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1Department of Mathematics, University of Puerto Rico, Rio Piedras 00931,
Puerto Rico (keyantuo@upracd.upr.clu.edu)

2Fachbereich Mathematik der Universität Kaiserslautern, Erwin-Schrödinger Strasse,
67663 Kaiserslautern, Germany (claus mueller@mathematik.uni-kl.de)

(Received 16 March 2000)

Abstract The characterization theorem for the Banach-space-valued local Laplace transform established
by Keyantuo, Müller and Vieten is used to obtain a real variable characterization of generators of local
convoluted semigroups. The concept of local convoluted semigroups extends that of distribution as
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1. Introduction

In the study of the abstract Cauchy problem, the Laplace transform plays a crucial
role. The resolvent of the generator of a semigroup is linked to the semigroup via the
Laplace transform. The Hille–Yosida Theorem gives necessary and sufficient conditions
under which the resolvent is a Laplace transform. However, there are many important
problems that cannot be handled with the classical Laplace transform.

As early as 1960, Lions [13] introduced the notion of distribution semigroups and
gave a complex condition for a densely defined linear operator A to be the genera-
tor of an exponential distribution semigroup. This concept received much attention,
and in 1971 Chazarain [5] obtained a generation result involving not only distribu-
tion semigroups but also ultradistribution semigroups without growth condition. It
turns out that the concept of exponentially bounded integrated semigroups is equiv-
alent to that of exponential distribution semigroups (see [1]). Compared with the
results of Lions, Arendt’s approach has the advantage that it relates the characteri-
zation to the order of the distribution. We refer to [1] and to the systematic exposi-
tion given in [3]. Of importance is the relationship to the abstract Cauchy problem,
which is one of the main motivations of the theory. Following [1], investigations were
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made on the Cauchy problem in cases where one does not have exponentially bounded
solutions nor even solutions on [0, ∞). One seeks instead solutions on [0, T ), where
T is some fixed number in (0, ∞]. This led to the notions of local integrated semi-
groups [2, 16] and local convoluted semigroups [6, 8]. These concepts seem easier to
handle than those of distribution and ultradistribution semigroups, to which they turn
out to be equivalent. However, the Laplace transform is no longer applicable. Let A

be a closed linear operator in the Banach space X. We consider the initial-value prob-
lem,

u′(t) = Au(t) + F (t)x, 0 � t < T, u(0) = 0, (1.1)

where F (t) =
∫ t

0 E(s) ds. The conditions we put on E will be specified later. By definition,
A is the generator of a local E-convoluted semigroup (on [0, T )) if, for every x ∈ X, (1.1)
has a unique solution. The above-mentioned theories of distribution and ultradistribution
semigroups are obtained by appropriate choice for the function E. We remark that if one
takes F (t) = 1, so that E is the Dirac delta function, then one recovers the case of strongly
continuous semigroups (see [2], where the result is attributed to van Casteren). The case
of distribution semigroups corresponds to F (t) = tα/Γ (α + 1), 0 � t < T , α � 0. Under
this definition, we set S(t)x = u′(t), 0 � t < T , x ∈ X. Then S : [0, T ) → L(X) is
strongly continuous. The family (S(t))0�t<T is called the local E-convoluted semigroup
generated by A.

Our objective in this paper is to establish a real variable characterization of generators
of local convoluted semigroups parallel to the one developed in [1] for exponentially
bounded integrated semigroups. The need for real inversion results stems from the fact
that the complex conditions obtained (although very useful in practice) always result
in a loss of regularity even in the exponential case (see, for example, [12, Theorem 1.5,
Chapter I], [15, § 1.7, especially Theorem 7.4 and its corollaries] and [7, Theorems 4.1
and 4.2]). Our main tool is a real variable characterization of the local Laplace transform
obtained in [11].

We again stress that in the general situation that we consider, the classical Laplace
transform is inoperative. For the application of the characterization of the vector-valued
local Laplace transform to the Cauchy problem, we use the Phragmén–Doetsch inversion
formula in a crucial way.

In § 2, we give some results on the abstract Cauchy problem and conditions on the
function E as preparation for the main result established in § 3. In § 3, we combine
the results of §§ 2 and 3 to establish the Hille–Yosida Theorem for local convoluted
semigroups, Theorem 3.2. In the latter, the denseness of the domain is also clarified
(much as in [1]). Finally, we make the connection between the local case and the global
exponentially bounded convoluted semigroups. In our framework, we may restate the
Hille–Yosida Theorem as follows.

Theorem 1.1. A closed and densely defined linear operator is the generator of a
strongly continuous semigroup if and only if its resolvent is a local Laplace trans-
form.
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2. The abstract Cauchy problem

In the sequel, X is a real or complex Banach space over K ∈ {R, C}. Let τ be a positive
real number, and F : [0, τ ] → X a continuous function. We call u : [0, τ ] → X a solution
of the local abstract Cauchy problem,

u′(t) = Au(t) + F (t), 0 � t � τ and u(0) = 0, (2.1)

if u belongs to C1([0, τ ], X) ∩ C([0, τ ], D(A)) and fulfils (2.1).
The fundamental relation between local Laplace transforms and solutions of the local

Cauchy problem is given by the following lemma. The main tool for its proof is the
Phragmén–Doetsch inversion formula for Laplace transforms (for a proof see [9] or [4]).

