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1. Introduction. Three times over the past few months I have been asked,
directly and indirectly, about the maximal class of a nilpotent subgroup of GLðn;ZÞ.
The bound 3n=2 seems to be generally known. In fact the bound n holds and indeed
for most n the true bound is less than n. In view of the recent interest in this question
it seems worthwhile to publish a definitive result.

Theorem 1. Let G be a nilpotent subgroup of GLðn;ZÞ of class k. Then k � n � 1
if n is not a power of 2 and k � n if n is a power of 2. Moreover these bounds are
attained for all n.

Our approach is first to analyse the nilpotent subgroups of GLðn;QÞ and then
to derive the integer case. Since the bound in the rational case is larger than that in
the integer case, at first sight this might not seem sensible. However the analysis
shows that the exceptional groups, that is those of class exceeding n, are relatively
rare and have a sufficiently specific structure to be easily eliminated in the integer
case. It also shows why the bound 3n=2 can arise naturally This bound of 3n=2 is in
fact attained for some n in the rational case, namely for those n > 1 that are powers
of 2. If n is not a power of 2 then the bound is less. Indeed for about one n in two it
is less than n.

Theorem 2. Let G be a nilpotent subgroup of GLðn;QÞ of class k.
Define integers � and s by n ¼ 2� þ s, where 0 � s < 2�. Then

k � 1 if n ¼ 1; otherwise
k � 3:2��1 if 0 � s � 2��1 and
k � n � 1 if 2��1 < s < 2�.

Moreover these bounds are attained for all n by subgroups of GLðn;Z½1=2�Þ.

One can carry out similar analyses for other ground fields, for example finite
extensions of Q. For the reals and complexes nothing interesting happens; 1-
dimensional groups are abelian and GLð2;RÞ contains copies of every dihedral
group and hence contains nilpotent groups of every class.
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The corresponding precise bounds for finite (every periodic subgroup of
GLðn;QÞ is finite) nilpotent subgroups of GLðn;QÞ are generally smaller than those
given in the Theorem 2. They can be read off from the analysis below and also from
the structure of the Sylow subgroups of GLðn;QÞ given, for example, in [1]. Speci-
fically, a finite p-subgroup (throughout this paper p denotes a positive integer prime)
of GLðn;QÞ has class at most p f, where f ¼ �1; 0; 1; 2; . . . is defined by p fðp � 1Þ �
n < p fþ1ð p � 1Þ. If p > 2 and if 2� � n < 2�þ1, then p f � n=2 < 2�. Thus any finite
nilpotent subgroup of GL(n,Q) has class at most 2� and in particular has class at
most n with equality only if n ¼ 2�. Moreover these bounds are achieved by sub-
groups of GLðn;ZÞ, as can be seen from either [1] or the examples below.

Theorem 2 claims that there exist nilpotent subgroups of GLðn;QÞ with class
exceeding n for about one n in two. Such groups are not common. The previous
paragraph shows that such a group must contain elements of infinite order. They
must also contain involutions (and some of the involutions and elements of infinite
order must interact in a relatively specific way).

Proposition 1. Let G be a nilpotent subgroup of GLðn;QÞ, where n > 1. Then
the n-th term �nG of the lower central series of G is a finite 2-group. In particular, if G
contains no involutions, then G is nilpotent of class less than n.

Let p be a prime. We have to work with something more general than p-groups.
A group G is p-primary if G modulo its centre Z is a p-group. If such a group G is
also linear, then the periodic group G/Z is locally finite (use [6, 6.2 and 4.9]). Con-
sequently the derived subgroup G0 of G is also a locally finite p-group. The basic
building blocks of nilpotent linear groups are the unipotent groups and the p-pri-
mary groups for various primes p. We need at least part of the following proposition
to prove the theorems.

Proposition 2. Let n be a positive integer, p a positive prime and set
np ¼ maxf1; n=ðp � 1Þg. Let G be an irreducible p-primary subgroup of GLðn;QÞ.
Then G is nilpotent of class k, where

k < np � n if np is not a power of p,
k � np < maxfn; 2g if p > 2 and if np is a power of p and
k � 3n=2 if p ¼ 2 and if n ¼ n2 is a power of 2.

