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Strong Digraph Groups
Mehmet Sefa Cihan and Gerald Williams

Abstract. A digraph group is a group defined by non-empty presentation with the property that each
relator is of the form 𝑅 (𝑥, 𝑦) , where 𝑥 and 𝑦 are distinct generators and 𝑅 (⋅, ⋅) is determined by
some fixed cyclically reduced word 𝑅 (𝑎, 𝑏) that involves both 𝑎 and 𝑏. Associated to each such pre-
sentation is a digraph whose vertices correspond to the generators and whose arcs correspond to the
relators. In this paperwe consider digraphgroups for strongdigraphs that are digon-free and triangle-
free. We classify when the digraph group is finite and show that in these cases it is cyclic, giving its
order. We apply this result to the Cayley digraph of the generalized quaternion group, to circulant
digraphs, and to cartesian and direct products of strong digraphs.

1 Introduction

Given a finite digraph Γwith vertex set𝑉 (Γ) and arc set 𝐴(Γ) (without loops or parallel
arcs) and an element 𝑅(𝑎, 𝑏) in the free group of rank 2 generated by 𝑎 and 𝑏, the digraph
group 𝐺Γ (𝑅) is the group defined by the presentation

𝑃Γ (𝑅) = ⟨𝑥𝑣 (𝑣 ∈ 𝑉 (Γ)) | 𝑅(𝑥𝑢, 𝑥𝑣) ( [𝑢, 𝑣] ∈ 𝐴(Γ))⟩.

These groups were introduced in [7] and contain the graph groups or right angled Artin
groups as special cases (by setting 𝑅(𝑎, 𝑏) = 𝑎𝑏𝑎−1𝑏−1). Formal definitions of undefined
terms of the introduction are given in Section 2.

Digraph groups with balanced presentations (i.e. digraph groups corresponding to
digraphs with an equal number of vertices and arcs) were considered in [7] and digraph
groups corresponding to digraphs with one more arc than vertices were considered in
[5]. Two families of finite, non-cyclic, digraph groups were obtained in [6, Corollaries
A2, B2]. In this article we consider digraph groups 𝐺Γ (𝑅) where Γ is a strong digraph
that is digon-free and triangle-free. We state our results in terms of the period of the
digraph (that is, the greatest common divisor of the lengths of its cycles), the one-relator
group𝐾 = ⟨𝑎, 𝑏 | 𝑅(𝑎, 𝑏)⟩, and integers 𝛼, 𝛽, which denote the exponent sums of 𝑎 and
of 𝑏−1 in 𝑅(𝑎, 𝑏), respectively.

In this context, [17, Theorem 3] concerns digraph groups 𝐺Γ (𝑅) where Γ is a cycle
of length at least 4, and can be expressed as follows:

Theorem 1.1 ([17]) Let Γ be a cycle of length 𝑛 ≥ 4 and let 𝑅(𝑎, 𝑏) be a cyclically reduced
word that involves both 𝑎 and 𝑏 with exponent sums 𝛼 and 𝛽 in 𝑎 and 𝑏−1, respectively, and
let 𝐾 = ⟨𝑎, 𝑏 | 𝑅(𝑎, 𝑏)⟩. Then 𝐺Γ (𝑅) is finite if and only if 𝛼 ≠ 0, 𝛽 ≠ 0, gcd{𝛼, 𝛽} = 1,
𝛼𝑛 ≠ 𝛽𝑛, 𝑎𝛼 = 𝑏𝛽 in 𝐾 , in which case 𝐺Γ (𝑅) is cyclic of order |𝛼𝑛 − 𝛽𝑛 |.
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When Γ is a cycle the digraph group 𝐺Γ (𝑅) is an example of a cyclically presented
group [12, Chapter III, Section 9]. As observed in [17], Theorem 1.1 cannot be directly
extended to the cases 𝑛 = 2 and 𝑛 = 3; that is, to the cases where Γ is neither digon-
free nor triangle-free. Examples that demonstrate this include the Macdonald groups
𝑀𝑎𝑐(𝑎, 𝑎) which, for 𝑎 ∈ Z, 𝑎 ≠ 0, 1, 2, are finite of rank 2 [13],[16]; the Fox groups
⟨𝑥, 𝑦 | 𝑥𝑦𝑛 = 𝑦𝑙𝑥, 𝑦𝑥𝑛 = 𝑥𝑙𝑦⟩ which are finite of rank 2 if (𝑛, 𝑙) = 1, 𝑛 ≠ 𝑙 [4]; the
Mennicke groups 𝑀 (𝑞, 𝑞, 𝑞), which are finite of rank 3 for each 𝑞 ≥ 3 [15]; and the
Johnson groups 𝐽 (𝑞, 𝑞, 𝑞) which are finite of rank 3 for each even 𝑞 ≥ 2 [11],[12, page
70]. A strong digraph is one in which there is a path joining every pair of vertices, and
so the cycle of length 𝑛 is a strong digraph of period 𝑛. In this article we generalize
Theorem 1.1 by replacing the cycle of length at least 4 by a non-trivial, strong digraph
that is digon-free and triangle-free. Our main result is the following:

Theorem 1.2 LetΓ be a non-trivial, strong digraph of period 𝑝 that is digon-free and triangle-
free and let 𝑅(𝑎, 𝑏) be a cyclically reduced word that involves both 𝑎 and 𝑏 and which has
exponent sums 𝛼, 𝛽 in 𝑎 and 𝑏−1, respectively, and let 𝐾 = ⟨𝑎, 𝑏 | 𝑅(𝑎, 𝑏)⟩. Then 𝐺Γ (𝑅)
is finite if and only if 𝛼 ≠ 0, 𝛽 ≠ 0, gcd{𝛼, 𝛽} = 1, 𝛼𝑝 ≠ 𝛽𝑝 , 𝑎𝛼 = 𝑏𝛽 in 𝐾 , in which case
𝐺Γ (𝑅) is cyclic of order |𝛼𝑝 − 𝛽𝑝 |.

In Section 5 we apply this to the Cayley digraph of the generalized quaternion group,
to circulant digraphs, and to cartesian and direct products of strong digraphs.

