# Algebraic Homology For Real Hyperelliptic and Real Projective Ruled Surfaces 

Miguel A. Abánades


#### Abstract

Let $X$ be a reduced nonsingular quasiprojective scheme over $\mathbb{R}$ such that the set of real rational points $X(\mathbb{R})$ is dense in $X$ and compact. Then $X(\mathbb{R})$ is a real algebraic variety. Denote by $H_{k}^{\text {alg }}(X(\mathbb{R}), \mathbb{Z} / 2)$ the group of homology classes represented by Zariski closed $k$-dimensional subvarieties of $X(\mathbb{R})$. In this note we show that $H_{1}^{\text {alg }}(X(\mathbb{R}), \mathbb{Z} / 2)$ is a proper subgroup of $H_{1}(X(\mathbb{R}), \mathbb{Z} / 2)$ for a nonorientable hyperelliptic surface $X$. We also determine all possible groups $H_{1}^{\text {alg }}(X(\mathbb{R}), \mathbb{Z} / 2)$ for a real ruled surface $X$ in connection with the previously known description of all possible topological configurations of $X$.


## 1 Introduction

Let $V$ be a compact quasiprojective real algebraic variety. Denote by $H_{k}^{\text {alg }}(V, Z / 2)$ the subgroup of $H_{k}(V, \mathbb{Z} / 2)$ generated by the homology classes represented by Zariski closed $k$-dimensional subvarieties of $V$. If $V$ is nonsingular and $d=\operatorname{dim}(V)$, let $H_{\mathrm{alg}}^{d-k}(V, \mathbb{Z} / 2)$ be the subgroup of $H^{d-k}(V, \mathbb{Z} / 2)$ consisting of all the cohomology classes that are sent via the Poincaré duality isomorphism $H^{d-k}(V, \mathbb{Z} / 2) \rightarrow$ $H_{k}(V, \mathbb{Z} / 2)$ into $H_{k}^{\text {alg }}(V, \mathbb{Z} / 2)$. For definitions and results of real algebraic geometry the reader is referred to [1]. The important role played by the groups $H_{k}^{\mathrm{alg}}$ and $H_{\mathrm{alg}}^{k}$ in real algebraic geometry is extensively described in the recent survey [2].

We can also adopt a scheme theoretic point of view. Given a reduced quasiprojective scheme $X$ over $\mathbb{R}$, we let $X(\mathbb{R})$ (resp. $X(\mathbb{C})$ ) denote its set of $\mathbb{R}$-rational (resp. (C-rational) points. If $X(\mathbb{R})$ is dense in $X$, then $\left(X(\mathbb{R}), \mathcal{O}_{X} \mid X(\mathbb{R})\right)$, where $\mathcal{O}_{X}$ is the structure sheaf of $X$, is a real algebraic variety (note that every real algebraic variety is biregularly isomorphic to $X(\mathbb{R})$ for some $X$ as above). Assume now that $X$ is also nonsingular and $n$-dimensional and $X(\mathbb{R})$ is nonempty and compact. Given a nonnegative integer $k$, we let $Z^{k}(X)$ denote the group of algebraic $(n-k)$-cycles on $X$ and $\mathrm{CH}^{k}(X)$ the Chow group in codimension $k$ of $X$. There exists a unique group homomorphism,

$$
\mathrm{cl}_{\mathbb{R}}: \mathrm{CH}^{k}(X) \rightarrow H^{k}(X(\mathbb{R}), \mathbb{Z} / 2)
$$

such that for every closed $(n-k)$-dimensional subvariety $V$ of $X$, the cohomology class $\mathrm{cl}_{\mathbb{R}}([V])$ is Poincaré dual to the homology class in $H_{n-k}(X(\mathbb{R}), \mathbb{Z} / 2)$ determined by $V(\mathbb{R})(c f .[3])$. In particular we have $\mathrm{cl}_{\mathbb{R}}\left(\mathrm{CH}^{k}(X)\right)=H_{\text {alg }}^{k}(X(\mathbb{R}), \mathbb{Z} / 2)$.

In this paper we are interested in the group $H_{1}^{\text {alg }}(X(\mathbb{R}), \mathbb{Z} / 2)$ when $X$ is a nonsingular algebraic surface over $\mathbb{R}$. We say that a surface $X$ over $\mathbb{R}$ is a real Enriques

[^0]surface, a real ruled surface, etc., if its complexification, $X_{\mathbb{C}}=X \times_{\mathbb{R}} \mathbb{C}$, is a complex Enriques surface, resp. a complex ruled surface, etc.

This question has been considered before for real rational, real abelian, real K 3 and real Enriques surfaces by several authors (see [9], [5], [7], [8]).

