Algebraic Homology For Real Hyperelliptic and Real Projective Ruled Surfaces

Miguel A. Abánades

Abstract. Let X be a reduced nonsingular quasiprojective scheme over \mathbb{R} such that the set of real rational points $X(\mathbb{R})$ is dense in X and compact. Then $X(\mathbb{R})$ is a real algebraic variety. Denote by $H_k^{\text{alg}}(X(\mathbb{R}), \mathbb{Z}/2)$ the group of homology classes represented by Zariski closed k-dimensional subvarieties of $X(\mathbb{R})$. In this note we show that $H_1^{\text{alg}}(X(\mathbb{R}), \mathbb{Z}/2)$ is a proper subgroup of $H_1(X(\mathbb{R}), \mathbb{Z}/2)$ for a nonorientable hyperelliptic surface X. We also determine all possible groups $H_1^{\text{alg}}(X(\mathbb{R}), \mathbb{Z}/2)$ for a real ruled surface X in connection with the previously known description of all possible topological configurations of X.

1 Introduction

Let *V* be a compact quasiprojective real algebraic variety. Denote by $H_k^{\text{alg}}(V, \mathbb{Z}/2)$ the subgroup of $H_k(V, \mathbb{Z}/2)$ generated by the homology classes represented by Zariski closed *k*-dimensional subvarieties of *V*. If *V* is nonsingular and $d = \dim(V)$, let $H_{\text{alg}}^{d-k}(V, \mathbb{Z}/2)$ be the subgroup of $H^{d-k}(V, \mathbb{Z}/2)$ consisting of all the cohomology classes that are sent via the Poincaré duality isomorphism $H^{d-k}(V, \mathbb{Z}/2) \rightarrow$ $H_k(V, \mathbb{Z}/2)$ into $H_k^{\text{alg}}(V, \mathbb{Z}/2)$. For definitions and results of real algebraic geometry the reader is referred to [1]. The important role played by the groups H_k^{alg} and H_{alg}^k in real algebraic geometry is extensively described in the recent survey [2].

We can also adopt a scheme theoretic point of view. Given a reduced quasiprojective scheme X over \mathbb{R} , we let $X(\mathbb{R})$ (resp. $X(\mathbb{C})$) denote its set of \mathbb{R} -rational (resp. \mathbb{C} -rational) points. If $X(\mathbb{R})$ is dense in X, then $(X(\mathbb{R}), \mathcal{O}_X | X(\mathbb{R}))$, where \mathcal{O}_X is the structure sheaf of X, is a real algebraic variety (note that every real algebraic variety is biregularly isomorphic to $X(\mathbb{R})$ for some X as above). Assume now that X is also nonsingular and *n*-dimensional and $X(\mathbb{R})$ is nonempty and compact. Given a nonnegative integer k, we let $Z^k(X)$ denote the group of algebraic (n - k)-cycles on X and $\operatorname{CH}^k(X)$ the Chow group in codimension k of X. There exists a unique group homomorphism,

$$\operatorname{cl}_{\mathbb{R}}$$
: $\operatorname{CH}^{k}(X) \to H^{k}(X(\mathbb{R}), \mathbb{Z}/2)$

such that for every closed (n - k)-dimensional subvariety V of X, the cohomology class $\operatorname{cl}_{\mathbb{R}}([V])$ is Poincaré dual to the homology class in $H_{n-k}(X(\mathbb{R}), \mathbb{Z}/2)$ determined by $V(\mathbb{R})$ (*cf.* [3]). In particular we have $\operatorname{cl}_{\mathbb{R}}(\operatorname{CH}^{k}(X)) = H_{\operatorname{alg}}^{k}(X(\mathbb{R}), \mathbb{Z}/2)$.

In this paper we are interested in the group $H_1^{\text{alg}}(X(\mathbb{R}), \mathbb{Z}/2)$ when X is a nonsingular algebraic surface over \mathbb{R} . We say that a surface X over \mathbb{R} is a real Enriques

Received by the editors July 8, 1999.

The author was partially supported by NSF Grant DMS-9503138.

AMS subject classification: Primary: 14P05; secondary: 14P25.

[©]Canadian Mathematical Society 2001.

surface, a real ruled surface, *etc.*, if its complexification, $X_{\mathbb{C}} = X \times_{\mathbb{R}} \mathbb{C}$, is a complex Enriques surface, resp. a complex ruled surface, *etc*.