2 Preliminaries

A digraph (or directed graph) Γ consists of a finite set 𝑉 (Γ) of vertices and a set 𝐴(Γ)
of arcs, which are ordered pairs [𝑢, 𝑣] of distinct vertices (as such, Γ does not contain
parallel arcs or loops); it is non-trivial if it has at least two vertices. The underlying graph
of Γ is the graph with vertex set 𝑉 (Γ) and edge set 𝐸 (Γ) consisting of all unordered
pairs {𝑢, 𝑣} (edges), where [𝑢, 𝑣] ∈ 𝐴(Γ). A digon is a subdigraph of Γ consisting of
vertices 𝑢, 𝑣 ∈ 𝑉 (Γ) and arcs [𝑢, 𝑣], [𝑣, 𝑢] ∈ 𝐴(Γ). A triangle is a subdigraph of Γ
consisting of vertices 𝑢, 𝑣, 𝑤 ∈ 𝑉 (Γ) and either arcs [𝑢, 𝑣], [𝑣, 𝑤], [𝑤, 𝑢] ∈ 𝐴(Γ) or
arcs [𝑢, 𝑣], [𝑣, 𝑤], [𝑢, 𝑤] ∈ 𝐴(Γ). A digraph is said to be digon-free (resp. triangle-free) if
it contains no digons (resp. triangles). A tournament is a digraph Γ in which exactly one
of [𝑢, 𝑣], [𝑣, 𝑢] ∈ 𝐴(Γ) for each pair of vertices 𝑢, 𝑣 ∈ 𝑉 (Γ). A walk (of length 𝑛 − 1)
in a digraph Γ is a collection of vertices 𝑣1, 𝑣2, . . . , 𝑣𝑛 such that [𝑣𝑖 , 𝑣𝑖+1] ∈ 𝐴(Γ) for
each 1 ≤ 𝑖 < 𝑛; it is closed if 𝑣𝑛 = 𝑣1. We denote such a walk 𝑣1 → 𝑣2 → ⋯ → 𝑣𝑛.
A path is a walk in which the vertices are distinct. A cycle (of length 𝑛) is a collection
of distinct vertices 𝑣1, 𝑣2, . . . , 𝑣𝑛 such that [𝑣𝑖 , 𝑣𝑖+1] ∈ 𝐴(Γ) for each 1 ≤ 𝑖 < 𝑛 and
[𝑣𝑛, 𝑣1] ∈ 𝐴(Γ). The period 𝑝(Γ) of a digraph Γ is the greatest common divisor of the
lengths of its cycles, and so 𝑝(Γ) is equal to the greatest common divisor of the lengths
of its closed walks. A digraph Γ is strong (or strongly connected) if for each 𝑢, 𝑣 ∈ 𝑉 (Γ)
there is a path from 𝑢 to 𝑣 (and hence, also a path from 𝑣 to 𝑢); it follows that every
vertex of a non-trivial, strong digraph is contained in some cycle [9, page 64]. A weak
component (or weakly connected component) of a digraph Γ is a maximal subdigraph of Γ
whose underlying graph is connected. A digraph is weak (or weakly connected) if it has
exactly one weak component. A digraph Γ is bipartite if there is a vertex partition𝑉 (Γ) =
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𝑉1 ⊍ 𝑉2 such that if [𝑢, 𝑣] ∈ 𝐴(Γ) then either 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2 or 𝑢 ∈ 𝑉2 and 𝑣 ∈ 𝑉1.
A strong digraph is bipartite if and only if it has no odd length cycles [9, Theorem 6.14]
that is, if and only if its period is even.

The cartesian product Γ1□Γ2 of digraphs Γ1, Γ2 is the digraph Γwith𝑉 (Γ) = 𝑉 (Γ1)×
𝑉 (Γ2) and 𝐴(Γ) = {[(𝑢, 𝑢′), (𝑣, 𝑣′)] | [𝑢, 𝑣] ∈ 𝐴(Γ1), 𝑢′ = 𝑣′ or [𝑢′, 𝑣′] ∈ 𝐴(Γ2), 𝑢 =

𝑣}. The direct product Γ1 × Γ2 of digraphs Γ1, Γ2 is the digraph Γ with𝑉 (Γ) = 𝑉 (Γ1) ×
𝑉 (Γ2) and 𝐴(Γ) = {[(𝑢, 𝑢′), (𝑣, 𝑣′)] | [𝑢, 𝑣] ∈ 𝐴(Γ1) and [𝑢′, 𝑣′] ∈ 𝐴(Γ2)}. Both
graph products □ and × are associative [8].

Given a finite group𝐺 with generating set 𝑆 that does not contain the identity of𝐺 ,
the Cayley digraph Cay(𝐺, 𝑆) is the digraph Γ with𝑉 (Γ) = 𝐺 and arc set

𝐴(Γ) = {[𝑔, ℎ] | ℎ = 𝑔𝑠 for some 𝑠 ∈ 𝑆}.

Thus, every finite Cayley digraph is strong. The circulant digraph circ𝑛{𝑑1, . . . , 𝑑𝑡 },
where 𝑛 ≥ 2 and 1 ≤ 𝑑1, . . . , 𝑑𝑡 < 𝑛 are distinct integers, is the digraph Γ with𝑉 (Γ) =
{0, 1, . . . , 𝑛 − 1} and arcs [𝑖, 𝑖 + 𝑑 𝑗 ] for each 0 ≤ 𝑖 < 𝑛, 1 ≤ 𝑗 ≤ 𝑡 (where the entries are
taken mod 𝑛) [1]. It is weakly connected if and only if gcd{𝑛, 𝑑1, . . . , 𝑑𝑡 } = 1, in which
case it is strongly connected and is the Cayley digraph Cay(Z𝑛, {𝑑1, . . . , 𝑑𝑡 }).

3 Digraph groups

First we observe that if Γ has weakly connected components Γ1, . . . , Γ𝑘 with 𝑘 ≥ 2,
then the presentation 𝑃Γ (𝑅) decomposes as the disjoint union of the presentations
𝑃Γ1 (𝑅), . . . , 𝑃Γ𝑘 (𝑅) so𝐺Γ (𝑅) is isomorphic to the free product𝐺Γ1 (𝑅)∗⋯∗𝐺Γ𝑘 (𝑅).
Therefore, without loss of generality, in considering digraph groups 𝐺Γ (𝑅) we may
assume that Γ is weak.