In Section 2 we show that $H_{1}^{\text {alg }}(X(\mathbb{R}), \mathbb{Z} / 2)$ is a proper subgroup of $H_{1}(X(\mathbb{R}), \mathbb{Z} / 2)$ for a nonorientable hyperelliptic surface $X$. In Section 3 we study real ruled surfaces. We use the affine description of some real relatively minimal ruled surfaces as given in [10, V]. There, all possible topological configurations for real ruled surfaces are described. We determine the possible groups $H_{1}^{\mathrm{alg}}(X(\mathbb{R}), \mathbb{Z} / 2)$ in connection with those configurations.

Notation We will denote by $\cong$ a biregular isomorphism between two algebraic varieties and by $\sim$ a homeomorphism between topological spaces.

## 2 Real Hyperelliptic Surfaces

A complex algebraic surface $S$ is a hyperelliptic surface if $S \cong(E \times F) / G$, where $E$ and $F$ are elliptic curves and $G$ is a finite group of translations of $E$ acting on $F$ such that $F / G \cong \mathbb{P}_{\mathbb{C}}^{1}$. Let $K_{Y} \in \operatorname{Pic}(Y)$ denote the canonical class of the algebraic variety $Y$. The hyperelliptic surfaces are those elliptic surfaces (families of elliptic curves) for which $12 \mathrm{~K}=0$.

Topologically, the real hyperelliptic surfaces are well understood. If $X$ is a real hyperelliptic surface, then $X(\mathbb{R})$ has at most 4 connected components, each of them homeomorphic to a torus or a Klein bottle (cf. [10]). In particular $X(\mathbb{R})$ is compact.

We are going to consider the image, by the real class map $\mathrm{cl}_{\mathbb{R}}$, of the classes in $\mathrm{CH}^{1}(X)$ given by algebraic cycles in $Z^{1}(X)$ numerically equivalent to zero. Let us recall the definition of numerical equivalence. For simplicity we only consider nonsingular varieties.

Definition 2.1 Let $Y$ be a nonsingular complete $n$-dimensional variety over a field. A $k$-cycle $\alpha$ on $Y$ is numerically equivalent to zero if $\operatorname{deg}(\alpha \cdot \beta)=0$ for all $(n-k)$-cycles $\beta$ on $Y$. (Where $\alpha \cdot \beta$ denotes the intersection product on $Y$.)

We denote by $\operatorname{Num}_{k}(Y)$ the group of $k$-cycles numerically equivalent to zero. We also use codimensional notation when convenient.

The following lemma shows how the cohomology classes determined by cycles numerically equivalent to zero are perpendicular to the algebraic cohomology with respect to $\langle$,$\rangle , the Kronecker index (pairing) of cohomology and homology classes.$ We denote by $[X(\mathbb{R})]$ the fundamental class of $X(\mathbb{R})$.

Lemma 2.2 Let $X$ be a nonsingular, n-dimensional, projective variety over $\mathbb{R}$ with $X(\mathbb{R})$ nonempty and compact. Let $\mathrm{cl}_{\mathbb{R}}: \mathrm{CH}^{*}(X) \rightarrow H^{*}(X(\mathbb{R}), \mathbb{Z} / 2)$ be the real class map. Then for all cohomology classes $u$ in $\operatorname{cl}_{\mathbb{R}}\left(\operatorname{Num}^{k}(X)\right)$ and $v$ in $H_{\text {alg }}^{n-k}(X(\mathbb{R}), \mathbb{Z} / 2)$ one has

$$
\langle u \cup v,[X(\mathbb{R})]\rangle=0
$$

In particular, if $\operatorname{dim}_{\mathbb{Z} / 2}\left(\operatorname{cl}_{\mathbb{R}}\left(\operatorname{Num}^{k}(X)\right)\right) \geq d$ then

$$
\operatorname{dim}_{\mathbb{Z} / 2}\left(H^{n-k}(X(\mathbb{R}), \mathbb{Z} / 2) / H_{\mathrm{alg}}^{n-k}(X(\mathbb{R}), \mathbb{Z} / 2)\right) \geq d
$$

Proof For each element $\gamma$ in $\mathrm{CH}^{n}(X)$ it follows, from the definitions, that

$$
\left\langle\mathrm{cl}_{\mathbb{R}}(\gamma),[X(\mathbb{R})]\right\rangle=\operatorname{deg}(\gamma)(\bmod 2)
$$

Let $\alpha \in \mathrm{CH}^{k}(X)$ be numerically equivalent to zero and such that $\mathrm{cl}_{\mathbb{R}}(\alpha)=u$, and $\beta \in \mathrm{CH}^{n-k}(X)$ such that $\mathrm{cl}_{\mathbb{R}}(\beta)=v$. We have

$$
\begin{aligned}
\langle u \cup v,[X(\mathbb{R})]\rangle & =\left\langle\mathrm{cl}_{\mathbb{R}}(\alpha) \cup \mathrm{cl}_{\mathbb{R}}(\beta),[X(\mathbb{R})]\right\rangle=\left\langle\mathrm{cl}_{\mathbb{R}}(\alpha \cdot \beta),[X(\mathbb{R})]\right\rangle \\
& =\operatorname{deg}(\alpha \cdot \beta)(\bmod 2),
\end{aligned}
$$

which vanishes by definition of numerical equivalence.
The second part of the lemma follows from the first part by considering the dual pairing $H^{k}(X(\mathbb{R}), \mathbb{Z} / 2) \times H^{n-k}(X(\mathbb{R}), \mathbb{Z} / 2) \rightarrow \mathbb{Z} / 2,(u, v) \mapsto\langle u \cup v,[X(\mathbb{R})]\rangle$.