Over the rationals there are clearly differences between the 2-primary and the 2-
group cases. However the p-primary and the p-group cases for odd p are not quite as
similar as at first sight they might appear. For example, GLðn;QÞ contains an irre-
ducible p-subgroup only if n ¼ p fðp � 1Þ for some integer f, apart from the trivial case
n ¼ 1, while GLðn;QÞ contains an irreducible p-primary subgroup for every p and n.

2. Examples.

2.1. The full unitriangular group Tr1ðn;ZÞ over Z is nilpotent of class exactly
n � 1 for all n � 1.

2.2. Let n ¼ 2 f for some f � 0. Then the wreath product f1gwr SymðnÞ embeds
into GLðn;ZÞ as generalized permutation matrices. If Sf is a Sylow 2-subgroup of
Symð2 f Þ, then Sfþ1 is isomorphic to f1gwr Sf, which embeds into GLðn;ZÞ. The
nilpotency class of Sfþ1 is 2

f ¼ n; see [1] or [4, III.15.3e] for details.
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2.3. Let n ¼ ðp � 1Þp f. Now GLðp � 1;ZÞ contains the companion matrix of the
polynomial 1þ X þ X2 þ . . .þ Xp�1. If here Sf denotes a Sylow p-subgroup of
Symðp f Þ, then GLðn;ZÞ contains via generalized permutation matrices a copy of
Sfþ1, and the latter is nilpotent of class p f ¼ n=ðp � 1Þ. Again, see [1] for details.

2.4. Let r ¼ 2 f, for some f � 0, and set n ¼ 2r. Then GLðn;Z½1=2�Þ contains a
nilpotent 2-primary subgroup of class at least 3r ¼ 3n=2.

In fact the examples in 2.4 have class exactly 3n=2. This can be computed
directly, but it follows immediately once we have proved Theorem 2.

Proof. Let K ¼ QðiÞ � C, let � denote complex conjugation, set � ¼< � > and
let < x > be a cyclic group of order r ¼ 2 f. For k ¼ 1; 2; . . . ; r let � 7! �k be an
isomorphism of the split extension �:K� onto an isomorphic copy of itself, K� here
denoting the multiplicative group of K. Consider the wreath product

ð� :K�Þwr < x >¼< x > :
Yr

k¼1
ð�:K�Þk;

where < x > acts on the cartesian product by permuting the suffices cyclically in the
natural way. Then ð� :K�Þwr < x > embeds into GL(2r, Q) via block permutation
matrices of degree 2r, where �:K� embeds into GLð2;QÞ via

i 7!
0 1
�1 0

� �
& � 7!

1 0
0 �1

� �
:

Note that the images of i, � and ð1þ iÞ�1 in GLð2;QÞ all lie in GLð2;Z½1=2�Þ. Con-
sider the subgroup

G ¼< ik; �k; y ¼ xð1þ iÞ1 : k ¼ 1; 2; . . . ; r >

of ð� :K�Þwr < x >. We claim the following.
(a) G embeds into GLðn;Z½1=2�Þ.
(b) G is a nilpotent 2-primary group.
(c) The nilpotency class of G is at least 3r.

(a) Since here n ¼ 2r, this follows from the above.
(b) I ¼< ik : k ¼ 1; 2; . . . ; r > is a normal subgroup of G. Set J ¼< �k : k ¼

1; 2; . . . ; r >. Then IJ is a 2-subgroup (of order 23r) of G. Now IJ is normal in G, for

�y
k ¼ ð1þ iÞ�1

1 x�1�kxð1þ iÞ1 ¼ ð1þ iÞ�1
1 �kþ1ð1þ iÞ1 ¼ �kþ1; if k < r and

¼ ð1þ iÞ�1
1 �1ð1þ iÞ1 ¼ �1ð1� iÞ�1

1 ð1þ iÞ1 ¼ �1i1 2 IJ; if k ¼ r:

Also

yr ¼ ðxð1þ iÞ1Þ
r
¼ xrð1þ iÞrð1þ iÞr�1 . . . ð1þ iÞ2ð1þ iÞ1

and ð1þ iÞ4 ¼ �4 2 Q. Thus y4r lies in the centre Z of G and hence G=Z is a finite 2-
group (of order dividing 23rþ2þ�). In particular G is nilpotent and 2-primary.