Theorem 2.1. Let φ : [0, ∞) → X be Lipschitz continuous and f(λ) =
∫ ∞
0 e−λt dφ(t),

λ > 0 the Laplace–Stieltjes transform of φ. Then

φ(t) = lim
n→∞

∞∑
j=1

(−1)j+1

j!
etnjf(nj) for all t � 0.

Remark 2.2. If (ak)k is a sequence in X with

lim sup
k→∞

ln ‖ak‖
k

� −τ for some τ > 0,

then

lim
n→∞

∞∑
j=1

(−1)j+1

j!
etnjanj = 0 for all 0 � t < τ.

This is easy to verify by showing that

lim
n→∞

∞∑
j=1

etnj

j!
‖anj‖ = 0 for all 0 � t < τ.

Lemma 2.3. Let A : D(A) → X be a closed operator in X. Then the following
assertions are equivalent.

(i) There exists a solution of the abstract Cauchy problem (2.1).

(ii) There exists v ∈ C([0, τ ], X) such that
∫ τ

0 e−λtv(t) dt ∈ D(A) for all λ ∈ K, and

(λ − A)
∫ τ

0
e−λtv(t) dt = λ

∫ τ

0
e−λtF (t) dt − e−λτ (v(τ) − F (τ))

for all λ ∈ K.

(iii) There exists v ∈ C([0, τ ], X), k0 ∈ N and a sequence (ak)k in X with

lim sup
k→∞

ln ‖ak‖
k

� −τ
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such that
∫ τ

0 e−ktv(t) dt ∈ D(A) for all k � k0, and

(k − A)
∫ τ

0
e−ktv(t) dt = k

∫ τ

0
e−ktF (t) dt − ak for all k � k0.

Proof. We first note that a finite Laplace transform
∫ τ

0 eλt dφ(t) exists if φ is contin-
uous or of bounded variation (see [18, Theorem 4b, p. 7]).

Suppose (i) holds. Let v = u′. Because the Riemann–Stieltjes integrals
∫ τ

0
e−λt du(t) =

∫ τ

0
e−λtv(t) dt and

∫ τ

0
e−λt dAu(t) =

∫ τ

0
e−λt d(v(t) − F (t))

exist we obtain
∫ τ

0 e−λtv(t) dt ∈ D(A), and

A

∫ τ

0
e−λtv(t) dt

=
∫ τ

0
e−λt d(v(t) − F (t))

= e−λτv(τ) − v(0) + λ

∫ τ

0
e−λtv(t) dt −

[
e−λτF (τ) − F (0) + λ

∫ τ

0
e−λtF (t) dt

]
.

Hence, in view of v(0) = F (0),

(λ − A)
∫ τ

0
e−λtv(t) dt = λ

∫ τ

0
e−λtF (t) dt − e−λτ (v(τ) − F (τ)).

If (iii) holds, then we have

A

(
1
k

∫ τ

0
e−ktv(t) dt

)
=

∫ τ

0
e−kt(v(t) − F (t)) dt +

ak

k
. (2.2)

We let

v[1] :=
∫ t

0
v(s) ds and v[k+1] :=

∫ t

0
v[k](s).

Because of
1
λ

∫ τ

0
e−λsv(s) ds =

∫ τ

0
e−λs dv[2](s) +

1
λ

e−λτv[1](τ),

the Phragmén–Doetsch inversion formula yields

lim
n→∞

∞∑
j=1

(−1)j+1

j!
etnj

(
1
nj

∫ τ

0
e−njsv(s) ds

)
= v[2](t) for all t ∈ [0, τ).

On the other hand, applying the Phragmén–Doetsch inversion formula to equation (2.2)
gives

lim
n→∞

∞∑
j=1

(−1)j+1

j!
etnj

(
A

nj

∫ τ

0
e−njsv(s) ds

)
= v[1](t) − F [1](t) for all t ∈ [0, τ).

https://doi.org/10.1017/S0013091500001103 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500001103


The Hille–Yosida Theorem for local convoluted semigroups 399

We obtain, using the closedness of A, that v[2](t) ∈ D(A) and

Av[2](t) = v[1](t) − F [1](t) for all t ∈ [0, τ).

Again because A is closed the last equation holds for t = τ . Differentiating this equation
once and using the closedness of A yields the desired result:

Av[1](t) = v(t) − F (t) for all t ∈ [0, τ ].

�

We recall the Ljubich Uniqueness Theorem for the abstract Cauchy problem which
will be needed in the sequel.

Proposition 2.4. Let A : D(A) → X be a closed operator with (ω, ∞) ⊆ ρ(A) for
some ω > 0, and let

rA = lim sup
λ→∞

ln ‖R(λ, A)‖
λ

.

If rA � 0, then the abstract Cauchy problem

u′(t) = Au(t) + F (t), 0 � t < T and u(0) = 0

has at most one solution.

For a proof, see [15, Theorem 1.2, Chapter 4] or [12, Theorem 3.1, Chapter 1]. We
remark that the Ljubich Uniqueness Theorem can easily be proved using the preceding
results of this section.

Now let F : [0, T ) → K be a locally integrable function. For x ∈ X we call u : [0, T ) →
X a solution of the abstract Cauchy problem

u′(t) = Au(t) + F [1](t)x, 0 � t < T and u(0) = 0, (2.3)

if u belongs to C1([0, T ), X) ∩ C([0, T ), D(A)) and fulfils (2.3).

Definition 2.5. Suppose for every x ∈ X the abstract Cauchy problem (2.3) has a
unique solution ux. Then we define the family (S(t))0�t<T of bounded operators on X

by S(t)x = u′
x(t). This family is called the local F -convoluted semigroup on [0, T ) with

generator A.