The same result for algebraic equivalence of cycles had previously been obtained by Kucharz in [6].

We consider now a real hyperelliptic surface $X$. By definition, we have that $X_{\mathbb{C}}=$ $X \times_{\mathbb{R}} \mathbb{C}$ is a complex hyperelliptic surface, and hence $12 K_{X_{C}}=0$. If we write $K_{X_{C}}$ for a divisor representing the canonical class $K_{X_{C}}$ we have, in particular, that a multiple of $K_{X_{C}}$ is algebraically equivalent to zero. By [4, 19.3] this is equivalent to the fact that $K_{X_{\mathrm{C}}}$ is numerically equivalent to zero. We know that the group $G=\operatorname{Gal}(\mathbb{C} / \mathbb{R})$ acts on $\operatorname{Pic}\left(X_{\mathbb{C}}\right)$ and we can identify $\operatorname{Pic}(X)$ with the group $\operatorname{Pic}\left(X_{\mathbb{C}}\right)^{G}$ of divisor classes invariant under $G(c f .[10, \mathrm{I}])$. Using this identification it is easy to see that $K_{X}$ is then numerically equivalent to zero in $X$.

Theorem 2.3 Let $X$ be a real hyperelliptic surface. If $X(\mathbb{R})$ is nonorientable then

$$
\{0\} \neq H_{1}^{\mathrm{alg}}(X(\mathbb{R}), \mathbb{Z} / 2) \neq H_{1}(X(\mathbb{R}), \mathbb{Z} / 2)
$$

Proof The nonorientability of $X(\mathbb{R})$ implies that $w_{1}(X(\mathbb{R})) \neq 0$, where $w_{1}(X(\mathbb{R}))$ denotes the first Stiefel-Whitney class of $X(\mathbb{R})$. The fact that $H_{\text {alg }}^{*}(X(\mathbb{R}), \mathbb{Z} / 2)$ contains all the Stiefel-Whitney classes of $X(\mathbb{R})$ implies the first inequality.

Consider now the real class map $\operatorname{cl}_{\mathbb{R}}: \operatorname{Pic}(X) \rightarrow H^{1}(X(\mathbb{R}), \mathbb{Z} / 2)$. We have that $K_{X}$ is numerically equivalent to zero. Since $\operatorname{cl}_{\mathbb{R}}\left(K_{X}\right)=w_{1}(X(\mathbb{R})) \neq 0$ we get, by Lemma 2.2, that $H^{1}(X(\mathbb{R}), \mathbb{Z} / 2) / H_{\text {alg }}^{1}(X(\mathbb{R}), \mathbb{Z} / 2) \neq\{0\}$. We get then

$$
\{0\} \neq H_{\mathrm{alg}}^{1}(X(\mathbb{R}), \mathbb{Z} / 2) \neq H^{1}(X(\mathbb{R}), \mathbb{Z} / 2)
$$

which is equivalent to the claim.

## 3 Real Projective Ruled Surfaces

A complex surface $V$ is ruled if there exists a nonsingular complex curve $C$ together with a projective morphism $\pi: V \rightarrow C$ such that the fiber of a generic point $\eta$ is an irreducible curve of genus 0 . If a real surface $X$ is such that $X_{\mathbb{C}}$ is ruled over $\mathbb{P}_{\mathbb{C}}^{1}$, then $X$ is rational, and by $[9], H_{1}^{\text {alg }}(X(\mathbb{R}), \mathbb{Z} / 2)=H_{1}(X(\mathbb{R}), \mathbb{Z} / 2)$. For nonrational real ruled surfaces we have the following characterization: $X$ is a nonrational ruled surface over $\mathbb{R}$ if and only if there exists a curve $B$ over $\mathbb{R}$ of genus $\geq 1$ and a projective morphism $p: X \rightarrow B$ such that the fiber $p^{-1}(\eta)$ of a generic point is a smooth curve of genus $0(c f .[10, \mathrm{~V}])$. We will assume that $B(\mathbb{R})$ is irreducible.