This question has been considered before for real rational, real abelian, real *K*3 and real Enriques surfaces by several authors (see [9], [5], [7], [8]).

In Section 2 we show that $H_1^{\text{alg}}(X(\mathbb{R}), \mathbb{Z}/2)$ is a proper subgroup of $H_1(X(\mathbb{R}), \mathbb{Z}/2)$ for a nonorientable hyperelliptic surface X. In Section 3 we study real ruled surfaces. We use the affine description of some real relatively minimal ruled surfaces as given in [10, V]. There, all possible topological configurations for real ruled surfaces are described. We determine the possible groups $H_1^{\text{alg}}(X(\mathbb{R}), \mathbb{Z}/2)$ in connection with those configurations.

Notation We will denote by \cong a biregular isomorphism between two algebraic varieties and by \sim a homeomorphism between topological spaces.

2 Real Hyperelliptic Surfaces

A complex algebraic surface *S* is a hyperelliptic surface if $S \cong (E \times F)/G$, where *E* and *F* are elliptic curves and *G* is a finite group of translations of *E* acting on *F* such that $F/G \cong \mathbb{P}^1_{\mathbb{C}}$. Let $K_Y \in \text{Pic}(Y)$ denote the canonical class of the algebraic variety *Y*. The hyperelliptic surfaces are those elliptic surfaces (*families* of elliptic curves) for which 12K = 0.

Topologically, the real hyperelliptic surfaces are well understood. If *X* is a real hyperelliptic surface, then $X(\mathbb{R})$ has at most 4 connected components, each of them homeomorphic to a torus or a Klein bottle (*cf.* [10]). In particular $X(\mathbb{R})$ is compact.

We are going to consider the image, by the real class map $cl_{\mathbb{R}}$, of the classes in $CH^{1}(X)$ given by algebraic cycles in $Z^{1}(X)$ numerically equivalent to zero. Let us recall the definition of numerical equivalence. For simplicity we only consider non-singular varieties.

Definition 2.1 Let *Y* be a nonsingular complete *n*-dimensional variety over a field. A *k*-cycle α on *Y* is *numerically equivalent to zero* if deg $(\alpha \cdot \beta) = 0$ for all (n-k)-cycles β on *Y*. (Where $\alpha \cdot \beta$ denotes the intersection product on *Y*.)

We denote by $Num_k(Y)$ the group of *k*-cycles numerically equivalent to zero. We also use codimensional notation when convenient.

The following lemma shows how the cohomology classes determined by cycles numerically equivalent to zero are *perpendicular* to the algebraic cohomology with respect to \langle , \rangle , the Kronecker index (pairing) of cohomology and homology classes. We denote by $[X(\mathbb{R})]$ the fundamental class of $X(\mathbb{R})$.

Lemma 2.2 Let X be a nonsingular, n-dimensional, projective variety over \mathbb{R} with $X(\mathbb{R})$ nonempty and compact. Let $cl_{\mathbb{R}}$: $CH^*(X) \to H^*(X(\mathbb{R}), \mathbb{Z}/2)$ be the real class map. Then for all cohomology classes u in $cl_{\mathbb{R}}(Num^k(X))$ and v in $H^{n-k}_{alg}(X(\mathbb{R}), \mathbb{Z}/2)$ one has

$$\langle u \cup v, [X(\mathbb{R})] \rangle = 0.$$

Algebraic Homology of Surfaces

In particular, if $\dim_{\mathbb{Z}/2} \left(\operatorname{cl}_{\mathbb{R}} \left(\operatorname{Num}^{k}(X) \right) \right) \geq d$ then

$$\dim_{\mathbb{Z}/2} \left(H^{n-k} \big(X(\mathbb{R}), \mathbb{Z}/2 \big) / H^{n-k}_{\mathrm{alg}} \big(X(\mathbb{R}), \mathbb{Z}/2 \big) \right) \ge d.$$

Proof For each element γ in $CH^n(X)$ it follows, from the definitions, that

$$\langle \mathrm{cl}_{\mathbb{R}}(\gamma), [X(\mathbb{R})] \rangle = \mathrm{deg}(\gamma) \pmod{2}.$$

Let $\alpha \in CH^k(X)$ be numerically equivalent to zero and such that $cl_{\mathbb{R}}(\alpha) = u$, and $\beta \in CH^{n-k}(X)$ such that $cl_{\mathbb{R}}(\beta) = v$. We have

$$\langle u \cup v, [X(\mathbb{R})] \rangle = \langle cl_{\mathbb{R}}(\alpha) \cup cl_{\mathbb{R}}(\beta), [X(\mathbb{R})] \rangle = \langle cl_{\mathbb{R}}(\alpha \cdot \beta), [X(\mathbb{R})] \rangle$$

= deg(\alpha \cdot \beta) (mod 2),

which vanishes by definition of numerical equivalence.