The fact that S(t) is bounded follows from the Closed Graph Theorem.
To motivate this definition we consider the case where A generates a C0-semigroup

(T (t))t�0. The unique solution of (2.3) is given by the variation-of-constant formula,

u(t) =
∫ t

0
F [1](t − s)T (s)x ds,

so A generates a local F -convoluted semigroup on [0, T ) for every T > 0, namely

S(t)x =
∫ t

0
F (t − s)T (s)x ds.
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If F (t) = tα−1/Γ (α), α > 0, then

u(t) =
∫ t

0

(t − s)α

Γ (α + 1)
T (s)x ds and S(t)x =

∫ t

0

(t − s)α−1

Γ (α)
T (s)x ds,

the α-times integrated semigroup.
The following functional equation can be established for (S(t))0�t<T (see, for example,

[7, Theorem 1.2]):

S(t)S(s) =
∫ t+s

0
F (t+s−r)S(r) dr−

∫ t

0
F (t+s−r)S(r) dr−

∫ s

0
F (t+s−r)S(r) dr (2.4)

for 0 � s, t < T , s + t < T.

It follows from the functional equation that S(t)S(s) = S(s)S(t) for 0 � s, t < T .
Starting with a well-posed Cauchy problem on [0, T ), one can show (assuming that F can
be extended) that the Cauchy problem with (F ∗ F )(t) =

∫ t

0 F (t − s)F (s) ds replacing F

is well-posed on [0, 2T ). This is essentially contained in the functional equation (2.4).
For E defined on [0, ∞) this remark is used to make the connection to distribution and
ultradistribution semigroups (see [2]).

We make a remark concerning the generator. The family (S(t))0�t<T is non-degenerate
in the sense that if S(t)x = 0, 0 � t < T , then x = 0. This follows from the uniqueness
assumption. Following [17], we define the operator Ã by

D(Ã) =
{

x ∈ X | ∃y ∈ X, S(t)x =
∫ t

0
S(s)y ds + F (t)x, 0 � t < T

}

with Ãx = y for x ∈ D(Ã).
The non-degeneracy of (S(t))0�t<T implies that Ã is single valued. By strong continuity

of (S(t))0�t<T , Ã is closed. It is easy to see that A ⊂ Ã. Using the fact that the resolvent
set of A is non-void (see below), we conclude that A = Ã.

We want to find a condition on F such that the resolvent R(λ, A) exists. To this end we
apply the previous Lemma 2.3 to the Cauchy problem ux(t) = A

∫ τ

0 ux(s) ds + F [2](t)x
and obtain

(λ − A)
∫ τ

0
e−λtux(t) dt =

∫ τ

0
e−λtF [1](t)x dt − e−λtux(t) (2.5)

for all λ and all x. Denoting the antiderivative S[1] of S by Q we obtain

λ − A∫ τ

0 e−λtF [1](t) dt

∫ τ

0
e−λtQ(t)x dt =

(
Id − e−λτQ(τ)∫ τ

0 e−λtF [1](t) dt

)
x =: M(λ)x. (2.6)

Id denotes the identity. Note that the mapping Q : [0, τ ] → L(X) with Q(t)x = ux(t) is
Lipschitz continuous since S is uniformly bounded on [0, τ ].

If the operator M(λ) is invertible, then R(λ, A) exists, as the following proposition
shows.

Recall that F̂τ (λ) =
∫ τ

0 e−λtF (t) dt denotes the finite Laplace transform of F on [0, τ ].
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Proposition 2.6. Suppose A generates a local F -convoluted semigroup on [0, T ) and
F fulfils

lim inf
λ→∞

ln |F̂τ (λ)|
λ

� 0 for one (and then for all) τ ∈ (0, T ). (2.7)

Then (ω, ∞) ⊂ ρ(A) for some ω > 0, and

lim sup
λ→∞

ln ‖R(λ, A)‖
λ

� 0.

Remark 2.7. The given condition (2.7) is equivalent to

lim
λ→∞

eλδ|F̂τ (λ)| = ∞

for all δ > 0, and the estimate on the resolvent is equivalent to

lim
λ→∞

e−λδ‖R(λ, A)‖ = 0

for all δ > 0.
It is now easy to verify that if F satisfies (2.7) for one τ , then this holds automatically

for all τ .

Proof. Set G = F [1]. First we note that (2.7) is equivalent to

lim inf
λ→∞

ln |Ĝτ (λ)|
λ

� 0. (2.8)

This follows from

eλδĜτ (λ) =
eλδ

λ
F̂τ (λ) − e−λ(τ−δ)

λ
G(τ).

Hence, equation (2.7) implies Ĝτ (λ) 
= 0 for large λ. For these λ define

V (λ) := Id−M(λ) =
e−λτ

Ĝτ (λ)
Q(τ),

where the operators Q(t) and M(λ) are as in equation (2.6). If ω > 0 is so large that
‖V (λ)‖ � 1/2 for all λ � ω, then M(λ) = Id−V (λ) is invertible, and

‖M(λ)−1‖ �
∞∑

k=0

‖V (λ)‖k =
1

1 − ‖V (λ)‖ � 2 for all λ > ω.