Theorem 3.1 Let $X$ be a real nonrational projective ruled surface over a curve $B$.
(i) If $B(\mathbb{R})$ is connected then

$$
H_{1}^{\mathrm{alg}}(X(\mathbb{R}), \mathbb{Z} / 2)=H_{1}(X(\mathbb{R}), \mathbb{Z} / 2) .
$$

(ii) If $B(\mathbb{R})$ is nonconnected and $X(\mathbb{R})$ has some connected component homeomorphic to $\mathbb{S}^{1} \times \mathbb{S}^{1}$ then

$$
H_{1}^{\mathrm{alg}}(X(\mathbb{R}), \mathbb{Z} / 2) \neq H_{1}(X(\mathbb{R}), \mathbb{Z} / 2)
$$

In the proof we use the minimal model program to give a detailed description of all the possible topological types for real projective ruled surfaces $X(\mathbb{R})$ together with all the possible groups $H_{1}^{\text {alg }}(X(\mathbb{R}), \mathbb{Z} / 2)$. Moreover, due to the constructive nature of the arguments, all cases listed occur. Theorem 3.1 is a corollary of this description.

Proof If $X$ is a smooth, irreducible, real surface with a real ruling $\pi: X \rightarrow B$ over a smooth real curve $B$, then $X$ is birationally equivalent to a surface defined in some affine open subset of $A^{2} \times B$ by an equation of the form $x^{2}+y^{2}=f$, where $f$ is a real rational function in $B$, regular in $B(\mathbb{R})(c f .[10, \mathrm{~V}])$. Moreover a classical theorem by Witt establishes the existence of such a function $f$ for any choice of zeros and signs in the different connected components of $B(\mathbb{R})$, provided that the number of zeros in each component is even (cf. [11]). We first study the group $H_{1}^{\text {alg }}(X(\mathbb{R}), \mathbb{Z} / 2)$ for a real ruled surface given by an affine equation as above, that is, $X$ is the projective completion of the affine surface defined in $\mathbb{A}^{2} \times B$ by the equation $x^{2}+y^{2}=f$, where $f \in \mathbb{R}(B)^{*}$ is regular on $B(\mathbb{R})$. We consider two cases.

- $B(\mathbb{R})$ connected: We have $B(\mathbb{R}) \sim \mathbb{S}^{1}$. If $f$ has some zeros on $B(\mathbb{R})$, then $X(\mathbb{R})$ is homeomorphic a union of 2 -spheres and $H_{1}(X(\mathbb{R}), \mathbb{Z} / 2)=\{0\}$.
If $f$ is strictly positive on $B(\mathbb{R})$, then $X(\mathbb{R})$ is homeomorphic to $\mathbb{S}^{1} \times \mathbb{S}^{1}$. Let $b_{0}$ be a fixed point in $B(\mathbb{R})$, we consider

$$
L_{2}=\left\{\left(x, y, b_{0}\right) \in \mathbb{A}^{2}(\mathbb{R}) \times B(\mathbb{R}) \mid x^{2}+y^{2}=f\left(b_{0}\right)\right\} \subset X(\mathbb{R}) .
$$

Clearly $\left[L_{2}\right] \in H_{1}^{\text {alg }}(X(\mathbb{R}), \mathbb{Z} / 2)$, where $\left[L_{2}\right]$ denotes the homology class represented by $L_{2}$ in $X(\mathbb{R})$. That is, the fiber class is algebraic. We consider now the section class.

Since $f$ is positive on the curve $B(\mathbb{R})$ we have, by $[1$, Theorem 6.4.18], that $f=$ $f_{1}^{2}+f_{2}^{2}$ with $f_{1}, f_{2}$ regular on $B(\mathbb{R})$. We can then define a regular section $s: B(\mathbb{R}) \rightarrow$ $X(\mathbb{R}), b \mapsto\left(f_{1}(b), f_{2}(b), b\right)$, so if we set $L_{1}=s(B(\mathbb{R}))$ we clearly have $\left[L_{1}\right] \in$ $H_{1}^{\text {alg }}(X(\mathbb{R}), \mathbb{Z} / 2)$ so $H_{1}^{\text {alg }}(X(\mathbb{R}), \mathbb{Z} / 2)=H_{1}(X(\mathbb{R}), \mathbb{Z} / 2)$.

- $B(\mathbb{R})$ not connected: We write $B(\mathbb{R})=B_{1} \cup \cdots \cup B_{n}$, where $B_{i}$ are the connected components of $B(\mathbb{R})$. Let $n=z+s^{+}+s^{-}$so

$$
B(\mathbb{R})=\underbrace{B_{1} \cup \cdots \cup B_{z}}_{f \text { has zeros }} \cup \underbrace{B_{z+1} \cup \cdots \cup B_{z+s^{+}}}_{f \text { is positive }} \cup \underbrace{B_{z+s^{+}+1} \cup \cdots \cup B_{z+s^{+}+s^{-}}}_{f \text { is negative }}
$$