(c) We prove this by showing that the multiple commutator ½�1;2r�1y; �1;r�1y� of
length 3r � 1 is non-trivial. If M is a < y > module and if a lies in M, then
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½a; hy� ¼ aðy � 1Þh ¼
Xh

k¼0

ð�1Þh�k h
k

� �
ayk:

The proof of (b) above yields that ½�k; y� ¼ ��1
k �kþ1 if k < r and ½�k; y� ¼ ��1

r �1i1 if
k ¼ r. Hence

½�1;r�1y� ¼
Yr�1

k¼0
�1þk

r�1
kð Þ

(the ð�1Þ’s are irrelevant since j�j ¼ 2) and

½�1; ry� ¼ ð
Yr�1

k¼0
�1þk

r
kð ÞÞð�1i1Þ ¼ i1;

since the binomial coefficients here are even for 0 < k < r. Then

½�1;2r�1y� ¼ ½i1;r�1 y� ¼
Yr�1

k¼0
i
ð�1Þr�1�k r�1

kð Þ
1þk ;

and so ½�1;2r�1y; �1� ¼ ½i; ��1
ð�1Þr�1

¼ ð�1Þ1.
Therefore

½�1;2r�1y; �1;r�1y� ¼
Yr�1

k¼0
ð�1Þ1þk

r�1
kð Þ ¼

Yr

k¼1
ð�1Þk 6¼ 1:

The claim follows.

3. Special cases. In the main general arguments suffice. However there are a
number of small cases that need to be handled separately. Fortunately most of these
follow a common pattern. These we deal with in this section.

Say that a p-primary group G has ec-height at most n, an integer, if G has a
central series (running from <1> to G itself) of length n whose factors with at most
one exception are elementary abelian p-groups and that exception, if it exists, has its
maximal p-subgroup of exponent dividing p. In particular such a group is nilpotent
of class at most n. The exceptional factor can always be taken to be the top factor of
the series; for if

< 1 >¼ G0 � G1 � G2 � . . . � Gn ¼ G

is such a series with G1 the exceptional factor, then, since G0 is a p-group,
½G2;G� � T1, the maximal p-subgroup of G1, and then

< 1 >¼ G0 � T1 � G2 � . . . � Gn ¼ G

is also such a series, but with G2=T1 the exceptional factor. In this way the excep-
tional factor can be pushed to the top of the series. In practice we only need the
concept of ec-height for the primes 2 and 3.
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3.1. Let A be an abelian normal subgroup of prime index p in the p-primary group
G. Suppose that the maximal p-subgroup T of A has exponent dividing p. Then G has
ec-height at most p.

Proof. Now G ¼< g > A, for some g in G, and gp 2 A. Also G0 is a p-group. It is
convenient to write A additively. Then Aðg � 1Þ ¼ ½A; g� ¼ G0 � T. Also

Aðg � 1Þð1þ g þ g2 þ . . .þ gp�1Þ ¼ Aðgp � 1Þ ¼< 0 > :

But Aðg � 1Þ � T and any t in T has order dividing p, by hypothesis, so that

tð1þ g þ g2 þ . . .þ gp�1Þ ¼ tðg � 1Þp�1:

Thus Aðg � 1Þp ¼< 0 >.
Consider the series

< 1 >� CTðgÞ � ½A; p�2 g�:CTðgÞ � . . . � ½A; i g�:CTðgÞ � . . . � ½A; g�:CTðgÞ � G:

This is a central series of G of length p with each of its factors an elementary abelian
p-group except possibly the final factor H ¼ G=K for K ¼ ½A; g�:CTðgÞ. If G=T has
no non-trivial p-elements, then T=K is the maximal p-subgroup of H. If not we may
choose g to be a p-element and then gp 2 T, so that gp 2 CTðgÞ and T=K �< gK > is
the maximal p-subgroup of H. Either way the maximal p-subgroup of H is an ele-
mentary abelian p-group. The lemma follows.

3.2. Let X be a group such that, for some prime p, every p-primary subgroup of X
has ec-height at most r. Let C be a cyclic group of order p. Then every p-primary
subgroup of the wreath product Y ¼ XwrC has ec-height at most pr.