Lemma 3.1 ([17]) Let Γ be a non-trivial, weak digraph that is digon-free and triangle-free
and let 𝑅(𝑎, 𝑏) be a cyclically reduced word that involves both 𝑎 and 𝑏 and which has exponent
sums 𝛼, 𝛽 in 𝑎 and 𝑏−1, respectively, and let 𝐾 = ⟨𝑎, 𝑏 | 𝑅(𝑎, 𝑏)⟩. If 𝐺Γ (𝑅) is finite then
𝛼 ≠ 0, 𝛽 ≠ 0 and 𝑎𝛼 = 𝑏𝛽 in 𝐾 .

Proof By [17, Theorem 4], if 𝐾 has Property 𝑊1 (see [17] for the definition) then
𝐺Γ (𝑅) is infinite, so we may assume that 𝐾 does not satisfy Property𝑊1. Then by [17,
Proposition, page 248], we have 𝛼 ≠ 0, 𝛽 ≠ 0 and 𝑎𝛼 = 𝑏𝛽 in 𝐾 (see [7, page 5] for
further discussion on this point). ■

Lemma 3.2 Let Γ be a digraph and let 𝑅(𝑎, 𝑏) be a cyclically reduced word that involves
both 𝑎 and 𝑏 and which has exponent sums 𝛼, 𝛽 in 𝑎 and 𝑏−1, respectively, and let 𝐾 =

⟨𝑎, 𝑏 | 𝑅(𝑎, 𝑏)⟩. If 𝑎𝛼 = 𝑏𝛽 in 𝐾 then𝐺Γ (𝑅) is a quotient of𝐺Γ (𝑎𝛼𝑏−𝛽) so, in particular,
if 𝐺Γ (𝑎𝛼𝑏−𝛽) is abelian then 𝐺Γ (𝑅) � 𝐺Γ (𝑎𝛼𝑏−𝛽).

Proof Since 𝑎𝛼 = 𝑏𝛽 in 𝐾 , the presence of a relator 𝑅(𝑥𝑢, 𝑥𝑣) in 𝑃Γ (𝑅) implies that
the relation 𝑥𝛼𝑢 = 𝑥

𝛽
𝑣 holds in𝐺Γ (𝑅). Therefore the corresponding relators 𝑥𝛼𝑢 𝑥

−𝛽
𝑣 can

be added to the defining presentation for𝐺Γ (𝑅), so𝐺Γ (𝑅) is a quotient of𝐺Γ (𝑎𝛼𝑏−𝛽).
If 𝐺Γ (𝑎𝛼𝑏−𝛽) is abelian, then 𝐺Γ (𝑅) is abelian and so the relators 𝑅(𝑥𝑢, 𝑥𝑣) are
equivalent to the relators 𝑥𝛼𝑢 𝑥

−𝛽
𝑣 , so can be removed; that is𝐺Γ (𝑅) � 𝐺Γ (𝑎𝛼𝑏−𝛽). ■
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Lemma 3.3 ([17]) Let Γ be a digraph that is not a tournament, and let 𝑅(𝑎, 𝑏) be a cyclically
reduced word which has exponent sums 𝛼, 𝛽 in 𝑎 and 𝑏−1, respectively. If𝐺Γ (𝑅) is finite then
gcd{𝛼, 𝛽} = 1.

Proof Since Γ is not a tournament there exists a pair of vertices 𝑢, 𝑣 ∈ 𝑉 (Γ) that
are not connected by an arc. As in [17, page 248] (or [7, Proof of Lemma 3.3]), killing
all generators of 𝐺Γ (𝑅) except 𝑥𝑢, 𝑥𝑣 and then adjoining relators 𝑥𝑑𝑢 , 𝑥𝑑𝑣 , where 𝑑 =

gcd{𝛼, 𝛽}, gives that 𝐺Γ (𝑅) maps onto the group ⟨𝑥𝑢, 𝑥𝑣 | 𝑥𝑑𝑢 , 𝑥𝑑𝑣 ⟩ � Z𝑑 ∗ Z𝑑 , which
is infinite if 𝑑 > 1. ■

Lemma 3.4 Let Γ be a digraph and let 𝑅(𝑎, 𝑏) be a cyclically reduced word which has expo-
nent sums 𝛼, 𝛽 in 𝑎 and 𝑏−1, respectively. Then 𝐺Γ (𝑅) maps epimorphically to Z |𝛼−𝛽 | . In
particular, if 𝛼 = 𝛽 then 𝐺Γ (𝑅) is infinite.

Proof Let 𝜙 ∶ 𝐺Γ (𝑅) → Z |𝛼−𝛽 | be given by 𝜙(𝑥𝑣) = 1 ∈ Z |𝛼−𝛽 | for each 𝑣 ∈ 𝑉 (Γ).
Then for each relator 𝑅(𝑥𝑢, 𝑥𝑣) of 𝐺Γ (𝑅) we have 𝜙(𝑅(𝑥𝑢, 𝑥𝑣)) = 𝛼 ⋅ 1 − 𝛽 ⋅ 1 =

0 ∈ Z |𝛼−𝛽 | so 𝜙 is a homomorphism; and since 𝜙(𝑥𝑣) = 1 for some 𝑣 ∈ 𝑉 (Γ), it is an
epimorphism. ■

Lemma 3.5 Let Γ be a bipartite digraph and let 𝑅(𝑎, 𝑏) be a cyclically reduced word which
has exponent sums 𝛼, 𝛽 in 𝑎 and 𝑏−1, respectively, and suppose gcd{𝛼, 𝛽} = 1. Then𝐺Γ (𝑅)
maps epimorphically to Z |𝛼2

−𝛽2 | . In particular, if 𝛼 = ±𝛽 then 𝐺Γ (𝑅) is infinite.