To show

R(λ, A) =
1

Ĝτ (λ)

∫ τ

0
e−λtQ(t) dt · M(λ)−1 for all λ > ω (2.9)

we use equation (2.6) and show that A and M(λ)−1 both commute with every Q(t) on
D(A).
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To do the first we show Aux(t) = uAx(t) for x ∈ D(A) and t ∈ [0, T ). This is true
because the function p(s) =

∫ s

0 (uAx(t) + G(t)x) dt is the solution of the abstract Cauchy
problem (2.3) which yields u′

x(t) = p′(t) = uAx(t) + G(t)x. Consequently, uAx(t) =
u′

x(t) − G(t)x = Aux(t).
Secondly, we show that a continuous operator B on X commuting with A also com-

mutes with every Q(t). For if B commutes with A, we put v(t) = Bux(t) for every x ∈ X

and obtain Av(t) = BAux(t) = B(u′
x(t) − G(t)x) = v′(t) − G(t)Bx. Because of unique-

ness we have v = uBx. Consequently, Bux(t) = v(t) = uBx(t). Replacing B by Q(t) we
obtain Q(s)Q(t) = Q(t)Q(s) for all s, t ∈ [0, τ ], and therefore M(λ) commutes with Q(t).

To prove the estimate on the resolvent we fix δ > 0 and obtain

‖R(λ, A)‖e−λδ � 2e−λδ

|Ĝτ (λ)|

∥∥∥∥
∫ τ

0
e−λtQ(t) dt

∥∥∥∥ for all λ > ω.

Now, estimate (2.8) implies that the right side tends to zero as λ goes to infinity. �

Many functions that have appeared so far in connection with abstract Cauchy problems
fulfil the estimate (2.7), e.g. the function

F (t) =
tα

Γ (α + 1)
for α > −1.

This is a consequence of the following lemma.

Lemma 2.8. F ∈ Lloc
1 ([0, T ), K) satisfies (2.7) if there exists δ ∈ (0, T ) with F [1] � 0

on [0, δ] and a monotonic null sequence (δn)n with F [1](δn) > 0 (or F [1] � 0 on [0, δ] and
a monotonic null sequence (δn)n with F [1](δn) < 0).

Proof. Set G = F [1]. We show that if G � 0 on [0, δ] and G(δ) > 0 for some δ ∈ (0, T ),
then

lim
λ→∞

eλδ

∣∣∣∣
∫ τ

0
e−λtG(t) dt

∣∣∣∣ = ∞.

The desired result follows because equations (2.7) and (2.8) are equivalent.
Choose ε ∈ (0, δ) with G(ε) > 0. Then

eλδ

∣∣∣∣
∫ τ

0
e−λtG(t) dt

∣∣∣∣ � eλδ

∣∣∣∣
∫ δ

0
e−λtG(t) dt

∣∣∣∣ − eλδ

∣∣∣∣
∫ τ

δ

e−λtG(t) dt

∣∣∣∣
� eλδ

∫ ε

0
e−λtG(t) dt − ‖G‖∞

1 − e−λ(τ−δ)

λ

� eλ(δ−ε)
∫ ε

0
G(t) dt − ‖G‖∞

λ
.

�

Another condition on F ∈ Lloc
1 ([0, T ), K) so that (2.7) is fulfilled is

lim
λ→∞

eϕ(λ)|F̂τ (λ)| = ∞ for one (and then for all) τ ∈ (0, T ),
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where ϕ : (0, ∞) → [0, ∞) satisfies limλ→∞ ϕ(λ)/λ = 0. Because then for a given δ > 0
one can find λ0 > 0 with ϕ(λ)/λ < δ/2 for all λ > λ0. For these λ we have

eϕ(λ)|F̂ (λ)| = eϕ(λ)−δλeλδ|F̂ (λ)|
= eλ[ϕ(λ)/λ−δ]eλδ|F̂ (λ)|
� e−λδ/2eλδ|F̂ (λ)| = eλδ/2|F̂ (λ)|.

If F ∈ Lloc
1 ([0, ∞), K) is defined on the positive semi-axis with |F (t)| � Meωt for all

t � 0 with constants M and ω � 0, there is a condition on F so that (2.7) is fulfilled for
any choice of numbers 0 < τ < T , namely

lim
λ→∞

eϕ(λ)|F̂ (λ)| = ∞,

where ϕ : (0, ∞) → [0, ∞) satisfies limλ→∞ ϕ(λ)/λ = 0. Because then there is λ0 > ω

with ϕ(λ)/λ < τ/2 for all λ > λ0. For these λ we have

eϕ(λ)F̂τ (λ) = eϕ(λ)F̂ (λ) − eϕ(λ)
∫ τ

0
e−λtF (t) dt,

and the last term in this equation tends to zero as λ reaches infinity since
∣∣∣∣eϕ(λ)

∫ τ

0
e−λtF (t) dt

∣∣∣∣ � M

λ − ω
eωτe−λτ/2.

A similar condition was considered by Cioranescu and Lumer [8] but their condition
involves the Laplace transform of F (the kernel here) considered as defined on (0, ∞). We
do not assume that F is defined on (0, ∞), much less that it is Laplace transformable.

Let F (t) = tn/n!, 0 � t < T , and let τ ∈ (0, T ). Then F̂τ (λ) can be computed explicitly.
In fact,

F̂τ (λ) =
1

λn+1 − e−λτ
n∑

k=0

τk

k!λn+1−k
. (2.10)

It is then clear that the above conditions are satisfied. These kernels correspond to
distribution semigroups and will lead to polynomial estimates on the resolvent. We further
remark that if T = ∞, then F is Laplace transformable and F̂ (λ) = 1/λn+1, λ > 0. For
F (t) = tα/Γ (α + 1), α > −1, the conditions are satisfied with ψ(λ) = 0.