Proof. Let G be a p-primary subgroup of Y. If B denotes the base group of Y,
then B \ G has ec-height at most r and B \ G has a central series < 1 >¼

B0 � B1 � . . .Br ¼ B \ G each factor of which has its maximal p-subgroup elemen-
tary abelian and each factor of which, with at most one exception, is a p-group. We
can also choose each Bi characteristic in B \ G and hence normal in G.

By 3.1, the section G=Br�1 has ec-height at most p. Pick g in G with
G ¼< g > ðB \ GÞ, so that gp 2 B. For i � r apply 3.1 to the split extension of
Bi=Bi�1 by < g > = < gp >. Then this split extension has ec-height at most p.
Moreover, with at most one exception, each of these split extensions is a p-group.
Therefore G has ec-height at most pr.

The same proof yields the following, which we only use for p ¼ 2.

3.3. Let X be a group such that every p-subgroup of X has ec-height at most r, for
some prime p. Let C be a cyclic group of order p. Then every p-subgroup of the wreath
product Y ¼ XwrC has ec-height at most pr.

3.4. Let K denote the field QðiÞ � C, let � ¼ GalðK=QÞ ffi C2, let �:K� be the split
extension of the multiplicative group K� of K by � and set W ¼ ð�:K�ÞwrP, the
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permutational wreath product, where P is a transitive 2-subgroup of SymðrÞ. Then any
2-primary subgroup of W has ec-height at most 3r, while any 2-subgroup of W has ec-
height at most 2r.

Proof. If Q � P is a Sylow 2-subgroup of SymðrÞ, then Q too is transitive and W
is a subgroup of ð�:K�ÞwrQ. Hence we may assume that P ¼ Q. Then r ¼ 2�, for
some � � 0, and P is the wreath power of � copies of the cyclic group of order 2. See
[3, x5.9] or [4, xIII.15]. The result will then follow from the case � ¼ 0, a simple
induction on � and results 3.2 and 3.3. Hence we can assume that � ¼ 0 and
W ¼ � :K�.

Let G be a 2-primary subgroup of W. Modulo < i >, the subgroup G \ K� of G
is torsion-free abelian of index at most 2. Also G0 is a 2-group. Thus G0 �< i > and
G modulo < i > is abelian with its torsion subgroup of order 1 or 2. Also jij ¼ 4.
Therefore G has ec-height at most 3.

A 2-subgroup H of �:K� has order dividing 8 and � does not centralize < i >,
the torsion subgroup of K�. Therefore H is not cyclic of order 8 and consequently H
has ec-height at most 2.

3.5. Let K be a subfield of C, where ðK : QÞ ¼ 2 and K does not contain i, and let
� ¼ GalðK=QÞ ffi C2. Otherwise, let P and W be as in 3.4. Then every 2-primary sub-
group of W has ec-height at most 2r.

Proof. As in the proof of 3.4 we may assume that r ¼ 1 and W ¼ �:K�. Let G be
a 2-primary subgroup of W. Then G0 � K� and G0 is a 2-subgroup. Therefore
G0 ¼< �1 >, which has order 2, and G modulo < �1 > is abelian with its maximal
2-subgroup of exponent dividing 2. Consequently G has ec-height at most 2.

3.6. Let K be a subfield of C with ðK : QÞ ¼ 4 and let � ¼ GalðK=QÞ. Otherwise
let P and W be as in 3.4. Then every 2-primary subgroup of W has ec-height at most
4r.

Proof. As in the proof of 3.4 we may assume that r ¼ 1 and W ¼ �:K�. Let G be
a 2-primary subgroup of W. Then G0 � K� and G0 is a 2-subgroup. If K does not
contain a primitive 8th root of 1, then G0 �< i > and G modulo < i > is abelian
with its maximal 2-subgroup of exponent dividing 4. Therefore G has ec-height at
most 4 in this case. Now assume that K ¼ Qð!Þ � C, where ! is a primitive 8th root
of 1. Here � ¼ GalðK=QÞ ffi C2 � C2. Being a 2-subgroup, G0 �< w > and G mod-
ulo < ! > is abelian with its maximal 2-subgroup of exponent dividing 2. Therefore
G again has ec-height at most 4.