Proof Suppose Γ has vertex partition 𝑉 (Γ) = 𝑉1 ⊍ 𝑉2. Let 𝜙 ∶ 𝐺Γ (𝑅) → Z |𝛼2
−𝛽2 |

be given by 𝜙(𝑥𝑢) = 𝛼 if 𝑢 ∈ 𝑉1 and 𝜙(𝑥𝑢) = 𝛽 if 𝑢 ∈ 𝑉2. Then given an arc [𝑢, 𝑣] of
𝐺Γ (𝑅), we have 𝜙(𝑅(𝑥𝑢, 𝑥𝑣)) = 𝛼2− 𝛽2 = 0 if 𝑢 ∈ 𝑉1 and 𝜙(𝑅(𝑥𝑢, 𝑥𝑣)) = 𝛼𝛽− 𝛽𝛼 = 0
if 𝑢 ∈ 𝑉2. Thus 𝜙 is a homomorphism. Since gcd{𝛼, 𝛽} = 1, there exist 𝑟, 𝑠 ∈ Z such
that 𝑟𝛼 + 𝑠𝛽 = 1, and so if 𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2 then 𝜙(𝑥𝑟𝑢𝑥𝑠𝑣) = 𝑟𝛼 + 𝑠𝛽 = 1 ∈ Z |𝛼2

−𝛽2 | , so 𝜙
is an epimorphism. ■

Lemma 3.6 Let Γ be a non-trivial, weak digraph that is digon-free and triangle-free and let
𝑅(𝑎, 𝑏) be a cyclically reduced word that involves both 𝑎 and 𝑏 and which has exponent sums
𝛼, 𝛽 in 𝑎 and 𝑏−1, respectively, and suppose 𝛼 = −𝛽. Then 𝐺 = 𝐺Γ (𝑅) is finite if and only
if 𝛼 = −𝛽 = ±1, 𝑎𝛼 = 𝑏𝛽 in 𝐾 , and Γ is not bipartite, in which case 𝐺 � Z2.

Proof Suppose 𝐺 is finite. Then Lemma 3.1 implies 𝛼 ≠ 0, 𝛽 ≠ 0 and 𝑎𝛼 = 𝑏𝛽 in 𝐾 ,
and Lemma 3.3 implies gcd{𝛼, 𝛽} = 1, so 𝛼 = −𝛽 = ±1. Moreover, Γ is not bipartite
by Lemma 3.5. Under these conditions 𝑎 = 𝑏−1 in 𝐾 and so, given an arc [𝑢, 𝑣] ∈ 𝐴(Γ),
we have 𝑥𝑢 = 𝑥−1𝑣 in𝐺 . Fix a vertex 𝑤 ∈ 𝑉 (Γ). Then, since the underlying graph of Γ is
connected, for any 𝑣 ∈ 𝑉 (Γ) we have either 𝑥𝑣 = 𝑥𝑤 or 𝑥𝑣 = 𝑥−1𝑤 . Therefore𝐺 is cyclic.
Since Γ is not bipartite there is an odd length cycle 1 → 2 → 3 → ⋅ ⋅ ⋅ → 𝑟 → 1, say.
Then 𝑥1 = 𝑥−12 = 𝑥3 = ⋅ ⋅ ⋅ = 𝑥−1

𝑟−1 = 𝑥𝑟 = 𝑥−11 , so 𝑥21 = 1. Moreover, each generator of
𝐺 is equal to any other generator or its inverse, so𝐺 is generated by 𝑥1, which satisfies
the relation 𝑥21 = 1; that is,𝐺 is cyclic of order at most 2. Then, by Lemma 3.4,𝐺 maps
onto Z2, so𝐺 � Z2. ■
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By Lemma 3.6 we may assume 𝛼 ≠ −𝛽. In this situation we summarize Lemmas 3.1
– 3.4 in the following result.

Theorem 3.7 Let Γ be a non-trivial, weak digraph that is digon-free and triangle-free and
let 𝑅(𝑎, 𝑏) be a cyclically reduced word that involves both 𝑎 and 𝑏 and which has exponent
sums 𝛼, 𝛽 in 𝑎 and 𝑏−1, respectively, where 𝛼 ≠ −𝛽, and let 𝐾 = ⟨𝑎, 𝑏 | 𝑅(𝑎, 𝑏)⟩. If
𝐺Γ (𝑅) is finite then 𝛼 ≠ 0, 𝛽 ≠ 0, 𝛼 ≠ 𝛽, gcd{𝛼, 𝛽} = 1 and 𝑎𝛼 = 𝑏𝛽 in 𝐾 , in which
case 𝐺Γ (𝑅) is a quotient of 𝐺Γ (𝑎𝛼𝑏−𝛽) so, in particular, if 𝐺Γ (𝑎𝛼𝑏−𝛽) is abelian then
𝐺Γ (𝑅) � 𝐺Γ (𝑎𝛼𝑏−𝛽).

4 Strong digraph groups

In this section we prove Theorem 1.2.

Lemma 4.1 Let Γ be a digraph and let 𝐺 = 𝐺Γ (𝑎𝛼𝑏−𝛽) where gcd{𝛼, 𝛽} = 1. If 𝑣 is a
vertex of a cycle of length Δ in Γ then 𝑥 |𝛼

Δ
−𝛽Δ |

𝑣 = 1 in 𝐺 .

Proof This is essentially stated implicitly in [17, page 248], and proofs are given in [7,
Lemma 3.4], [3, Lemma 3.4]. ■

Lemma 4.2 Let Γ be a digraph and let 𝐺 = 𝐺Γ (𝑎𝛼𝑏−𝛽) where gcd{𝛼, 𝛽} = 1. Let 𝑢 ∈
𝑉 (Γ) be a vertex of some cycle, and suppose there is a path from 𝑢 to a vertex 𝑤. Then the
generator 𝑥𝑢 of 𝐺 is equal to a power of the generator 𝑥𝑤 .

Proof Label the path from 𝑢 to 𝑤 as 𝑢 = 1 → 2 → 3 → ⋯ → (𝑛 − 1) → 𝑛 = 𝑤. First
consider the arc [1, 2]. Since 1 is the vertex of some cycle, of length Δ, say, Lemma 4.1
implies 𝑥𝛾1 = 1, where 𝛾 = |𝛼Δ − 𝛽Δ |. Now gcd{𝛼, 𝛾} = 1 so there exist 𝑟, 𝑠 ∈ Z such
that 𝑟𝛼 + 𝑠𝛾 = 1, so 𝑟𝛼 ≡ 1 mod 𝛾. Moreover, there is a relation 𝑥𝛼1 = 𝑥

𝛽

2 in Γ so

𝑥1 = 𝑥
𝑟 𝛼+𝑠𝛾
1 = (𝑥𝛼1 )𝑟 (𝑥

𝛾

1 )
𝑠 = (𝑥𝛽2 )

𝑟 = 𝑥
𝑟𝛽

2 .

