n= 36,339) and FinnGen
Thermo Fisher Axiom® custom array (n= 28,249) respectively.
Quality control (QC) of marker and samples were performed
separately per batch. The detailed pre-imputation QC criteria is
described in the Lifelines wiki (http://wiki-lifelines.web.rug.nl/).

In brief, duplicated and monomorphic markers, markers with a
low call rate, low minor allele frequency, or variants that deviated
significantly from Hardy-Weinberg equilibrium were removed.
Samples with a low call rate, heterozygosity outliers or were
identified as mix-ups were filtered out. After QC, data from each
array was imputed through the Sanger Imputation Service utilizing
the Haplotype Reference Consortium panel. We selected a
standardized collection of imputed markers with imputation
quality scores equal to or above 0.8 across all batches. To minimize
the impact of population stratification, we limited the samples to
those of European ancestry, determined through principal
component analysis with the 1000 Genomes reference. In cases
of samples that were genotyped in multiple batches (duplicates),
data from the latest batch was used.

For this project, samples included all genotyped offspring who
had at least one parent genotyped. There were a total of 19,281
offspring available for analysis. This included 3217 complete trios
and 16,010 duos with one genotyped parent. Since Lifelines aims to
genotype all participants, these numbers are expected to increase
over time.

Methods

Nontransmitted Alleles Inference

Unlike the previously applied pseudo-control method (Bates et al.,
2018), which performs a marker-by-marker comparison to create
non-transmitted parental genomes using genotyping data from
offspring and both parents (parent-offspring trios), we will use a
haplotype-based approach to differentiate transmitted and non-
transmitted genomes in parent-offspring trios and pairs (Trindade
Pons et al., 2024). Briefly, offspring’s haplotypes were compared to
the two (parent-offspring pairs) or four (parent-offspring trios)
parental haplotypes using tiles of every 150 adjacent markers in a
chromosome. Tile size of 150 markers was optimal for our
genotyping data, given the SNP density of the genotyping array.
Each tile overlapped by 50 markers with neighboring tiles on both
sides, which allowed us to account for potential crossing-over
events. These tiles were used to trace the best matching parental
haplotype across all the tiles. For each tile, if the overall match
between the offspring’s haplotype and the best matching parental
haplotype is less than 99.8%, the method assumes that there could
be crossing-over and checks the match with the other haplotype
from the same parent. For each available parent, the best match
between parent and offspring tiles was used to determine which
two parental tiles were transmitted to the offspring. After
determining the transmitted tiles, the remaining parental tiles
were stored in a separate data as non-transmitted alleles. For
parent-offspring pairs, the nontransmitted alleles of the ungen-
otyped parent were set as missing (Trindade Pons et al., 2024).
Once the transmitted and nontransmitted alleles are determined,
they can be used not only to calculate separate PGSs but also for GE
imputation. This allows us to generate neuronally derived GE
networks for both transmitted and non-transmitted gene co-
expression networks, which can then be tested for their impact on
SU and SUDs.

Nontransmitted Gene Co-Expression Networks

Once identified and assembled into parental transmitted and
nontransmitted genotypes, they can be used to impute GE. GE
imputation will be performed using the PrediXcan software
(Gamazon et al., 2015). To increase the accuracy of GE imputation,
we developed a stringent imputation pipeline. Considering the
much greater variability of gene expression, it is expected that there
will be greater variability in the successful GE imputation, as
compared to SNP imputation. In our GE imputation pipeline, the
correlation is one of the many steps to ensure the reliability of
accurate GE imputation. Furthermore, as we focus on the network
interactions between the imputed genes, that is, carrying the
cumulative signal across all genes in the network, we inherently
have a greater tolerance to retain the potentially useful information
from all genes. Specifically, the pipeline consists of the following
steps: (1) the removal of all SNPs with NAs from our own genotype
data; (2) ensuring genotype annotation is identical between the
SQLite file and our own genotypes; (3) the use of SQLite weights
from the GTEx final data release (Version 8, August 2019) to
predict GE in our sample; (4) using regression models (with
observed gene expression as the outcome and predicted gene
expression as the predictor of interest) to filter out genes with low
prediction accuracy across all subjects, that is, genes with predicted
p values ≥ .05; (5) the agreement between imputed and actual GE
via Pearson correlation (r ≥ .10); and (6) use the SQLite SNP
weight files derived from specific brain regions such as nucleus
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accumbens (NAc), putamen, prefrontal cortex (PFC), and
amygdala. We chose to focus our GE imputation analysis on
these brain regions comprising the mesocorticolimbic system,
given their putative roles in SU and addiction (Koob & Volkow,
2016; Volkow et al., 2019). This system is central to reward
processing, motivation, and executive function— all key processes
implicated in SUDs. The NAc and putamen are critical
components of the reward circuitry (Haber & Knutson, 2010;
Volkow &Morales, 2015), the PFC is involved in decision-making
and impulse control (Dalley & Robbins, 2017; Dixon et al., 2017),
and the amygdala plays a role in emotion processing and drug-
associated memories (Everitt & Robbins, 2016; Koob & Volkow,
2016). Numerous neuroimaging and postmortem studies have
demonstrated altered structure and function in these regions in
individuals with SUDs (Koob & Volkow, 2016; Volkow et al.,
2016). By focusing on these specific areas, our aim is to capture
gene expression patterns most relevant to the neurobiology of SU
and addiction. With the GTEx final data release Version 8, we will
substantially increase our ability to reliably impute gene
expression, that is, from 3115 genes to 10,000−14,000 genes per
brain region.