If we write $z^{*}$ for the number of zeros of $f$ in $B(\mathbb{R})$ we have that

$$
X(\mathbb{R})=\left(\bigcup_{i=1}^{z^{*} / 2} \mathbb{S}_{i}^{2}\right) \cup\left(\bigcup_{i=z+1}^{z+s^{+}} T_{1}^{i}\right), \quad \mathbb{S}_{i}^{2} \sim \mathbb{S}^{2}, T_{1}^{i} \sim \mathbb{S}^{1} \times \mathbb{S}^{1}
$$

so $\operatorname{dim}_{\mathbb{Z} / 2} H_{1}(X(\mathbb{R}), \mathbb{Z} / 2)=2 s^{+}$.
For $i=z+1, \ldots, z+s^{+}$we define

$$
\begin{gathered}
L_{i 1}=\left\{\left(f(g)^{1 / 2}, 0, b\right) \in \mathbb{A}^{2}(\mathbb{R}) \times B(\mathbb{R}) \mid b \in B_{i}\right\} \subset T_{1}^{i} \\
L_{i 2}=\left\{\left(x, y, b_{i}\right) \in \mathbb{A}^{2}(\mathbb{R}) \times B(\mathbb{R}) \mid x^{2}+y^{2}=f\left(b_{i}\right)\right\} \subset T_{1}^{i},
\end{gathered}
$$

where $b_{i}$ is a fixed point of $B_{i}$. Clearly $\left[L_{i 2}\right] \in H_{1}^{\text {alg }}(X(\mathbb{R}), \mathbb{Z} / 2)$. Now, if we consider the regular map $p: X(\mathbb{R}) \rightarrow B(\mathbb{R})$ induced by the projection $A^{2}(\mathbb{R}) \times B(\mathbb{R}) \rightarrow B(\mathbb{R})$ we have that $p_{*}\left(\left[L_{i 1}\right]\right)=\left[B_{i}\right] \notin H_{1}^{\mathrm{alg}}(B(\mathbb{R}), \mathbb{Z} / 2)$, so $\left[L_{i 1}\right] \notin H_{1}^{\mathrm{alg}}(X(\mathbb{R}), \mathbb{Z} / 2)$.

If $u \in H_{1}(X(\mathbb{R}), \mathbb{Z} / 2)$ we can write $u=\sum_{i=z+1}^{z+s^{+}} \lambda_{i}\left[L_{i 1}\right]+\mu_{i}\left[L_{i 2}\right], \quad \lambda_{i}, \mu_{i} \in$ $\{0,1\}$, so

$$
p_{*}(u)=\sum_{i=z+1}^{z+s^{+}} \mu_{i}\left[B_{i}\right] \in H_{1}(B(\mathbb{R}), \mathbb{Z} / 2)
$$

where $p_{*}$ denotes the push-forward homomorphism $H_{1}(p)$ in homology induced by $p$.

We have then

$$
p_{*}(u) \in H_{1}^{\mathrm{alg}}(B(\mathbb{R}), \mathbb{Z} / 2) \quad \text { iff } z=0, s^{-}=0, \mu_{i}=1, i=1, \ldots, s^{+},
$$

so if $z \neq 0$ or $s^{-} \neq 0$ we have $H_{1}^{\text {alg }}(X(\mathbb{R}), \mathbb{Z} / 2)=\bigoplus_{i=z+1}^{z+s^{+}}\left(\left[L_{i 2}\right]\right)$.
If $z=s^{-}=0$ the function $f$ is strictly positive and, arguing as in the connected case, we get

$$
H_{1}^{\mathrm{alg}}(X(\mathbb{R}), \mathbb{Z} / 2)=\bigoplus_{i=1}^{n}\left(\left[L_{i 2}\right]\right) \bigoplus\left(\left[L_{11}\right]+\cdots+\left[L_{n 1}\right]\right)
$$

Let $X$ now be a general relatively minimal ruled surface $X$ over the curve $B$. By [10, V.3] we know that there exists a relatively minimal ruled surface $X^{\prime}$ over $B$ given
as above and a birational map $\varphi: X_{\mathbb{C}}^{\prime} \rightarrow X_{\mathbb{C}}$ that is the product of real elementary transformations. A real elementary transformation is a blow up at a real point (or two complex conjugate points) composed with the blow down of the fiber obtained over that point (resp. the fibers over the complex conjugate points considered).