Therefore 𝑥1 is equal to a power of 𝑥2. Moreover 𝑥𝛾1 = 1 so (𝑥𝑟𝛽2 )𝛾 = 1, i.e. 𝑥𝑟𝛽𝛾2 = 1.
But also 𝑥𝛼1 = 𝑥

𝛽

2 so (𝑥𝑟𝛽2 )𝛼 = 𝑥
𝛽

2 , so 𝑥
(1−𝑟 𝛼)𝛽
2 = 1, i.e. 𝑥𝑠𝛽𝛾2 = 1. Thus 𝑥 (𝑟𝛽𝛾,𝑠𝛽𝛾)2 = 1,

i.e. 𝑥 |𝛽𝛾 |2 = 1. (The argument in this paragraph is that of [7, proof of Lemma 3.1].)
Now consider the arc [2, 3]. Let 𝛾′ = 𝛽𝛾. Noting that gcd{𝛼, 𝛾′} = 1, repeating the

argument of the previous paragraph gives that 𝑥2 is equal to a power of 𝑥3 and 𝑥
|𝛽𝛾′ |
3 = 1;

that is, 𝑥 |𝛽
2𝛾 |

3 = 1. Continuing in this way, we see that for each 1 ≤ 𝑖 < 𝑛 the generator
𝑥𝑖 is equal to a power of 𝑥𝑖+1 and 𝑥

|𝛽𝑖−1𝛾 |
𝑖

= 1. Therefore 𝑥1 is equal to a power of 𝑥𝑛;
that is, 𝑥𝑢 is equal to a power of 𝑥𝑤 , as required. ■

Lemma 4.3 Let Γ be a non-trivial, strong digraph of period 𝑝 and let 𝛼, 𝛽 ∈ Z satisfy 𝛼 ≠ 0,
𝛽 ≠ 0, 𝛼 ≠ ±𝛽, gcd{𝛼, 𝛽} = 1. Then 𝐺Γ (𝑎𝛼𝑏−𝛽) is finite and cyclic, of order dividing
|𝛼𝑝 − 𝛽𝑝 |.
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Proof Fix a vertex 𝑤 ∈ 𝑉 (Γ). Since Γ is non-trivial and strong, for every vertex
𝑢 ∈ 𝑉 (Γ), 𝑢 is a vertex of some cycle and there is a walk from 𝑢 to 𝑤. Therefore, by
Lemma 4.2, the generator 𝑥𝑢 is equal to some power of 𝑥𝑤 . Therefore every generator
of 𝐺 is equal to some power of 𝑥𝑤 , so 𝐺 is cyclic, generated by 𝑥𝑤 . Since the choice of
𝑤 was arbitrary, 𝐺 is cyclic and generated by 𝑥𝑣 for any 𝑣 ∈ 𝑉 (Γ) and, by Lemma 4.1,
if Δ is the length of any cycle of which 𝑣 is a vertex, 𝑥 |𝛼

Δ
−𝛽Δ |

𝑣 = 1 in 𝐺 . That is, 𝐺 is
cyclic of order dividing 𝑓 (Δ) = |𝛼Δ − 𝛽Δ |. Applying this observation to every vertex
𝑣 ∈ 𝑉 (Γ) and every cycle ofΓ ofwhich 𝑣 is a vertex,we see that𝐺 is cyclic of order divid-
ing gcd{ 𝑓 (Δ) | Δ is the length of some cycle of Γ}. That is,𝐺 is cyclic of order dividing
|𝛼𝑝 − 𝛽𝑝 |. ■

Lemma 4.4 Let Γ be a strong digraph of period 𝑝 ≥ 2, let Λ be the cycle of length 𝑝 and let
𝑅(𝑎, 𝑏) be a cyclically reduced word. Then 𝐺Γ (𝑅) maps epimorphically to 𝐺Λ (𝑅).

Proof (In this proof, subscripts of 𝑣∗, 𝑉∗ and 𝑦∗ terms are to be taken mod𝑝.) By [2,
Theorem 10.5.1] there exists a vertex partition 𝑉 (Γ) = 𝑉0 ⊍ 𝑉1 ⊍ ⋅ ⋅ ⋅ ⊍ 𝑉𝑝−1 such that
if [𝑢, 𝑣] ∈ 𝐴(Γ) then 𝑢 ∈ 𝑉𝑖 and 𝑣 ∈ 𝑉𝑖+1 for some 0 ≤ 𝑖 < 𝑝. By adjoining all relators
𝑅(𝑥𝑣𝑖 , 𝑥𝑣𝑖+1 ), where 𝑣𝑖 ∈ 𝑉𝑖 , 𝑣𝑖+1 ∈ 𝑉𝑖+1 to the defining presentation for𝐺 = 𝐺Γ (𝑅) we
see that𝐺 maps onto

𝐻 = ⟨𝑥𝑣𝑖 (𝑣𝑖 ∈ 𝑉𝑖 , 0 ≤ 𝑖 < 𝑝) | 𝑅(𝑥𝑣𝑖 , 𝑥𝑣𝑖+1 ) (𝑣𝑖 ∈ 𝑉𝑖 , 𝑣𝑖+1 ∈ 𝑉𝑖+1, 0 ≤ 𝑖 < 𝑝)⟩.

For each 0 ≤ 𝑖 < 𝑝, equating all generators 𝑥𝑣𝑖 (𝑣𝑖 ∈ 𝑉𝑖 ), and introducing generators
𝑦𝑖 = 𝑥𝑣𝑖 , we see that 𝐻 maps onto

𝐾 =

〈
𝑥𝑣𝑖 (𝑣𝑖 ∈ 𝑉𝑖 , 0 ≤ 𝑖 < 𝑝),
𝑦𝑖 (0 ≤ 𝑖 < 𝑝)

����� 𝑅(𝑥𝑣𝑖 , 𝑥𝑣𝑖+1 ) (𝑣𝑖 ∈ 𝑉𝑖 , 𝑣𝑖+1 ∈ 𝑉𝑖+1, 0 ≤ 𝑖 < 𝑝),𝑦𝑖 = 𝑥𝑣𝑖 (𝑣𝑖 ∈ 𝑉𝑖 , 0 ≤ 𝑖 < 𝑝)

〉
= ⟨𝑦𝑖 (0 ≤ 𝑖 < 𝑝) | 𝑅(𝑦𝑖 , 𝑦𝑖+1) (0 ≤ 𝑖 < 𝑝)⟩
= 𝐺Λ (𝑅)

where𝑉 (Λ) = {0, 1, . . . , 𝑝 − 1} and 𝐴(Λ) = {[𝑖, 𝑖 + 1] | 0 ≤ 𝑖 < 𝑝}. ■

We can now prove Theorem 1.2.