An important example is the following one offered by Cioranescu [6] (corresponding
to ultradistributions in the Gevrey classes). Let 0 < a < 1, P (λ) =

∑∞
n=0 anλn, λ ∈ C,

where |an| = O(Ln(n!)−1/a), n ∈ N0, for some L > 0. Then P (λ)−1 =
∫ ∞
0 e−λtF (t) dt,

λ > 0, where F (·) is a bounded C∞ function. In this case, there exists l > 0 such that

e(l|λ|)a � |P (λ)| � e(L|λ|)a

, λ > 0,

so that the conditions on F̂τ (λ) are satisfied.
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3. Generation of local convoluted semigroups

Recall that a function F fulfils the local Widder conditions on [0, τ ] with constants M

and ω, if there exist functions Φ ∈ C∞((ω, ∞), X) and ε : (ω, ∞) → X with

F (λ) = Φ(λ) + ε(λ), λ > ω,

such that lim supλ→∞ ln ‖ε(λ)‖/λ � −τ ,

sup
k∈N0

sup
µ>ω+k/τ

∥∥∥∥ (µ − ω)k+1

k!
Φ(k)(µ)

∥∥∥∥ � M (3.1)

and

sup
k∈N

sup
ω<µ<ω+k/τ

‖τ−keµτΦ(k)(µ)‖ < ∞. (3.2)

By Lipω([0, τ ], X) we denote the space of functions φ : [0, τ ] → X which are repre-
sentable as

φ(t) =
∫ t

0
eωs dψ(s), 0 � t � τ, (3.3)

for some ψ ∈ Lip([0, τ ], X). Furthermore, we define ‖φ‖Lipω
= ‖ψ‖Lip (see [11] for these

definitions).
With these definitions, we state the following result from [11, Corollary 2.10] of which

we shall make frequent use.

Theorem 3.1. Let ω ∈ R and M � 0. For every F ∈ C∞((ω, ∞), X) the following
two assertions are equivalent.

(i) F is the local Laplace–Stieltjes transform of a function φ ∈ Lipω([0, τ ], X) with
‖φ‖Lipw[0,τ ] � M .

(ii) F satisfies the local Widder conditions on [0, τ ] with constants M and ω.

We now state and prove the Hille–Yosida Theorem for local convoluted semigroups.
Recall that the Riemann–Stieltjes integral

∫ τ

0
e−λt dF (t) = e−λtF (τ) − F (0) + λ

∫ τ

0
e−λtF (t) dt

exists if F : [0, τ ] → X is of bounded variation or continuous.

Theorem 3.2. Let A : D(A) → X be a closed linear operator on a Banach space X,
let T > 0, and for each τ ∈ [0, T ) let Mτ be a positive number. Furthermore, assume
that F is a scalar-valued continuous function on [0, T ) with F (0) = 0 and

lim inf
λ→∞

ln |F̂σ(λ)|
λ

� 0

for at least one (and then for all) σ ∈ (0, T ). Then the following statements are equivalent.
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(1) A generates a local F -convoluted semigroup (S(t))0�t<T on [0, T ), and there is
µ ∈ R with ‖S‖Lipµ[0,τ ] � Mτ for all τ ∈ [0, T ).

(2) For all τ ∈ [0, T ) there are ω1, µ ∈ R with (ω1, ∞) ⊂ ρ(A) and the function,

(ω1, ∞) → L(X),

λ �→
∫ τ

0
e−λt dF (t) · R(λ, A),

is the local Laplace–Stieltjes transform on [0, τ ] of a function S : [0, T ) → L(X)
with ‖S‖Lipµ[0,τ ] � Mτ .

(3) For all τ ∈ [0, T ) there is ω ∈ R with (ω, ∞) ⊂ ρ(A), and the function,

(ω, ∞) → L(X),

λ �→
∫ τ

0
e−λt dF (t) · R(λ, A),

fulfils the local Widder conditions on [0, τ ] with constant Mτ .

Remark 3.3. In (1) and (2) the appearing constants µ can be chosen equal; from (2)
to (3) one can take ω = max{µ, ω1}; from (3) to (2) one can take ω1 = µ = ω.

Proof. (1) ⇒ (2). In view of Proposition 2.6 the resolvent exists on a right half-line
(ω1, ∞). Using Lemma 2.5 we obtain for λ ∈ C and x ∈ X

(λ − A)
∫ τ

0
e−λtS(t)x dt =

∫ τ

0
e−λtF (t)x dt − e−λτS(τ)x.

Multiplying this equation by λ, using F (0) = 0 and partial integration yields

(λ − A)
(∫ τ

0
e−λt dS(t)x − e−λτS(τ)x

)
=

∫ τ

0
e−λt dF (t)x − e−λτF (τ)x − λe−λτS(τ)x.

Defining ε : (ω1, ∞) → L(X) by

ε(λ) := λe−λτR(λ, A)S(τ) + e−λτF (τ)R(λ, A) − e−λτS(τ)

we obtain ∫ τ

0
e−λt dF (t)R(λ, A) =

∫ τ

0
e−λt dS(t) + ε(λ) for λ > ω1

and

lim sup
λ→∞

ln ‖ε(λ)‖
λ

� −τ.

(2) ⇒ (3). Let ω = max{µ, ω1} and apply Theorem 3.1.
(3) ⇒ (2). Let ω1 = µ = ω and again apply Theorem 3.1.
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(2) ⇒ (1). For all τ ∈ (0, T ) we have∫ τ

0
e−λt dF (t) · R(λ, A) =

∫ τ

0
e−λt dS(t) + ετ (λ) for all λ > ω1

with

lim sup
λ→∞

ln ‖ετ (λ)‖
λ

� −τ.