Given a smooth projective surface over $\mathbb{R}$ we understand the effect on the real part $X(\mathbb{R})$ of a blow up $\pi: Y_{\mathbb{C}} \rightarrow X_{\mathbb{C}}$ of the kind mentioned above. If $\pi: Y_{\mathbb{C}} \rightarrow X_{\mathbb{C}}$ is the blow up at a pair of complex conjugate points then $Y(\mathbb{R}) \cong X(\mathbb{R})$. If $\pi$ has as center a real point $x \in X(\mathbb{R})$ then $X(\mathbb{R})$ and $Y(\mathbb{R})$ have the same number of connected components and the blow up only changes the connected component of $X(\mathbb{R})$ containing the center $x$. More precisely, if we write $T_{g}$ for the $g$-holed torus $\left(T_{0}=\mathbb{S}^{2}\right)$ and $U_{h}$ for the compact connected nonorientable surface of Euler characteristic $1-h$ (in particu$\left.\operatorname{lar} U_{0}=\mathbb{P}_{2}(\mathbb{R})\right)$, we can describe the blow up at a real point $x \in X(\mathbb{R})$ as follows: Let $\left\{X_{i}\right\}_{i \in I}$ be the set of connected components of $X(\mathbb{R})$, then $\left\{Y_{i}=\pi^{-1}\left(X_{i}\right) \cap Y(\mathbb{R})\right\}_{i \in I}$ is the set of connected components of $Y(\mathbb{R})$ and $Y_{i} \sim X_{i}$ if $x \notin X_{i}$. For $x \in X_{i}$ we have that $Y_{i} \sim U_{2 g}$ if $X_{i} \sim T_{g}$ and $Y_{i} \sim U_{h+1}$ if $X_{i} \sim U_{h}$. In other words, the blow up puts an extra $\mathbb{P}^{1}(\mathbb{R})$ over the real point $x \in X(\mathbb{R})$. Moreover, the addition of this exceptional divisor is the only change in the group $H_{1}^{\mathrm{alg}}(X(\mathbb{R}), \mathbb{Z} / 2)$, that is, the group $H_{1}^{\text {alg }}(Y(\mathbb{R}), \mathbb{Z} / 2)$ is, roughly speaking, the group $H_{1}^{\text {alg }}(X(\mathbb{R}), \mathbb{Z} / 2)$ plus the class represented by the extra $\mathbb{P}^{1}(\mathbb{R})(c f .[10, \mathrm{II}])$.

Let $Y^{\prime}$ and $Y$ be two real ruled surfaces over a real curve $B$ and elm : $Y_{\mathbb{C}}^{\prime} \rightarrow Y_{\mathbb{C}}$ be an elementary transformation. If elm starts with the blow up of two conjugate points of $Y_{\mathbb{C}}^{\prime}$ we have that $Y(\mathbb{R}) \cong Y^{\prime}(\mathbb{R})$. Consider then that elm: $Y_{\mathbb{C}}^{\prime} \rightarrow Y_{\mathbb{C}}$ starts with a blow up at a real point $y \in Y^{\prime}(\mathbb{R})$ and assume that $Y^{\prime}(\mathbb{R})$ is connected. It is clear that if $Y^{\prime}(\mathbb{R}) \sim \mathbb{S}^{2}$ then $Y(\mathbb{R}) \sim \mathbb{S}^{2}$, if $Y^{\prime}(\mathbb{R}) \sim \mathbb{S}^{1} \times \mathbb{S}^{1}$ then $Y(\mathbb{R}) \sim U_{1}$ (Klein bottle) and if $Y^{\prime}(\mathbb{R}) \sim U_{1}$ then $Y(\mathbb{R}) \sim U_{1}$.

Again we consider two cases.

- $B(\mathbb{R})$ connected: In this case, $X^{\prime}(\mathbb{R})$ is, topologically, either a union of 2-spheres or a torus. By the considerations above $X(\mathbb{R})$ is then homeomorphic to a union of 2-spheres, to the torus $\mathbb{S}^{1} \times \mathbb{S}^{1}$ or to the Klein bottle. Moreover, we have that $H_{1}^{\mathrm{alg}}(X(\mathbb{R}), \mathbb{Z} / 2)=H_{1}(X(\mathbb{R}), \mathbb{Z} / 2)$.
- $B(\mathbb{R})$ not connected: We have $X^{\prime}(\mathbb{R})=\left(\bigcup_{i=1}^{z^{*} / 2} \mathbb{S}_{i}^{2}\right) \cup\left(\bigcup_{i=z+1}^{z+s^{+}} T_{1}^{i}\right)$.

With a real elementary transformation with a base point $x$ in $T_{1}^{i}$ we get $U_{1}^{i}$ and since we blow down a fiber we get that the transform of the section cycle remains nonalgebraic (same reasons as above, considering the projection onto $B(\mathbb{R})$ ) and the transform of the fiber cycle remains algebraic. By convenience we keep the same notation for a cycle and its transform under a real elementary transformation.

We have then

$$
X(\mathbb{R})=\left(\bigcup_{i=1}^{z^{*} / 2} \mathbb{S}_{i}^{2}\right) \cup\left(\bigcup_{j=1}^{a} T_{1}^{j}\right) \cup\left(\bigcup_{k=a+1}^{a+b} U_{1}^{k}\right), \quad a+b=s^{+}
$$

If $z=0$ and $a+b=n$ (number of connected components of $B(\mathbb{R})$ ) then

$$
H_{1}^{\mathrm{alg}}(X(\mathbb{R}), \mathbb{Z} / 2)=\bigoplus_{i=1}^{n}\left(\left[L_{i 2}\right]\right) \bigoplus\left(\left[L_{11}\right]+\cdots+\left[L_{n 1}\right]\right)
$$