Proof Suppose first 𝛼 = −𝛽. Then by Lemma 3.6 𝐺 = 𝐺Γ (𝑅) is finite if and only if
𝛼 = ±1, Γ is not bipartite, and 𝑎𝛼 = 𝑏𝛽 in 𝐾 , in which case𝐺 � Z2. Equivalently,𝐺 is
finite if and only if 𝛼 ≠ 0, 𝛽 ≠ 0, gcd{𝛼, 𝛽} = 1, 𝛼𝑝 ≠ 𝛽𝑝 , and 𝑎𝛼 = 𝑏𝛽 in 𝐾 , in which
case𝐺 � Z |𝛼𝑝

−𝛽𝑝 | .
Suppose then 𝛼 ≠ −𝛽. If 𝐺 is finite then Theorem 3.7 implies 𝛼 ≠ 0, 𝛽 ≠ 0, 𝛼 ≠ 𝛽

(equivalently, 𝛼𝑝 ≠ 𝛽𝑝), gcd{𝛼, 𝛽} = 1 and 𝑎𝛼 = 𝑏𝛽 in 𝐾 . Under these conditions
Lemma 4.3 implies that𝐺Γ (𝑎𝛼𝑏−𝛽) is finite and cyclic of order dividing 𝛾 = |𝛼𝑝 − 𝛽𝑝 |.
Then 𝐺 � 𝐺Γ (𝑎𝛼𝑏−𝛽) by Theorem 3.7. We now show that 𝐺 maps epimorphically
to Z𝛾 . If 𝑝 = 1 this follows from Lemma 3.4, so assume 𝑝 ≥ 2. By Lemma 4.4 𝐺 =

𝐺Γ (𝑎𝛼𝑏−𝛽) maps epimorphically to𝐺Λ (𝑎𝛼𝑏−𝛽), whereΛ is the cycle of length 𝑝. But
𝐺Λ (𝑎𝛼𝑏−𝛽) � Z𝛾 , by [17, page 248] (or [7, Lemma 3.4], [3, Lemma 3.4]). Thus𝐺 � Z𝛾 ,
as required. ■
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5 Applications

In this section we obtain corollaries to Theorem 1.2 for particular types of strong
digraphs.

5.1 A Cayley digraph

We consider the Cayley digraph of the generalized quaternion group

𝑄2𝑛 = ⟨𝑐, 𝑑 | 𝑐2𝑛, 𝑐𝑛𝑑−2, 𝑐𝑑𝑐𝑑−1⟩

with respect to the generating set {𝑐, 𝑑}.

Lemma 5.1 Let Γ = Cay(𝑄2𝑛, {𝑐, 𝑑}) where 𝑛 ≥ 2. Then Γ is digon-free and triangle-free
and the period 𝑝(Γ) = gcd{𝑛, 2}.

Proof Since 𝑐2, 𝑑2, 𝑐3, 𝑑3, 𝑐2𝑑±1, 𝑑2𝑐±1 ≠ 𝑒 in𝑄2𝑛 (where 𝑒 denotes the identity) the
digraph Γ is digon-free and triangle-free. It contains the following cycles:

• 𝑒 → 𝑑 → 𝑑2 → 𝑑3 → 𝑑4 = 𝑐2𝑛 = 𝑒,
• 𝑒 → 𝑐 → 𝑐2 → ⋯ → 𝑐𝑛 → 𝑐𝑛𝑑 → 𝑐𝑛𝑑2 = 𝑐𝑛𝑐𝑛 = 𝑐2𝑛 = 𝑒,
• 𝑒 → 𝑐 → 𝑐2 → ⋯ → 𝑐2𝑛−1 → 𝑐2𝑛−1𝑑 → 𝑐2𝑛−1𝑑𝑐 = 𝑐2𝑛−2𝑑 → 𝑐2𝑛−2𝑑𝑐 = 𝑐2𝑛−3𝑑 →

⋯ → 𝑐𝑛𝑑 → 𝑐𝑛𝑑2 = 𝑐𝑛𝑐𝑛 = 𝑐2𝑛 = 𝑒,

of lengths 4, 𝑛 + 2, 3𝑛, respectively, and so 𝑝 = 𝑝(Γ) divides gcd{4, 𝑛 + 2, 3𝑛}, so 𝑝 = 1
if 𝑛 is odd and 𝑝 |2 if 𝑛 is even. If 𝑛 is even then Γ is bipartite with vertex partition

𝑉 (Γ) = {𝑐𝑖 , 𝑐𝑖𝑑 | where 𝑖 is even} ⊍ {𝑐𝑖 , 𝑐𝑖𝑑 | where 𝑖 is odd}

and so Γ has no odd length cycles and hence 𝑝 = 2. ■

Noting that Cayley digraphs are strong, we obtain the following.

Corollary 5.2 Let Γ = Cay(𝑄2𝑛, {𝑐, 𝑑}) where 𝑛 ≥ 2, let 𝑝 = gcd{𝑛, 2}, and let 𝑅(𝑎, 𝑏)
be a cyclically reduced word that involves both 𝑎 and 𝑏 and which has exponent sums 𝛼, 𝛽 in
𝑎 and 𝑏−1, respectively, and let 𝐾 = ⟨𝑎, 𝑏 | 𝑅(𝑎, 𝑏)⟩. Then𝐺 = 𝐺Γ (𝑅) is finite if and only
if 𝛼 ≠ 0, 𝛽 ≠ 0, gcd{𝛼, 𝛽} = 1, 𝛼𝑝 ≠ 𝛽𝑝 , 𝑎𝛼 = 𝑏𝛽 in 𝐾 , in which case𝐺 is cyclic of order
|𝛼𝑝 − 𝛽𝑝 |.