The second part of the lemma follows from the first part by considering the dual pairing $H^k(X(\mathbb{R}), \mathbb{Z}/2) \times H^{n-k}(X(\mathbb{R}), \mathbb{Z}/2) \to \mathbb{Z}/2, (u, v) \mapsto \langle u \cup v, [X(\mathbb{R})] \rangle$.

The *same* result for algebraic equivalence of cycles had previously been obtained by Kucharz in [6].

We consider now a real hyperelliptic surface X. By definition, we have that $X_{\mathbb{C}} = X \times_{\mathbb{R}} \mathbb{C}$ is a complex hyperelliptic surface, and hence $12K_{X_{\mathbb{C}}} = 0$. If we write $K_{X_{\mathbb{C}}}$ for a divisor representing the canonical class $K_{X_{\mathbb{C}}}$ we have, in particular, that a multiple of $K_{X_{\mathbb{C}}}$ is algebraically equivalent to zero. By [4, 19.3] this is equivalent to the fact that $K_{X_{\mathbb{C}}}$ is numerically equivalent to zero. We know that the group $G = \text{Gal}(\mathbb{C}/\mathbb{R})$ acts on $\text{Pic}(X_{\mathbb{C}})$ and we can identify Pic(X) with the group $\text{Pic}(X_{\mathbb{C}})^G$ of divisor classes invariant under G (*cf.* [10, I]). Using this identification it is easy to see that K_X is then numerically equivalent to zero in X.

Theorem 2.3 Let X be a real hyperelliptic surface. If $X(\mathbb{R})$ is nonorientable then

$$\{0\} \neq H_1^{\mathrm{alg}}(X(\mathbb{R}), \mathbb{Z}/2) \neq H_1(X(\mathbb{R}), \mathbb{Z}/2).$$

Proof The nonorientability of $X(\mathbb{R})$ implies that $w_1(X(\mathbb{R})) \neq 0$, where $w_1(X(\mathbb{R}))$ denotes the first Stiefel-Whitney class of $X(\mathbb{R})$. The fact that $H^*_{alg}(X(\mathbb{R}), \mathbb{Z}/2)$ contains all the Stiefel-Whitney classes of $X(\mathbb{R})$ implies the first inequality.

Consider now the real class map $cl_{\mathbb{R}}$: $Pic(X) \to H^1(X(\mathbb{R}), \mathbb{Z}/2)$. We have that K_X is numerically equivalent to zero. Since $cl_{\mathbb{R}}(K_X) = w_1(X(\mathbb{R})) \neq 0$ we get, by Lemma 2.2, that $H^1(X(\mathbb{R}), \mathbb{Z}/2) / H^1_{alg}(X(\mathbb{R}), \mathbb{Z}/2) \neq \{0\}$. We get then

$$\{0\} \neq H^1_{\mathrm{alg}}(X(\mathbb{R}), \mathbb{Z}/2) \neq H^1(X(\mathbb{R}), \mathbb{Z}/2),$$

which is equivalent to the claim.

3 Real Projective Ruled Surfaces

A complex surface *V* is ruled if there exists a nonsingular complex curve *C* together with a projective morphism $\pi: V \to C$ such that the fiber of a generic point η is an irreducible curve of genus 0. If a real surface *X* is such that $X_{\mathbb{C}}$ is ruled over $\mathbb{P}^1_{\mathbb{C}}$, then *X* is rational, and by [9], $H_1^{\text{alg}}(X(\mathbb{R}), \mathbb{Z}/2) = H_1(X(\mathbb{R}), \mathbb{Z}/2)$. For nonrational real ruled surfaces we have the following characterization: *X* is a nonrational ruled surface over \mathbb{R} if and only if there exists a curve *B* over \mathbb{R} of genus ≥ 1 and a projective morphism $p: X \to B$ such that the fiber $p^{-1}(\eta)$ of a generic point is a smooth curve of genus 0 (*cf.* [10, V]). We will assume that $B(\mathbb{R})$ is irreducible.