If $a+b \neq n$ then

$$
H_{1}^{\mathrm{alg}}(X(\mathbb{R}), \mathbb{Z} / 2)=\bigoplus_{i=1}^{a+b}\left(\left[L_{i 2}\right]\right)
$$

We consider now a general nonrational projective ruled surface $X$ over a curve $B$. We have a relatively minimal real projective ruled surface $X^{\prime}$ and a finite sequence of birational maps $X_{\mathbb{C}} \rightarrow X_{\mathbb{C}}^{(1)} \rightarrow X_{\mathbb{C}}^{(2)} \rightarrow \cdots \rightarrow X_{\mathbb{C}}^{\prime}$ where $X^{(1)}, X^{(2)}, \ldots, X^{(n)}$ are smooth projective surfaces over $\mathbb{R}$, and such that each map is the morphism corresponding to the blow up of a real point or two complex conjugate points (cf. [10, II.6]). We can assume that each morphism is the blow up at a real point.

We consider again two cases.

- $B(\mathbb{R})$ connected: We have three possibilities for $X^{\prime}(\mathbb{R})$.
- If $X^{\prime}(\mathbb{R}) \sim \bigcup_{i=1}^{m} \mathbb{S}^{2}$ we have $X(\mathbb{R}) \sim\left(\bigcup_{j=1}^{a} \mathbb{S}^{2}\right) \cup\left(\bigcup_{l=a+1}^{a+b} U_{g(l)}^{l}\right), a+b=m, g(l) \geq$ 0.
- If $X^{\prime}(\mathbb{R}) \sim \mathbb{S}^{1} \times \mathbb{S}^{1}$ then either $X(\mathbb{R}) \sim \mathbb{S}^{1} \times \mathbb{S}^{1}$ or $X(\mathbb{R}) \sim U_{g}$ with $g \geq 2$.
- If $X^{\prime}(\mathbb{R}) \sim U_{1}$ then $X(\mathbb{R}) \sim U_{g}$ with $g \geq 1$.

In all three cases it follows, from the results above, that

$$
H_{1}^{\mathrm{alg}}(X(\mathbb{R}), \mathbb{Z} / 2)=H_{1}(X(\mathbb{R}), \mathbb{Z} / 2)
$$

- $B(\mathbb{R})$ not connected: In this case we have $X^{\prime}(\mathbb{R})=\left(\bigcup_{i=1}^{z^{*} / 2} \mathbb{S}_{i}^{2}\right) \cup\left(\bigcup_{j=1}^{a} T_{1}^{j}\right) \cup$ $\left(\bigcup_{k=a+1}^{a+b} U_{1}^{k}\right)$, where we follow the notations introduced above.
If $a+b=n$ (number of connected components of $B(\mathbb{R})$ ) we have

$$
X(\mathbb{R})=\left(\bigcup_{j=1}^{a^{\prime}} T_{1}^{j}\right) \cup\left(\bigcup_{k=a^{\prime}+1}^{a^{\prime}+b^{\prime}} U_{1}^{k}\right) \cup\left(\bigcup_{p=a^{\prime}+b^{\prime}+1}^{a^{\prime}+b^{\prime}+c^{\prime}} U_{g(p)}^{p}\right), a^{\prime}+b^{\prime}+c^{\prime}=n, g(p) \geq 2
$$

and since

$$
H_{1}^{\mathrm{alg}}\left(X^{\prime}(\mathbb{R}), \mathbb{Z} / 2\right)=\bigoplus_{i=1}^{n}\left(\left[L_{i 2}\right]\right) \bigoplus\left(\left[L_{11}\right]+\cdots+\left[L_{n 1}\right]\right)
$$

we have

$$
\begin{aligned}
& H_{1}^{\mathrm{alg}}(X(\mathbb{R}), \mathbb{Z} / 2)=\bigoplus_{i=1}^{a^{\prime}}\left(\left[L_{i 2}\right]\right) \bigoplus_{k=a^{\prime}+1}^{a^{\prime}+b^{\prime}}\left(\left[L_{k 2}\right]\right) \bigoplus_{p=a^{\prime}+b^{\prime}+1}^{a^{\prime}+b^{\prime}+c^{\prime}}\left\{\left(\left[L_{p 2}\right]\right) \oplus \cdots \oplus\left(\left[L_{p g(p)}\right]\right)\right\} \\
& \bigoplus\left(\left[L_{11}\right]+\cdots+\left[L_{n 1}\right]\right)
\end{aligned}
$$

where $\left[L_{p 1}\right],\left[L_{p 2}\right], \ldots,\left[L_{p g(p)}\right]$ denote the generators of $H_{1}\left(U_{g(p)}^{p}, \mathbb{Z} / 2\right)$.
If $a+b \neq n$ we have