5.2 Circulant digraphs

Lemma 5.3 Let Γ = circ𝑛{𝑑1, . . . , 𝑑𝑡 }, where 𝑛 ≥ 2 and 1 ≤ 𝑑𝑖 < 𝑛 for each 1 ≤ 𝑖 ≤ 𝑡,
and where gcd{𝑛, 𝑑1, . . . , 𝑑𝑡 } = 1. Then 𝑝(Γ) = gcd{𝑛, 𝑑1 − 𝑑2, 𝑑1 − 𝑑3, . . . , 𝑑1 − 𝑑𝑡 }.

Proof Let 𝑝 = 𝑝(Γ) and 𝑟 = gcd{𝑛, 𝑑1 − 𝑑2, 𝑑1 − 𝑑3, . . . , 𝑑1 − 𝑑𝑡 }. Observe that

(𝑛 − 𝑑2)𝑑1 + 𝑑1𝑑2 + 0𝑑3 + ⋅ ⋅ ⋅ + 0𝑑𝑡 ≡ 0 mod 𝑛

so there is a closedwalkwith (𝑛−𝑑2) arcs corresponding to the generator 𝑑1 and 𝑑1 arcs
corresponding to the generator 𝑑2 and 0 arcs corresponding to the remaining generators
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(and so has length 𝑛 + 𝑑1 − 𝑑2). Similarly there are closed walks of lengths 𝑛 + 𝑑1 −
𝑑3, . . . , 𝑛+𝑑1−𝑑𝑡 . Also, there is a closedwalk of length𝑛, consisting of 𝑑1 arcs. Therefore
𝑝 divides gcd{𝑛, 𝑛 + 𝑑1 − 𝑑2, 𝑛 + 𝑑1 − 𝑑3, . . . , 𝑛 + 𝑑1 − 𝑑𝑡 } = 𝑟 .

Consider a cycle of length 𝑙 which has 𝑙𝑖 arcs corresponding to the generator 𝑑𝑖 , for
each 1 ≤ 𝑖 ≤ 𝑡. Then 𝑙 = 𝑙1 + ⋅ ⋅ ⋅ + 𝑙𝑡 and

∑𝑡
𝑗=1 𝑙 𝑗𝑑 𝑗 ≡ 0 mod 𝑛, and hence

∑𝑡
𝑗=1 𝑙 𝑗𝑑 𝑗 ≡

0 mod 𝑟 so (since 𝑑 𝑗 ≡ 𝑑1 mod 𝑟 for each 1 ≤ 𝑗 ≤ 𝑡) we have
∑𝑡

𝑗=1 𝑙 𝑗𝑑1 ≡ 0 mod 𝑟 .
That is, 𝑙𝑑1 ≡ 0 mod 𝑟 . Now if 𝛿 |𝑟 and 𝛿 |𝑑1 then 𝛿 |𝑑2, . . . , 𝑑𝑡 so 𝛿 | (𝑛, 𝑑1, . . . , 𝑑𝑡 ) = 1,
so 𝛿 = 1. Thus gcd{𝑟, 𝑑1} = 1, and so 𝑙 ≡ 0 mod 𝑟 . Hence 𝑟 divides the length of any
cycle in Γ, and so 𝑟 divides 𝑝. Hence 𝑝 = 𝑟 . ■

Noting that circ𝑛{𝑑1, . . . , 𝑑𝑡 } is digon-free and triangle-free if and only if 𝑑𝑖+𝑑 𝑗 . 0
and 𝑑𝑖 + 𝑑 𝑗 + 𝑑𝑘 . 0 mod 𝑛 for each 1 ≤ 𝑖, 𝑗 , 𝑘 ≤ 𝑡, and that circulant digraphs are
Cayley digraphs, and hence strong, we obtain the following.

Corollary 5.4 Let circ𝑛{𝑑1, . . . , 𝑑𝑡 }, where 𝑛 ≥ 4 and 1 ≤ 𝑑𝑖 < 𝑛 for each 1 ≤ 𝑖 ≤ 𝑡, and
where {𝑑1, . . . , 𝑑𝑡 } is a generating set for Z𝑛 and suppose 𝑑𝑖 + 𝑑 𝑗 . 0 and 𝑑𝑖 + 𝑑 𝑗 + 𝑑𝑘 .
0 mod 𝑛 for each 1 ≤ 𝑖, 𝑗 , 𝑘 ≤ 𝑡, and let 𝑝 = gcd{𝑛, 𝑑1 − 𝑑2, 𝑑1 − 𝑑3, . . . , 𝑑1 − 𝑑𝑡 }. Let
𝑅(𝑎, 𝑏) be a cyclically reduced word that involves both 𝑎 and 𝑏 and which has exponent sums
𝛼, 𝛽 in 𝑎 and 𝑏−1, respectively, and let 𝐾 = ⟨𝑎, 𝑏 | 𝑅(𝑎, 𝑏)⟩. Then 𝐺 = 𝐺Γ (𝑅) is finite if
and only if 𝛼 ≠ 0, 𝛽 ≠ 0, gcd{𝛼, 𝛽} = 1, 𝛼𝑝 ≠ 𝛽𝑝 , 𝑎𝛼 = 𝑏𝛽 in 𝐾 , in which case 𝐺 is
cyclic of order |𝛼𝑝 − 𝛽𝑝 |.

5.3 Cartesian products of strong digraphs

Lemma 5.5 Let Γ = Γ1□ . . .□Γ𝑡 be the cartesian product of digon-free and triangle-free
strong digraphs Γ1, . . . , Γ𝑡 with periods 𝑝1, . . . , 𝑝𝑡 respectively. Then Γ is strong, digon-free,
and triangle-free, with period 𝑝(Γ) = gcd{𝑝1, . . . , 𝑝𝑡 }.

Proof Since Γ1, . . . , Γ𝑡 are strong, so is Γ [8, Theorem 10.3.2]. Since Γ1, . . . , Γ𝑡 are
digon-free and triangle-free, so is Γ [18, Lemma 2.4].

Let 𝑟 = gcd{𝑝1, . . . , 𝑝𝑡 } and 𝑝 = 𝑝(Γ). Since every cycle of each Γ𝑖 has a corre-
sponding cycle in Γ, the lengths of the cycles in the Γ𝑖 ’s are lengths of cycles in Γ, so 𝑝
divides the lengths of all cycles in all Γ𝑖 ’s, so 𝑝 divides the greatest common divisor of
these lengths. That is, 𝑝 divides 𝑟 .