This gives

A

(∫ τ

0
e−λt dS(t) + ετ (λ)

)
= λ

(∫ τ

0
e−λt dS(t) + ετ (λ)

)
−

∫ τ

0
e−λt dF (t) · Id .

Dividing this equation by λ and using partial integration we get

A

(
1
λ

e−λτS(τ) +
∫ τ

0
e−λt dS[1](t) +

ετ (λ)
λ

)

=
∫ τ

0
e−λt dS(t) + ετ (λ) − 1

λ
e−λτF (τ) · Id +

∫ τ

0
e−λt dF [1](t) · Id .

Using the Phragmén–Doetsch inversion formula we see that S[1](t)x ∈ D(A) and

AS[1](t)x = S(t)x −
∫ t

0
F (s)x ds for all x and t ∈ [0, τ ].

It remains to show that the solution is unique. To this end we have∫ σ

0
e−λt dF (t) · R(λ, A) =

∫ σ

0
e−λt dS(t) + εσ(λ),

which implies

e−λδR(λ, A) =

∫ σ

0 e−λt dS(t) + εσ(λ)
eλδ

(
e−λσF (σ) + λ

∫ σ

0
e−λtF (t) dt

)
.

This gives
lim

λ→∞
e−λδR(λ, A) = 0 for all δ > 0

and therefore

lim sup
λ→∞

ln ‖R(λ, A)‖
λ

� 0.

Uniqueness of the solution follows now from the Ljubich Uniqueness Theorem (Proposi-
tion 2.4). �

Corollary 3.4. Let A : D(A) → X be a closed and densely defined linear operator
on a Banach space X. Let T > 0, and for each τ ∈ [0, T ), Mτ be a positive number.
Furthermore, assume that E is a scalar-valued locally integrable function on [0, T ) with

lim inf
λ→∞

ln |Êσ(λ)|
λ

� 0

for at least one (and then for all) σ ∈ (0, T ). Then the following statements are equivalent.
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(1) A generates a local E-convoluted semigroup (U(t))0�t<T on [0, T ) with

‖U‖L∞[0,τ ] � Mτ for all τ ∈ [0, T ).

(2) There is ω � 0 with (ω, ∞) ∈ ρ(A) and for all τ ∈ [0, T ) the function,

(ω, ∞) → L(X),

λ �→
∫ τ

0
e−λtE(t) dt · R(λ, A),

fulfils the local Widder conditions on [0, τ ] with constant Mτ .

Proof. (1) ⇒ (2). Let F = E[1]. For every x ∈ X the Cauchy problem,

u′(t) = Au(t) + F (t)x, 0 � t < T and u(0) = 0,

has a unique solution ux, and so does the Cauchy problem,

v′(t) = Av(t) + F [1](t)x, 0 � t < T and v(0) = 0.

The solution of the latter is

v(s) =
∫ s

0
u(t) dt, 0 � t < T.

Therefore, A generates a local F -convoluted semigroup (S(t))0�t<T on [0, T ), namely
S(t)x = ux(t), and F fulfils

lim inf
λ→∞

ln |F̂σ(λ)|
λ

� 0.

(Recall that the estimates (2.7) and (2.8) are equivalent.)
Furthermore, the estimate ‖S‖Lip[0,τ ] = ‖S‖Lip0[0,τ ] � ‖U‖L∞[0,τ ] follows from

S(t)x =
∫ t

0 u′
x(s) ds =

∫ t

0 U(s)x ds for x ∈ X and 0 � t � τ . Now Theorem 3.2 gives
the desired result.

(2) ⇒ (1). Again let F = E[1]. Then, by virtue of Theorem 3.2, the operator A gener-
ates a local F -convoluted semigroup (S(t))0�t<T on [0, T ) with ‖S‖Lipω [0,τ ] � Mτ for all
τ ∈ [0, T ). Consequently,

S(t)x = A

∫ t

0
S(s)x ds +

∫ t

0
F (s)x ds

for all x ∈ X and all t ∈ [0, T ). For x ∈ D(A) this becomes

S(t)x =
∫ t

0
S(s)Ax ds +

∫ t

0
F (s)x ds.

Defining U(t)x = S′(t)x we get

U(t)x = S(t)Ax + F (t)x.
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Because A commutes with every S(t) we have

U(t)x = A

∫ t

0
U(s)x ds +

∫ t

0
E(s)x ds. (3.4)

For every τ ∈ [0, T ) the linear operator Uτ : D(A) → C([0, τ ], X) defined by Uτx(t) =
U(t)x is bounded with ‖Uτ‖ � eωτ‖S‖Lipω [0,τ ] and therefore can be extended uniquely to
the closure of D(A), i.e. to X. We again use the notation U for the family U : [0, T ) →
L(X) defined by U(t)x = Ut(x)(t). It remains to show that the Cauchy problem,

u′(t) = Au(t) + F (t)x, 0 � t < T and u(0) = 0,

has for every x ∈ X the unique solution u(t) =
∫ t

0 U(s)x ds. Because A is closed, equa-
tion (3.4) holds for x ∈ X, and uniqueness follows from the fact that A generates a local
convoluted semigroup. �

From the local cases one gets a result for global convoluted semigroups. First we clarify
the notation. By σc we denote the abscissa of convergence, i.e. σc is the infimum of all
real λs such that limR→∞

∫ R

0 e−λtE(t) dt converges (see [18]). If σc � η with η � 0, then
lim supt→∞ |E[1](t)|/t � η and E[2] is in Lipη+ε for every ε > 0.