$$
\begin{aligned}
X(\mathbb{R})=\left(\bigcup_{i=1}^{a^{\prime \prime}} \mathbb{S}_{i}^{2}\right) & \cup\left(\bigcup_{j=1}^{b^{\prime \prime}} T_{1}^{j}\right) \cup\left(\bigcup_{k=b^{\prime \prime}+1}^{b^{\prime \prime}+c^{\prime \prime}} U_{1}^{k}\right) \cup\left(\bigcup_{p=b^{\prime \prime}+c^{\prime \prime}+1}^{b^{\prime \prime}+c^{\prime \prime}+d^{\prime \prime}} U_{g(p)}^{p}\right) \\
& \cup\left(\bigcup_{q=b^{\prime \prime}+c^{\prime \prime}+d^{\prime \prime}+1}^{b^{\prime \prime}+c^{\prime \prime}+d^{\prime \prime}+e^{\prime \prime}} U_{g(q)}^{q}\right)
\end{aligned}
$$

where $a^{\prime \prime}+d^{\prime \prime}=z^{*} / 2, b^{\prime \prime}+c^{\prime \prime}+e^{\prime \prime}=a+b, g(p) \geq 0$ and $g(q) \geq 2$.
Since $H_{1}^{\mathrm{alg}}\left(X^{\prime}(\mathbb{R}), \mathbb{Z} / 2\right)=\bigoplus_{i=1}^{a+b}\left(\left[L_{i 2}\right]\right)$, we have

$$
\begin{gathered}
H_{1}^{\mathrm{alg}}(X(\mathbb{R}), \mathbb{Z} / 2)=\bigoplus_{j=1}^{b^{\prime \prime}}\left(\left[L_{j 2}\right]\right) \bigoplus_{k=b^{\prime \prime}+1}^{b^{\prime \prime}+c^{\prime \prime}}\left(\left[L_{k 2}\right]\right) \bigoplus_{p=b^{\prime \prime}+c^{\prime \prime}+1}^{b^{\prime \prime}+c^{\prime \prime}+d^{\prime \prime}}\left\{\left(\left[L_{p 1}\right]\right) \oplus \cdots \oplus\left(\left[L_{p g(p)}\right]\right)\right\} \\
b_{q=b^{\prime \prime}+c^{\prime \prime}+d^{\prime \prime}+1}^{\bigoplus^{\prime \prime}+d^{\prime \prime}+e^{\prime \prime}}\left\{\left(\left[L_{q 2}\right]\right) \oplus \cdots \oplus\left(\left[L_{q g(q)}\right]\right)\right\} .
\end{gathered}
$$

That is, in this case the $U$ 's obtained from spheres have all 1-cycles algebraic, but the $U$ 's obtained from the tori have algebraic all 1-cycles but the one obtained from the section cycle in $T_{1}^{j}$.

## References

[1] J. Bochnak, M. Coste and M-F Roy, Real Algebraic Geometry. Ergebnisse der Math. 36, Berlin Heidelberg New York, Springer, 1998.
[2] J. Bochnak and W. Kucharz, On homology classes represented by real algebraic varieties. Singularities Symposium Krakow 1996, Banach Center Publication, Institute of Mathematics Polish Academy of Sciences, Warschau, Polen, (1997), 7-22.
[3] A. Borel et A. Haefliger, La classe d'homologie fondamentale d'un espace analytique. Bull. Soc. Math. France 89(1961), 461-513.
[4] W. Fulton, Intersection Theory. Ergebnisse der Math. 2, Berlin, Heidelberg, New York, Springer, 1984.
[5] J. Huisman, Real abelian varieties with complex multiplication. Ph.D. thesis, Vrije Universiteit, Amsterdam, 1992.
[6] W. Kucharz, Algebraic equivalence and homology classes of real algebraic cycles. Math. Nachr. 180(1996), 135-140.
[7] F. Mangolte, Cycles algebriques sur les surfaces K3 réelles. Math. Z. 225(1997), 559-576.
[8] F. Mangolte and J. van Hamel, Algebraic cycles on real Enriques surfaces. Comp. Math. 110(1998), 215-237.
[9] R. Silhol, Cohomology de Galois et cohomologie des variétés algebriques réelles: application aux surfaces rationnelles. Bull. Soc. Math. France 115(1987), 107-125.
[10] $\qquad$ , Real algebraic surfaces. Lecture Notes in Math., 1392, Springer-Verlag, Berlin, Heidelberg, New York, 1989.
[11] E. Witt, Zerlegung reeller algebraisher Funktionen in Quadrate, Schiefkörper über reellem Funktionenkörpern. J. Reine Angew. Math. 171(1934), 4-11.

Department of Mathematics and Statistics University of New Mexico Albuquerque, New Mexico 87131-1141 U.S.A.
e-mail: abanades@math.unm.edu

Current address:
IT Informática de Sistemas
CES Felipe II
C/ Capitan 39
Aranjuez 28300, Madrid
Spain


[^0]:    Received by the editors July 8, 1999.
    The author was partially supported by NSF Grant DMS-9503138.
    AMS subject classification: Primary: 14P05; secondary: 14P25.
    (C)Canadian Mathematical Society 2001.