We shall say that an arc [(𝑢1, . . . , 𝑢𝑡 ), (𝑣1, . . . , 𝑣𝑡 )] ∈ 𝐴(Γ) is of type 𝑟 if 𝑢𝑖 = 𝑣𝑖
for each 1 ≤ 𝑖 ≤ 𝑡, 𝑖 ≠ 𝑟 . Consider a cycle of length 𝑙 that involves 𝑙𝑟 arcs of type 𝑟
(1 ≤ 𝑟 ≤ 𝑡). Then, for each 1 ≤ 𝑖 ≤ 𝑡, 𝑙𝑖 ≡ 0 mod 𝑝𝑖 and so 𝑙𝑖 ≡ 0 mod 𝑟 . Therefore
𝑙 = 𝑙1 + . . . + 𝑙𝑡 ≡ 0 mod 𝑟 . Thus 𝑟 divides the length of any cycle in Γ, so 𝑙 divides the
greatest common divisor of the lengths of the cycles in Γ. That is, 𝑟 divides 𝑝, and hence
𝑟 = 𝑝. ■

Example 5.6 (Cartesian product of cycles) Let Γ = Γ1□ . . .□Γ𝑡 where Γ𝑖 (1 ≤ 𝑖 ≤ 𝑡)
is the cycle of length 𝑚𝑖 ≥ 4 (1 ≤ 𝑖 ≤ 𝑡). Then Γ is strong, digon-free and triangle-
free, with period gcd{𝑚1, . . . , 𝑚𝑡 }. (Note that Γ is the Cayley digraph Cay(Z𝑚1 ⊕

⋯ ⊕ Z𝑚𝑡
, {𝑒1, . . . , 𝑒𝑡 }), where 𝑒1 = (1, 0, . . . , 0), 𝑒2 = (0, 1, 0, . . . , 0), . . . , 𝑒𝑡 =

(0, 0, . . . , 1).)
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Corollary 5.7 Let Γ = Γ1□ . . .□Γ𝑡 be the cartesian product of digon-free and triangle-
free, strong digraphs Γ1, . . . , Γ𝑡 with periods 𝑝1, . . . , 𝑝𝑡 respectively, and let 𝑝 =

gcd{𝑝1, . . . , 𝑝𝑡 }. Let 𝑅(𝑎, 𝑏) be a cyclically reduced word that involves both 𝑎 and 𝑏 and
which has exponent sums 𝛼, 𝛽 in 𝑎 and 𝑏−1, respectively, and let 𝐾 = ⟨𝑎, 𝑏 | 𝑅(𝑎, 𝑏)⟩. Then
𝐺 = 𝐺Γ (𝑅) is finite if and only if 𝛼 ≠ 0, 𝛽 ≠ 0, gcd{𝛼, 𝛽} = 1, 𝛼𝑝 ≠ 𝛽𝑝 , 𝑎𝛼 = 𝑏𝛽 in 𝐾 ,
in which case 𝐺 is cyclic of order |𝛼𝑝 − 𝛽𝑝 |.

5.4 Direct products of strong digraphs

Lemma 5.8 Let Γ = Γ1 × ⋅ ⋅ ⋅ × Γ𝑡 be the direct product of strong digraphs Γ1, . . . , Γ𝑡
with periods 𝑝1, . . . , 𝑝𝑡 respectively, where gcd{𝑝1, . . . , 𝑝𝑡 } = 1, and where at least one
of Γ1, . . . , Γ𝑡 is digon-free and at least one is triangle-free. Then Γ is strong, digon-free, and
triangle-free, with period 𝑝(Γ) = 𝑝1⋯𝑝𝑡 .

Proof The digraph Γ is strong with period 𝑝(Γ) = 𝑝1⋯𝑝𝑡 by [14] (see [14, Theorem
1(ii),(iii)] and page 251 and Proposition 4 of [10]; see also [8, Theorem 10.3.2]). If Γ con-
tains a digon (resp. triangle) then each of Γ1, . . . , Γ𝑡 contains a digon (resp. triangle), a
contradiction. Hence Γ is digon-free and triangle-free. ■

Example 5.9 (Direct product of an oriented diamond and a cycle) Let Γ = Γ1 × Γ2
where Γ1 is the oriented diamond digraph with 𝑉 (Γ1) = {𝑢, 𝑣, 𝑤, 𝑡} and 𝐴(Γ1) =

{[𝑢, 𝑣], [𝑢, 𝑤], [𝑣, 𝑡], [𝑤, 𝑡], [𝑡, 𝑢]}, and Γ2 is the cycle of length 𝑛 ≥ 2 where 𝑛 .
0 mod 3. Then Γ1 is strong and digon-free with period 3 and Γ2 is strong and triangle-
free with period 𝑛, so Γ is strong, digon-free and triangle free, of period 𝑝(Γ) =

3𝑛.

Corollary 5.10 Let Γ = Γ1 × ⋅ ⋅ ⋅ × Γ𝑡 be the direct product of strong digraphs Γ1, . . . , Γ𝑡
with periods 𝑝1, . . . , 𝑝𝑡 respectively, where gcd{𝑝1, . . . , 𝑝𝑡 } = 1, and where at least one of
Γ1, . . . , Γ𝑡 is digon-free and at least one is triangle-free, and let 𝑝 = 𝑝1⋯𝑝𝑡 . Let 𝑅(𝑎, 𝑏) be
a cyclically reduced word that involves both 𝑎 and 𝑏 and which has exponent sums 𝛼, 𝛽 in 𝑎
and 𝑏−1, respectively, and let 𝐾 = ⟨𝑎, 𝑏 | 𝑅(𝑎, 𝑏)⟩. Then𝐺 = 𝐺Γ (𝑅) is finite if and only if
𝛼 ≠ 0, 𝛽 ≠ 0, gcd{𝛼, 𝛽} = 1, 𝛼𝑝 ≠ 𝛽𝑝 , 𝑎𝛼 = 𝑏𝛽 in 𝐾 , in which case 𝐺 is cyclic of order
|𝛼𝑝 − 𝛽𝑝 |.
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