3.7. Let K ¼ Qð!Þ � C, where w is a primitive 9th root of 1 and let � be the Sylow
3-subgroup (of order 3) of GalðK=QÞ. Set W ¼ ð�:K�ÞwrP, where P is now a transi-
tive 3-subgroup of SymðrÞ. Then any 3-primary subgroup of W has ec-height at most
3r.

Proof. As in the proof of 3.4 we may assume that r ¼ 1 and W ¼ �:K�. Let G be
a 3-primary subgroup of W. Then G0 is a 3-subgroup of K�, so that G0 �< ! >,
which has order 9. Modulo < ! >, the group G is abelian with its maximal 3-sub-
group of order dividing 3. Thus G has ec-height at most 3.
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4. General results. Suppose that G is a nilpotent irreducible subgroup of
GLðn;QÞ. Then G modulo its centre Z is finite [6, 3.13]. Assume that G is p-primary,
for some prime p, and let A be a maximal abelian normal subgroup of G. Then A � Z;
also A is completely reducible (Clifford’s Theorem). Hence R ¼ Q½A� � Qn�n is semi-
simple and R ¼ K1 � K2 � . . .� Kr for some fields Ki. Then if V denotes row n-space
over Q regarded as a right R-module in the obvious way, V ¼ H1 � H2 � . . .� Hr,
where Hi is the homogeneous component of V corresponding to Ki.

Since G is irreducible, G permutes the Hi and the Ki transitively. Set
N ¼ \iNGðHiÞ ¼ \iNGðKiÞ. Then G=N is isomorphic to a transitive p-subgroup P of
SymðrÞ. In particular r ¼ p� for some � � 0 and P is nilpotent of class at most r=p.
See [3, x5.9] or [4, III.15.3]. It also follows that the Ki are all isomorphic, to K say.

Let pc be the largest order of a p-power root-of-unity ! in K. Assume G is not
abelian. Then G0 is a non-trivial p-group, G0 \ Z 6¼< 1 > and A contains an element
of order p. Thus c � 1. Also ðQð!Þ : QÞ ¼ 
ðpcÞ ¼ pc�1ðp � 1Þ and this must divide
m ¼ ðK;QÞ. Let m ¼ peðp � 1Þh, where e � c � 1 and p does not divide h. Let d be
the dimension of Hi over Ki (d does not depend upon i, note). Then n ¼ dmr ¼
dpeðp � 1Þhr. Also n > 1 since we have assumed that G is non-abelian.

Regard P as a subgroup of GLðn;QÞ of block permutation matrices corre-
sponding to the decomposition V ¼ �iHi, so that Hi� ¼ Hi� for all � in P. Then
dimQHi ¼ dm and < P;G > embeds into the wreath product GLðdm;QÞwrP. Also
CGðAÞ ¼ A, and so G=A embeds into AutR ffi �wr SymðrÞ, for � the Galois group of
K over Q. Thus G=A embeds into �wrP and hence into one of its Sylow p-sub-
groups. Consequently G=A embeds into �wrP for � a Sylow p-subgroup of � and
j�j ¼ pe. Therefore G=A is nilpotent of class at most maxfr=p; erg by [4, III.15.2].
Also ½A;G� is a p-group of order dividing pcr. Thus G is nilpotent of class k, where

k � maxfr=p; erg þ 1þ cr:

Note also that if r ¼ 1, then G=A embeds into � and A is contained in K�. Hence if
also e > 0 then the group G0, being a p-group, has order dividing pe�1þc and
k � e þ c � 2e þ 1 < 2ðe þ 1Þr. We have now to make case-by-case estimates of
these bounds.

Case e ¼ 0 and r ¼ 1. Here G ¼ A and k < 2 � n.

Case e ¼ 0 and r > 1. Here c ¼ 1 and k � r=p þ 1þ r. Hence k � 2r, with
equality only if p ¼ r ¼ 2. Also n ¼ dmr ¼ dðp � 1Þhr. If p > 2, then k < n. Let
p ¼ 2. If dh > 2, then k < n. If dh ¼ 2 and r > 2, then k < 2r � n. If dh ¼ r ¼ 2, then
k � 4 ¼ n. Suppose that dh ¼ 1. Then m ¼ 1, K ¼ Q, � ¼ � ¼< 1 > and G embeds
into Q

�wrP. Now Q
�
¼< �1 > �F, where F is free abelian. Hence G embeds into

the direct product of < �1 > wrP and FwrP. Therefore G is nilpotent of class at
most maxfr; 1þ r=2g ¼ r ¼ n. In particular n ¼ 2�, a power of 2.