Definition 3.5. Let A : D(A) → X be a closed linear operator on a Banach space
X and E : [0, ∞) → K be a locally integrable function with abscissa of convergence
σc < ∞. We say that A generates an exponentially bounded E-convoluted semigroup
(S(t))t�0, if there is a strongly continuous function S : [0, ∞) → L(X) with S(0) = 0,
constants ω � σc and M � 0 with ‖S(t)‖ � Meωt and (ω, ∞) ⊂ ρ(A) such that

Ê(λ) · R(λ, A) =
∫ ∞

0
e−λtS(t) dt for all λ > ω.

Hieber [10] did this for E(t) = tα−1/Γ (α) and α > 0, which leads to α-times integrated
semigroups, and Arendt [1] considered n-times integrated semigroups, i.e. exponentially
bounded (tn−1/(n − 1)!)-convoluted semigroups.

Before stating the announced theorem we need a lemma which shows the exceptional
position of the resolvent with regard to Lemma 2.12 in [11].

Lemma 3.6. Let A : D(A) → X be a closed linear operator on a Banach space X

and E : [0, ∞) → K a locally integrable function with abscissa of convergence σc < ∞.
Furthermore, assume that there is ω � max {0, σc} with (ω, ∞) ⊂ ρ(A) and

Ê(λ) · R(λ, A) =
∫ ∞

0
e−λt dφ(t) + ε(λ) for all λ > ω

with functions φ ∈ Lipω([0, ∞), L(X)) and ε satisfying

lim
λ→∞

ln ‖ε(λ)‖
λ

= −∞.

Then ε vanishes identically on (ω, ∞).
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Proof. Let F = E[1]. Because of∫ ∞

0
e−λtE(t) dt · R(λ, A) =

∫ ∞

0
e−λt dφ(t) + ε(λ),

we obtain, if λ > ω,

A

(∫ ∞

0
e−λt dφ[1](t) +

ε(λ)
λ

)
=

∫ ∞

0
e−λt dφ(t) + ε(λ) −

∫ ∞

0
e−λt dF [1](t) · Id .

Applying the Phragmén–Doetsch inversion formula gives

Aφ[1](t) = φ(t) − F [1](t) · Id .

Thus we obtain

(λ − A)
∫ ∞

0
e−λtφ[1](t) dt =

∫ ∞

0
e−λtF [1](t) dt · Id

and after integrating by parts
∫ ∞

0
e−λtE(t) dt · R(λ, A) =

∫ ∞

0
e−λt dφ(t),

which gives the desired result. �

Theorem 3.7. Let A : D(A) → X be a closed, densely defined linear operator on
a Banach space X and E : [0, ∞) → K a locally integrable function with abscissa of
convergence σc < ∞. Furthermore, assume that there is a λ0 � η := max {0, σc} with
Ê(λ) 
= 0 for all λ > λ0.

Then the following assertions are equivalent.

(1) A generates an exponentially bounded E-convoluted semigroup.

(2) There are ω > η and C > 0 such that the abstract Cauchy problem,

u(t) = A

∫ t

0
u(s) ds + E[1](t)x,

u ∈ C([0, ∞), X) with ‖u(t)‖ � Ceωt and u[1](t) ∈ D(A) for all t � 0,

has a unique solution ux for every x ∈ X.

(3) There is ω > η with (ω, ∞) ⊂ ρ(A), and for every τ > 0 the function

(ω, ∞) → L(X),

λ �→ Ê(λ) · R(λ, A)

fulfils the local Widder conditions on [0, τ ] with constants M and ω (independent
of τ).
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(4) There is ω > η with (ω, ∞) ⊂ ρ(A) and

sup
k∈N0

sup
λ>ω

∥∥∥∥ (λ − ω)k+1

k!
(Ê(λ) · R(λ, A))(k)

∥∥∥∥ � M

for some M � 0.

Remark 3.8.

(i) For n-times integrated semigroups the equivalence of the first two assertions was
shown by Neubrander [14].

(ii) Although there is no locally integrable function E on [0, ∞) whose Laplace trans-
form is identically equal to 1, the argument used in the proof of Theorem 3.7 applies
to the case of the Dirac measure concentrated at 0 (whose Laplace transform is
identically equal to 1). This is important for (iii) below.

(iii) To obtain Theorem 1.1, we take Ê(λ) ≡ 1, that is, E is the Dirac delta function.
Theorem 1.1 is then (1) ⇔ (3). In this case, E[1](t) ≡ 1. The fact that well-posedness
of the Cauchy problem,

u′(t) = Au(t) + x, 0 � t � τ, u(0) = 0 for some τ > 0,

is equivalent to A generating a C0-semigroup was originally observed by van Cast-
eren (see [2, Theorem 1.2].

Proof of the theorem. (1) ⇒ (4). There are constants ω > η and M � 0 and a
strongly continuous function S : [0, ∞) → L(X) with S(0) = 0 and with ‖S(t)‖ � Meωt

such that

Ê(λ) · R(λ, A)x =
∫ ∞

0
e−λtS(t)x dt for all λ > ω and all x ∈ X.