Theorem 3.1 Let X be a real nonrational projective ruled surface over a curve B.

(*i*) If $B(\mathbb{R})$ is connected then

 $H_1^{\mathrm{alg}}(X(\mathbb{R}),\mathbb{Z}/2) = H_1(X(\mathbb{R}),\mathbb{Z}/2).$

(ii) If $B(\mathbb{R})$ is nonconnected and $X(\mathbb{R})$ has some connected component homeomorphic to $\mathbb{S}^1 \times \mathbb{S}^1$ then

 $H_1^{\mathrm{alg}}(X(\mathbb{R}),\mathbb{Z}/2) \neq H_1(X(\mathbb{R}),\mathbb{Z}/2).$

In the proof we use the minimal model program to give a detailed description of all the possible topological types for real projective ruled surfaces $X(\mathbb{R})$ together with all the possible groups $H_1^{\text{alg}}(X(\mathbb{R}), \mathbb{Z}/2)$. Moreover, due to the constructive nature of the arguments, all cases listed occur. Theorem 3.1 is a corollary of this description.

Proof If *X* is a smooth, irreducible, real surface with a real ruling $\pi: X \to B$ over a smooth real curve *B*, then *X* is birationally equivalent to a surface defined in some affine open subset of $\mathbb{A}^2 \times B$ by an equation of the form $x^2 + y^2 = f$, where *f* is a real rational function in *B*, regular in $B(\mathbb{R})$ (*cf*. [10, V]). Moreover a classical theorem by Witt establishes the existence of such a function *f* for any choice of zeros and signs in the different connected components of $B(\mathbb{R})$, provided that the number of zeros in each component is even (*cf*. [11]). We first study the group $H_1^{\text{alg}}(X(\mathbb{R}), \mathbb{Z}/2)$ for a real ruled surface given by an affine equation as above, that is, *X* is the projective completion of the affine surface defined in $\mathbb{A}^2 \times B$ by the equation $x^2 + y^2 = f$, where $f \in \mathbb{R}(B)^*$ is regular on $B(\mathbb{R})$. We consider two cases.

B(ℝ) connected: We have B(ℝ) ~ S¹. If *f* has some zeros on B(ℝ), then X(ℝ) is homeomorphic a union of 2-spheres and H₁(X(ℝ), Z/2) = {0}. If *f* is strictly positive on B(ℝ), then X(ℝ) is homeomorphic to S¹ × S¹. Let b₀ be

If *f* is strictly positive on $B(\mathbb{R})$, then $X(\mathbb{R})$ is nomeomorphic to $\mathbb{S}^* \times \mathbb{S}^*$. Let b_0 be a fixed point in $B(\mathbb{R})$, we consider

$$L_2 = \{ (x, y, b_0) \in \mathbb{A}^2(\mathbb{R}) \times B(\mathbb{R}) \mid x^2 + y^2 = f(b_0) \} \subset X(\mathbb{R}).$$

Clearly $[L_2] \in H_1^{alg}(X(\mathbb{R}), \mathbb{Z}/2)$, where $[L_2]$ denotes the homology class represented by L_2 in $X(\mathbb{R})$. That is, the *fiber class* is algebraic. We consider now the *section class*.

Algebraic Homology of Surfaces

Since f is positive on the curve $B(\mathbb{R})$ we have, by [1, Theorem 6.4.18], that f = $f_1^2 + f_2^2$ with f_1, f_2 regular on $B(\mathbb{R})$. We can then define a regular section $s: B(\mathbb{R}) \to X(\mathbb{R}), b \mapsto (f_1(b), f_2(b), b)$, so if we set $L_1 = s(B(\mathbb{R}))$ we clearly have $[L_1] \in C$ $H_1^{\text{alg}}(X(\mathbb{R}), \mathbb{Z}/2)$ so $H_1^{\text{alg}}(X(\mathbb{R}), \mathbb{Z}/2) = H_1(X(\mathbb{R}), \mathbb{Z}/2)$. $B(\mathbb{R})$ not connected: We write $B(\mathbb{R}) = B_1 \cup \cdots \cup B_n$, where B_i are the connected

components of $B(\mathbb{R})$. Let $n = z + s^+ + s^-$ so

$$B(\mathbb{R}) = \underbrace{B_1 \cup \cdots \cup B_z}_{f \text{ has zeros}} \cup \underbrace{B_{z+1} \cup \cdots \cup B_{z+s^+}}_{f \text{ is positive}} \cup \underbrace{B_{z+s^++1} \cup \cdots \cup B_{z+s^++s^-}}_{f \text{ is negative}}$$