Case e > 0. Here k � er þ 1þ cr � ð2e þ 1Þr þ 1 and n ¼ dpeðp � 1Þhr. Thus
(even if r ¼ 1, see above) we have k < 2ðe þ 1Þr and so k < n whenever
dpeðp � 1Þh � 2eþ1. Hence if p > 2 or if dh > 1, then k < n. Let p ¼ 2 and dh ¼ 1.
Then n ¼ 2er ¼ 2eþ�, a power of 2. If e � 3 then k < n. There remains the two spe-
cial cases p ¼ 2, dh ¼ 1, e ¼ 1, m ¼ 2, n ¼ 2r and p ¼ 2, dh ¼ 1, e ¼ 2, m ¼ 4,
n ¼ 4r.
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If e ¼ 1 then K is Galois over Q. Suppose that e ¼ 2 and K is not Galois over Q.
Then j�j < m and K > Qð!Þ. Thus j�j ¼ 2 and c � 1 < e ¼ 2; also

k � maxfr=2; rg þ 1þ 2r ¼ 3r þ 1 � 4r ¼ n:

Now assume K is Galois over Q. Then Qm�m is isomorphic to the skew group
ring of K by � and the normalizer of K in the latter is � :K�. By the Skolem-Noether
Theorem (e.g. [2, p. 262]) any two copies of K in Q

m�m are conjugate. Hence G
embeds into ð� :K�ÞwrP. If e ¼ 1, then k � 2r ¼ n or K ¼ QðiÞ and k � 3r ¼ 3n=2
(even k � 2r ¼ n if G is actually a 2-group) by 3.4 and 3.5. If e ¼ 2 then k � 4r ¼ n
by 3.6.

4.1. Summarizing the above, if G is a nilpotent irreducible p-primary subgroup
of GLðn;QÞ of class k, then either n is not a power of 2 and k < n, or p > 2, n > 1
and k < n, or n is a power of 2 and either k � n or n > 1, p ¼ 2, the group G embeds
into ð�:K�ÞwrP, in the above notation with K ¼ QðiÞ, and k � 3r ¼ 3n=2. Moreover
if G is periodic, then k � n in all cases.

4.2. The Proof of Theorem 2. The bounds claimed in Theorem 2 are attained by
the examples in x2. Let G be a nilpotent subgroup of GLðn;QÞ. Now Q is a perfect
field, so that the Jordan decompositions of elements of GLðn;QÞ take place in
GLðn;QÞ. See for example [5, 3.1.6]. Hence G � Gu � Gd � GLðn;QÞ, where Gu is
unipotent, and therefore torsion-free nilpotent of class at most n � 1; also Gd is a
nilpotent d-group [5, 3.1.7].

Assume G ¼ Gd is a d-group. Then G has trivial unipotent radical and so we
may assume that G is completely reducible (over Q). Hence the centre Z of G has
finite index in G [6, 3.13]. Thus G is a central product (see [5, 3.2.2]) of p-primary
groups, one for each prime p, each of which will also be completely reducible by
Clifford’s Theorem. Clearly, therefore, we may assume that G is p-primary for some
prime p, so that G=Z is now a finite p-group; we may also assume that G is irre-
ducible. Then by 4.1 above G is nilpotent of class k, where k < n if n is not a power
of 2, where k � 1 if n ¼ 1 and where k � 3n=2 otherwise. Theorem 2 follows.

4.3. The Proof of Theorem 1. Let G be a nilpotent subgroup of GLðn;ZÞ. As in
the proof of Theorem 2 (see 4.2), we reduce to the case in which G is primary and
rationally irreducible. We need to be slightly more careful to keep G in GLðn;ZÞ.
With V again denoting row n-space over the rationals, we have V ¼ V1 � V2 � . . .
�Vs as QG-module, where all the QG-composition factors of each Vi are iso-
morphic; see [7, 2.3]. The class k of G is bounded by the classes of the G=CGðViÞ and
hence we may assume that all the QG-composition factors of V are isomorphic. If
there are at least two of these, then the proof 4.2 yields that k is at most
maxfn � 1; 3n=4g, so that k � n � 1.