The function φx(t) =
∫ t

0 S(s)x ds is in Lipω([0, ∞), X) with ‖φ‖Lipω
� M‖x‖; thus Corol-

lary 2.13 of [11] yields (4).
(4) ⇒ (3). This implication is a consequence of Lemma 2.12 and Corollary 2.13 of [11].
(3) ⇒ (2). Applying Lemma 2.12 of [11] and Lemma 3.6 from this paper, we obtain a

function φ ∈ Lipω([0, ∞), L(X)) with ‖φ‖Lipω
� M such that

Ê(λ) · R(λ, A) =
∫ ∞

0
e−λt dφ(t) for all λ > ω.

This gives

A

∫ ∞

0
e−λt dφ[1](t) =

∫ ∞

0
e−λt dφ(t) −

∫ ∞

0
e−λt dE[2](t) · Id,

and the Phragmén–Doetsch inversion formula yields

Aφ[1](t) = φ(t) − E[2](t) · Id .
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Therefore, for every x ∈ X the abstract Cauchy problem,

v(t) =
∫ t

0
v(s) ds + E[2](t)x,

v ∈ C([0, ∞, X) exponentially bounded and v[1](t) ∈ D(A),


 (3.5)

has a solution vx(t) = φ(t)x. But this is the only one, since if v solves the above Cauchy
problem for some x we have

(λ − A)
∫ ∞

0
e−λtv(t) dt =

∫ ∞

0
e−λtE[1](t)x dt,

which gives
∫ ∞

0
e−λtv(t) dt =

1
λ

Ê(λ) · R(λ, A)x =
∫ ∞

0
e−λtφ(t)x dt.

Thus v(t) = φ(t)x.
Next we remark that A commutes with every φ(t). This follows the same idea as in

the proof of Proposition 2.6. For x ∈ D(A) define the function p(s) = vAx(s) + E[1](s)x,
which gives

A

∫ t

0
p(s) ds = A

∫ t

0
vAx(s) ds + E[2](t)x = vAx(t).

So we have

p(t) = A

∫ t

0
p(s) ds + E[1](t)x,

which gives

p[1](t) = A

∫ t

0
p[1](s) ds + E[2](t)x.

Thus p[1] = vx because p[1] solves the Cauchy problem (3.5), and Aφ(t)x = Ap[1](t) =
vAx(t) = φ(t)Ax. Therefore, we have

φ′(t)x = φ(t)Ax + E[1](t)x for t � 0 and x ∈ D(A). (3.6)

Now define the Banach space Y = {f ∈ C([0, ∞, X) : there is M � 0 with ‖f(t)‖ �
Meωt for all t � 0} with norm ‖f‖Y = inf{M � 0 : ‖f(t)‖ � Meωt}, and consider the
linear operator

V : D(A) → Y with V x(t) = φ′(t)x.

V is bounded, since the function V x is continuous because of (3.6); furthermore, we have,
for t > s � 0,

∥∥∥∥ 1
t − s

∫ t

s

V x(r) dr

∥∥∥∥ =
∥∥∥∥φ(t)x − φ(s)x

t − s

∥∥∥∥ � ‖φ‖Lipω

1
t − s

∫ t

s

eωr dr · ‖x‖.
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For s ↑ t we obtain
‖V x(t)‖ � ‖φ‖Lipω

· eωt · ‖x‖.

Consequently, ‖V ‖ � ‖φ‖Lipω
. Because A is densely defined we extend V on X and will

again call this operator V .
Because A is closed it follows from (3.6) that

V x(t) = A

∫ t

0
V x(s) ds + E[1](t)x for t � 0 and x ∈ X.

If on the other hand u solves the Cauchy problem in (2), we have

u[1](t) = A

∫ t

0
u[1](s) ds + E[2](t)x.

Consequently, u[1] = φ(t)x because u[1] solves (3.5).
(2) ⇒ (1). Define Y as above and consider the linear operator

T : X → Y with Tx = ux.

T is closed and therefore bounded. Furthermore, consider the strongly continuous func-
tion

S : [0, ∞) → L(X) with S(t)x = ux(t).

Then S(0) = 0 and ‖S(t)‖ � ‖T‖ · eωt.

We notice that A commutes with every S(t), because with

p(s) =
∫ s

0
uAx(r) dr + E[1](s)x

for x ∈ D(A) we have p ∈ Y and

A

∫ t

0
p(s) ds =

∫ t

0
uAx(s) − E[1](s)Ax ds + E[2](t)Ax = p(t) − E[1](t)x.

Thus p = ux and S(t)Ax = AS(t)x. Because ux solves the given Cauchy problem, we
obtain

(λ − A)
∫ ∞

0
e−λtux(t) dt = Ê(λ)x for λ > ω.

For λ > max {ω, λ0} we define the linear operator R ∈ L(X) by

Rx =
1

Ê(λ)

∫ ∞

0
e−λtS(t)x dt.

Then we have

‖R‖ � ‖T‖
(λ − ω)Ê(λ)

and (λ − A)Rx = x.
Because A commutes with every S(t) we also have R(λ − A) = IdD(A). Therefore, A

generates the exponentially bounded E-convoluted semigroup (S(t))t�0. �

https://doi.org/10.1017/S0013091500001103 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500001103


The Hille–Yosida Theorem for local convoluted semigroups 413

References

1. W. Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59
(1987), 327–352.

2. W. Arendt, O. El-Mennaoui and V. Keyantuo, Local integrated semigroups: evo-
lution with jumps of regularity, J. Math. Analysis Applic. 186 (1994), 572–595.

3. W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace
transforms and Cauchy problems, Monographs in Mathematics, vol. 96 (Birkhäuser, 2001).
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