Regardless, to mitigate the limitations associated with GE
imputation, we will implement several strategies: (1) applying
stringent statistical thresholds with conservative multiple testing
corrections, (2) interpreting our results conservatively and
emphasizing the need for experimental validation, (3) conducting
sensitivity analyses to assess the robustness of our findings to
different methodological choices. By adopting this approach, we
aim to provide a balanced and reliable interpretation of our results.
We emphasize that while our findings may be consistent with
causal relationships, they should be considered as generating
hypotheses that would require replication across independent
datasets and further experimental validation. These additional
studies would aim to provide stronger evidence supporting or
falsifying these hypotheses, rather than providing definitive proof
of causality.

Following imputation, WGCNA will be performed on both
transmitted and nontransmitted GE to identify co-expression
networks and their corresponding MEs significantly correlated
with SU and SUDs (Langfelder & Horvath, 2008; Langfelder et al.,
2013; Zhang & Horvath, 2005). As mentioned above, WGCNA
identifies higher order interactions between genes by assembling
the imputed transcriptomes into ‘imputed network modules’. Each
network module in WGCNA is represented by its ME, which is a
quantitative summary of the correlated expression and connected-
ness across all genes in a module. WGCNA can be applied to
identify gene networks associated with any phenotype including
sex, environment, and so forth. Here, our intention will be to focus
only on gene networks correlated with each SU and SUDs while
controlling for covariates such as sex and age. Post-hoc analysis
will be used to identify sex-specific GE networks, followed by tests
of network preservation. From our previous work (Vornholt et al.,
2020, 2021), we expect to generate ∼20 network modules per SU
and SUD outcome with varying degrees of correlation, represented
by their respective Pearson correlations and p values between SU
and SUD outcomes and network modules. The validity of such
identified module-trait associations will be further validated using
the bootstrapped WGCNA approach (Gandal et al., 2018). The
p values will be further corrected via Bonferroni, and modules
significantly correlated with covariates excluded (Ponomarev
et al., 2012).

Discussion

Our study advances research on SU and SUDs through several key
innovations. First, we provide a methodological framework that
integrates genetic nurture analysis, GE imputation, and WGCNA.
This comprehensive approach will help unravel the complex
interplay of genetic and environmental factors in SU and SUDs,
potentially leading to more targeted interventions. Second, we
leverage two unique datasets: the Brisbane 19UP Study from
Australia, which offers rich phenotypic data on young adults
during a critical developmental period for SU and SUDs; and the
Lifelines Cohort from the Netherlands, as a largemultigenerational
study ideal for examining genetic and environmental factors across
different life stages and family structures. These geographically and
culturally distinct cohorts enable cross-population comparisons
and enhance the generalizability of our findings. Third, our study
design allows for meta-analyses, increasing statistical power to
detect genetic effects. By incorporating detailed environmental
data, we can examine gene-environment interactions across
different life stages. Additionally, we integrate multi-omics data,
including transcriptomic and epigenomic information, offering a
multi-dimensional view of the biological processes underlying SU
and SUDs.

Future Directions

Our future research will focus on SU and SUDs, utilizing a
methodological framework that integrates genetic nurture analy-
ses, GE imputation, andWGCNA. This approach, while tailored to
SU and SUDs, has broad applicability across a wide range of
complex traits and outcomes, including cardiovascular diseases,
metabolic disorders, other psychiatric conditions, and non-
medical traits such as educational attainment or personality.

We will apply three mainmethodological approaches across the
Lifelines and Brisbane 19UP datasets. (1) Genetic nurture analyses:
This will compare parental influence effects between the
Netherlands and Australia, exploring how genetic nurture impacts
SU, SUDs, and related outcomes across different cultural contexts,
family structures, and socioeconomic backgrounds. (2) GE
imputation: Using reference panels such as GTEx, we will explore
how age-related changes in imputed gene expression patterns
correlate with SU, SUDs, and associated health outcomes across
the lifespan, particularly in the Lifelines. (3) WGCNA: We will
impute GE data from both cohorts to identify co-expressed gene
modules associated with SU and SUDs. This will also enable us to
explore how environmental factors influence the relationship
between these modules and health outcomes across different age
groups.

By integrating these methods, we can address research
questions such as how genetic nurture effects interact with specific
gene co-expression network modules that influence SU and SUDs
in different populations, and whether or not gene expression
profiles mediate the relationship between polygenic risk scores and
SU-related outcomes, while considering both direct genetic effects
and indirect genetic nurturing effects.

Conclusions

The scientific premise for developing and applying our method to
investigate transmitted and nontransmitted GE networks of SU
and SUDs is compelling. To our knowledge, we are unaware of any
studies using genotyped families for GE imputation to estimate the
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impact of transmitted and nontransmitted GE networks, via
parental and family environments, on SU and SUDs in offspring.
This will provide the first molecular evidence to show how GE
networks can ‘genetically nurture’ the risk of SU and SUDs by
helping to foster risky and protective environments. For example,
through which environments do these transmitted and non-
transmitted GE networks impact on SU and SUDs? Furthermore,
we can extend our research questions by deriving transmitted and
non-transmitted maternal and paternal genotypes for GE
imputation. This will enable us to determine, whether, for
example, the paternally transmitted and nontransmitted GE
networks are more salient, or whether their impacts vary according
to the biological sex of each offspring. We anticipate that our
integrated approach will provide a comprehensive understanding
of the interplay between genetic factors, gene expression, and
environmental influences on SU and SUDs across different life
stages and populations. The insights gained from our research may
not only advance our understanding of the etiology of SU and
SUDs but also inform studies of other complex traits and
outcomes.
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