If we write z^* for the number of zeros of f in $B(\mathbb{R})$ we have that

$$X(\mathbb{R}) = \left(\bigcup_{i=1}^{z^*/2} \mathbb{S}_i^2\right) \cup \left(\bigcup_{i=z+1}^{z+s^+} T_1^i\right), \quad \mathbb{S}_i^2 \sim \mathbb{S}^2, \ T_1^i \sim \mathbb{S}^1 \times \mathbb{S}^1,$$

so dim_{$\mathbb{Z}/2$} $H_1(X(\mathbb{R}), \mathbb{Z}/2) = 2s^+$.

For $i = z + 1, \ldots, z + s^+$ we define

$$L_{i1} = \{ (f(g)^{1/2}, 0, b) \in \mathbb{A}^2(\mathbb{R}) \times B(\mathbb{R}) \mid b \in B_i \} \subset T_1^i$$

$$L_{i2} = \{ (x, y, b_i) \in \mathbb{A}^2(\mathbb{R}) \times B(\mathbb{R}) \mid x^2 + y^2 = f(b_i) \} \subset T_1^i,$$

where b_i is a fixed point of B_i . Clearly $[L_{i2}] \in H_1^{\text{alg}}(X(\mathbb{R}), \mathbb{Z}/2)$. Now, if we consider the regular map $p: X(\mathbb{R}) \to B(\mathbb{R})$ induced by the projection $\mathbb{A}^2(\mathbb{R}) \times B(\mathbb{R}) \to B(\mathbb{R})$ we have that $p_*([L_{i1}]) = [B_i] \notin H_1^{\text{alg}}(B(\mathbb{R}), \mathbb{Z}/2)$, so $[L_{i1}] \notin H_1^{\text{alg}}(X(\mathbb{R}), \mathbb{Z}/2)$. If $u \in H_1(X(\mathbb{R}), \mathbb{Z}/2)$ we can write $u = \sum_{i=z+1}^{z+z^+} \lambda_i[L_{i1}] + \mu_i[L_{i2}], \quad \lambda_i, \mu_i \in \mathbb{R}$

 $\{0,1\}$, so

$$p_*(u) = \sum_{i=z+1}^{z+s^+} \mu_i[B_i] \in H_1(B(\mathbb{R}), \mathbb{Z}/2),$$

where p_* denotes the push-forward homomorphism $H_1(p)$ in homology induced by

We have then

$$p_*(u) \in H_1^{\mathrm{alg}}(B(\mathbb{R}), \mathbb{Z}/2)$$
 iff $z = 0, s^- = 0, \mu_i = 1, i = 1, \dots, s^+,$

so if $z \neq 0$ or $s^- \neq 0$ we have $H_1^{\text{alg}}(X(\mathbb{R}), \mathbb{Z}/2) = \bigoplus_{i=z+1}^{z+s^+}([L_{i_2}])$. If $z = s^- = 0$ the function f is strictly positive and, arguing as in the connected case, we get

$$H_1^{\mathrm{alg}}(X(\mathbb{R}), \mathbb{Z}/2) = \bigoplus_{i=1}^n ([L_{i2}]) \bigoplus ([L_{11}] + \dots + [L_{n1}]).$$

Let X now be a general relatively minimal ruled surface X over the curve B. By [10, V.3] we know that there exists a relatively minimal ruled surface X' over B given

as above and a birational map $\varphi: X'_{\mathbb{C}} \to X_{\mathbb{C}}$ that is the product of *real elementary transformations*. A real elementary transformation is a blow up at a real point (or two complex conjugate points) composed with the blow down of the fiber obtained over that point (resp. the fibers over the complex conjugate points considered).