Thus we may assume that G is rationally irreducible. Then G modulo its centre
Z is finite and k is bounded by the maximum class of a primary subgroup H of G.
Repeating the above reduction we may reduce to the case in which H is rationally
irreducible. Therefore we may assume that G ¼ H is p-primary, for some prime p.
Assuming G is also a counterexample to the theorem, it follows from 4.1 that p ¼ 2,
that n is a power of 2 and G � ð� :K�ÞwrP � GLðn;QÞ, where K ¼ QðiÞ, where
� ¼ GalðK=QÞ has order 2 and where P is a transitive 2-subgroup of degree r ¼ n=2.
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We continue the notation of the proof of 4.1. The centre Z of G generates a
subfield S of R ¼ Q½A� ¼ K1 � K2 � . . .� Kr. Then S embeds into K and so is iso-
morphic to Q or K. If S is Q, then Z consists of scalar rational matrices in GLðn;ZÞ.
Thus Z �< 1 >, the group G is a 2-group and the conclusion k � n follows from
the finite case. (See 4.1 or the Introduction.) Now assume that S ffi K. Then the
central field S projects onto each Ki and we may assume that we initially chose the
isomorphisms between the Ki so that S is the diagonal copy of K in R. Also � does
not centralize K. Consequently G in fact embeds into K�wrP. Now K� ¼< i > �F
for some torsion-free abelian group F, G embeds into the direct product of
< i > wrP and FwrP and [4, III.15.2] yields that k � maxf2r; 1þ r=2g ¼ 2r. Finally
n ¼ d2ehr � 2r here and so k � n yet again. The proof is complete.

4.4. The Proof of Proposition 1. Let G be a nilpotent subgroup of GLðn;QÞ,
where n > 1. Consider the proof of Theorem 2 and let � iG denote the i-th term of
the lower central series of G. Now the unipotent component Gu of G is nilpotent of
class at most n � 1, so that �nG ¼ �nGd. For odd primes p the p-primary subgroups
of Gd are nilpotent of class at most n � 1 and the derived subgroup of a 2-primary
group is a 2-group. Since n is at least 2, this shows that �nG is a 2-group. Necessarily
such a 2-subgroup of GLðn;QÞ is finite. The remainder of the proposition follows.

4.5. The Proof of Proposition 2. The case in which p ¼ 2 follows at once from
4.1. Hence assume that p > 2. Over the complexes the group G is monomial and so if
n � p � 1, then certainly G is abelian and k � 1 ¼ np < maxfn; 2g. From now on
assume that n > p � 1 (so that np > 1) and G is non-abelian. We continue the nota-
tion of the proof of 4.1. Thus A contains an element of order p, the integer p � 1
divides m, which divides n, the integer k � maxfr=p; erg þ 1þ cr and
n ¼ dmr ¼ dpeðp � 1Þhr.

If e � 2, then k � ð2e þ 1Þr þ 1 < per � np. If e ¼ 1 and p > 3, then k �

3r þ 1 < 5r � pr � np. If e ¼ 1, p ¼ 3 and dh > 1, then k � 3r þ 1 < 6r � n3. Sup-
pose e ¼ 1, p ¼ 3 and dh ¼ 1. If c ¼ 1, then k � 2r þ 1 � 3r ¼ n3 ¼ 3�þ1. Suppose
c ¼ 2. Then K ¼ Qð!Þ is Galois over Q, Q6�6 is the skew group ring of � over K and
� < � has order 3. Further G embeds into ð�:K�ÞwrP. By 3.7 the group G has class
at most 3r and here n ¼ 6r, so that k � n3 ¼ 3�þ1. Finally suppose e ¼ 0, so that
here c must be 1. If also r ¼ 1, then G ¼ A and k � 1 < np. Suppose r > 1. Then
k � r=p þ 1þ r and np ¼ dhr. Thus k < np unless dh ¼ 1 and np ¼ r ¼ p�, a power of
p. In this case G embeds into K�wrP and K� ¼ C � F, where jCj ¼ p and F is p-free.
Then k � maxfr; 1þ r=pg � r ¼ np. The proof is complete.
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