Given a smooth projective surface over \mathbb{R} we understand the *effect* on the real part $X(\mathbb{R})$ of a blow up $\pi: Y_{\mathbb{C}} \to X_{\mathbb{C}}$ of the kind mentioned above. If $\pi: Y_{\mathbb{C}} \to X_{\mathbb{C}}$ is the blow up at a pair of complex conjugate points then $Y(\mathbb{R}) \cong X(\mathbb{R})$. If π has as center a real point $x \in X(\mathbb{R})$ then $X(\mathbb{R})$ and $Y(\mathbb{R})$ have the same number of connected components and the blow up *only changes* the connected component of $X(\mathbb{R})$ containing the center x. More precisely, if we write T_g for the g-holed torus ($T_0 = \mathbb{S}^2$) and U_h for the compact connected nonorientable surface of Euler characteristic 1-h (in particular $U_0 = \mathbb{P}_2(\mathbb{R})$), we can describe the blow up at a real point $x \in X(\mathbb{R})$ as follows: Let $\{X_i\}_{i \in I}$ be the set of connected components of $X(\mathbb{R})$, then $\{Y_i = \pi^{-1}(X_i) \cap Y(\mathbb{R})\}_{i \in I}$ is the set of connected components of $Y(\mathbb{R})$ and $Y_i \sim X_i$ if $x \notin X_i$. For $x \in X_i$ we have that $Y_i \sim U_{2g}$ if $X_i \sim T_g$ and $Y_i \sim U_{h+1}$ if $X_i \sim U_h$. In other words, the blow up *puts* an extra $\mathbb{P}^1(\mathbb{R})$ over the real point $x \in X(\mathbb{R})$. Moreover, the addition of this exceptional divisor is the *only change* in the group $H_1^{\text{alg}}(X(\mathbb{R}), \mathbb{Z}/2)$, that is, the group $H_1^{\text{alg}}(Y(\mathbb{R}), \mathbb{Z}/2)$ is, roughly speaking, the group $H_1^{\text{alg}}(X(\mathbb{R}), \mathbb{Z}/2)$ plus the class represented by the extra $\mathbb{P}^1(\mathbb{R})$ (*cf.* [10, II]).

Let Y' and Y be two real ruled surfaces over a real curve B and elm : $Y'_{\mathbb{C}} \to Y_{\mathbb{C}}$ be an elementary transformation. If elm *starts* with the blow up of two conjugate points of $Y'_{\mathbb{C}}$ we have that $Y(\mathbb{R}) \cong Y'(\mathbb{R})$. Consider then that elm : $Y'_{\mathbb{C}} \to Y_{\mathbb{C}}$ starts with a blow up at a real point $y \in Y'(\mathbb{R})$ and assume that $Y'(\mathbb{R})$ is connected. It is clear that if $Y'(\mathbb{R}) \sim \mathbb{S}^2$ then $Y(\mathbb{R}) \sim \mathbb{S}^2$, if $Y'(\mathbb{R}) \sim \mathbb{S}^1 \times \mathbb{S}^1$ then $Y(\mathbb{R}) \sim U_1$ (Klein bottle) and if $Y'(\mathbb{R}) \sim U_1$ then $Y(\mathbb{R}) \sim U_1$.

Again we consider two cases.

- $B(\mathbb{R})$ connected: In this case, $X'(\mathbb{R})$ is, topologically, either a union of 2-spheres or a torus. By the considerations above $X(\mathbb{R})$ is then homeomorphic to a union of 2-spheres, to the torus $\mathbb{S}^1 \times \mathbb{S}^1$ or to the Klein bottle. Moreover, we have that $H_1^{\text{alg}}(X(\mathbb{R}), \mathbb{Z}/2) = H_1(X(\mathbb{R}), \mathbb{Z}/2)$.
- $B(\mathbb{R})$ not connected: We have $X'(\mathbb{R}) = (\bigcup_{i=1}^{z^*/2} \mathbb{S}_i^2) \cup (\bigcup_{i=z+1}^{z+s^+} T_1^i).$

With a real elementary transformation with a base point x in T_1^i we get U_1^i and since we blow down a *fiber* we get that the transform of the section cycle remains nonalgebraic (same reasons as above, considering the projection onto $B(\mathbb{R})$) and the transform of the fiber cycle remains algebraic. By convenience we keep the same notation for a cycle and its transform under a real elementary transformation.

We have then

$$X(\mathbb{R}) = \left(\bigcup_{i=1}^{z^*/2} \mathbb{S}_i^2\right) \cup \left(\bigcup_{j=1}^a T_1^j\right) \cup \left(\bigcup_{k=a+1}^{a+b} U_1^k\right), \quad a+b = s^+.$$

If z = 0 and a + b = n (number of connected components of $B(\mathbb{R})$) then

$$H_1^{\mathrm{alg}}(X(\mathbb{R}), \mathbb{Z}/2) = \bigoplus_{i=1}^n ([L_{i2}]) \bigoplus ([L_{11}] + \dots + [L_{n1}]).$$

If $a + b \neq n$ then

$$H_1^{\mathrm{alg}}(X(\mathbb{R}),\mathbb{Z}/2) = \bigoplus_{i=1}^{a+b}([L_{i2}]).$$

We consider now a general nonrational projective ruled surface *X* over a curve *B*. We have a relatively minimal real projective ruled surface *X'* and a finite sequence of birational maps $X_{\mathbb{C}} \to X_{\mathbb{C}}^{(1)} \to X_{\mathbb{C}}^{(2)} \to \cdots \to X_{\mathbb{C}}'$ where $X^{(1)}, X^{(2)}, \ldots, X^{(n)}$ are smooth projective surfaces over \mathbb{R} , and such that each map is the morphism corresponding to the blow up of a real point or two complex conjugate points (*cf.* [10, II.6]). We can assume that each morphism is the blow up at a real point.

We consider again two cases.

• $B(\mathbb{R})$ connected: We have three possibilities for $X'(\mathbb{R})$.

$$- \operatorname{If} X'(\mathbb{R}) \sim \bigcup_{i=1}^{m} \mathbb{S}^{2} \text{ we have } X(\mathbb{R}) \sim (\bigcup_{j=1}^{a} \mathbb{S}^{2}) \cup (\bigcup_{l=a+1}^{a+b} U_{g(l)}^{l}), a+b = m, g(l) \geq 0.$$

- If $X'(\mathbb{R}) \sim \mathbb{S}^{1} \times \mathbb{S}^{1}$ then either $X(\mathbb{R}) \sim \mathbb{S}^{1} \times \mathbb{S}^{1}$ or $X(\mathbb{R}) \sim U_{g}$ with $g \geq 2.$

- If $X'(\mathbb{R}) \sim U_1$ then $X(\mathbb{R}) \sim U_g$ with $g \geq 1$.

In all three cases it follows, from the results above, that

$$H_1^{\mathrm{alg}}(X(\mathbb{R}),\mathbb{Z}/2) = H_1(X(\mathbb{R}),\mathbb{Z}/2).$$

• $B(\mathbb{R})$ not connected: In this case we have $X'(\mathbb{R}) = (\bigcup_{i=1}^{z^*/2} \mathbb{S}_i^2) \cup (\bigcup_{j=1}^{a} T_1^j) \cup (\bigcup_{k=a+1}^{a+b} U_1^k)$, where we follow the notations introduced above. If a + b = n (number of connected components of $B(\mathbb{R})$) we have

$$X(\mathbb{R}) = \left(\bigcup_{j=1}^{a'} T_1^j\right) \cup \left(\bigcup_{k=a'+1}^{a'+b'} U_1^k\right) \cup \left(\bigcup_{p=a'+b'+1}^{a'+b'+c'} U_{g(p)}^p\right), \ a'+b'+c'=n, \ g(p) \ge 2,$$

and since

$$H_1^{\mathrm{alg}}(X'(\mathbb{R}), \mathbb{Z}/2) = \bigoplus_{i=1}^n ([L_{i2}]) \bigoplus ([L_{11}] + \dots + [L_{n1}]),$$

M. A. Abánades

we have

$$H_1^{\mathrm{alg}}(X(\mathbb{R}), \mathbb{Z}/2) = \bigoplus_{i=1}^{a'} ([L_{i2}]) \bigoplus_{k=a'+1}^{a'+b'} ([L_{k2}]) \bigoplus_{p=a'+b'+1}^{a'+b'+c'} \{ ([L_{p2}]) \oplus \cdots \oplus ([L_{pg(p)}]) \}$$
$$\bigoplus ([L_{11}] + \cdots + [L_{n1}]),$$

where $[L_{p1}], [L_{p2}], \ldots, [L_{pg(p)}]$ denote the generators of $H_1(U_{g(p)}^p, \mathbb{Z}/2)$. If $a + b \neq n$ we have

$$\begin{split} X(\mathbb{R}) &= \left(\bigcup_{i=1}^{a^{\prime\prime}} \mathbb{S}_{i}^{2}\right) \cup \left(\bigcup_{j=1}^{b^{\prime\prime}} T_{1}^{j}\right) \cup \left(\bigcup_{k=b^{\prime\prime}+1}^{b^{\prime\prime}+c^{\prime\prime}} U_{1}^{k}\right) \cup \left(\bigcup_{p=b^{\prime\prime}+c^{\prime\prime}+1}^{b^{\prime\prime}+c^{\prime\prime}} U_{g(p)}^{p}\right) \\ & \cup \left(\bigcup_{q=b^{\prime\prime}+c^{\prime\prime}+d^{\prime\prime}+1}^{b^{\prime\prime}+c^{\prime\prime}} U_{g(q)}^{q}\right), \end{split}$$

where $a'' + d'' = z^*/2$, b'' + c'' + e'' = a + b, $g(p) \ge 0$ and $g(q) \ge 2$.

Since $H_1^{\text{alg}}(X'(\mathbb{R}), \mathbb{Z}/2) = \bigoplus_{i=1}^{a+b}([L_{i2}])$, we have

$$H_1^{\text{alg}}(X(\mathbb{R}), \mathbb{Z}/2) = \bigoplus_{j=1}^{b''} ([L_{j2}]) \bigoplus_{k=b''+1}^{b''+c''} ([L_{k2}]) \bigoplus_{p=b''+c''+1}^{b''+c''+d''} \{([L_{p1}]) \oplus \cdots \oplus ([L_{pg(p)}])\}$$
$$\bigoplus_{q=b''+c''+d''+1}^{b''+c''+d''+c''} \{([L_{q2}]) \oplus \cdots \oplus ([L_{qg(q)}])\}.$$

That is, in this case the *U*'s obtained from spheres have all 1-cycles algebraic, but the *U*'s obtained from the tori have algebraic all 1-cycles but the one obtained from the *section cycle* in T_1^j .

References

- [1] J. Bochnak, M. Coste and M-F Roy, *Real Algebraic Geometry*. Ergebnisse der Math. **36**, Berlin Heidelberg New York, Springer, 1998.
- [2] J. Bochnak and W. Kucharz, On homology classes represented by real algebraic varieties. Singularities Symposium Krakow 1996, Banach Center Publication, Institute of Mathematics Polish Academy of Sciences, Warschau, Polen, (1997), 7–22.
- [3] A. Borel et A. Haefliger, *La classe d'homologie fondamentale d'un espace analytique*. Bull. Soc. Math. France **89**(1961), 461–513.
- [4] W. Fulton, *Intersection Theory*. Ergebnisse der Math. 2, Berlin, Heidelberg, New York, Springer, 1984.
- [5] J. Huisman, *Real abelian varieties with complex multiplication*. Ph.D. thesis, Vrije Universiteit, Amsterdam, 1992.
- [6] W. Kucharz, Algebraic equivalence and homology classes of real algebraic cycles. Math. Nachr. 180(1996), 135–140.
- [7] F. Mangolte, Cycles algebriques sur les surfaces K3 réelles. Math. Z. 225(1997), 559–576.
- [8] F. Mangolte and J. van Hamel, Algebraic cycles on real Enriques surfaces. Comp. Math. 110(1998), 215–237.
- [9] R. Silhol, *Cohomology de Galois et cohomologie des variétés algebriques réelles: application aux surfaces rationnelles*. Bull. Soc. Math. France **115**(1987), 107–125.

Algebraic Homology of Surfaces

- [10] _____, Real algebraic surfaces. Lecture Notes in Math., **1392**, Springer-Verlag, Berlin, Heidelberg, New York, 1989.
- [11] E. Witt, Zerlegung reeller algebraisher Funktionen in Quadrate, Schiefkörper über reellem Funktionenkörpern. J. Reine Angew. Math. 171(1934), 4–11.

Department of Mathematics and Statistics University of New Mexico Albuquerque, New Mexico 87131-1141 U.S.A. e-mail: abanades@math.unm.edu

Current address: IT Informática de Sistemas CES Felipe II C/ Capitan 39 Aranjuez 28300, Madrid Spain