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STANDARDIZED REGRESSION COEFFICIENTS AND NEWLY PROPOSED
ESTIMATORS FOR R2 IN MULTIPLY IMPUTED DATA
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Whenever statistical analyses are applied to multiply imputed datasets, specific formulas are needed
to combine the results into one overall analysis, also called combination rules. In the context of regression
analysis, combination rules for the unstandardized regression coefficients, the t-tests of the regression
coefficients, and the F-tests for testing R2 for significance have long been established. However, there is
still no general agreement on how to combine the point estimators of R2 in multiple regression applied
to multiply imputed datasets. Additionally, no combination rules for standardized regression coefficients
and their confidence intervals seem to have been developed at all. In the current article, two sets of
combination rules for the standardized regression coefficients and their confidence intervals are proposed,
and their statistical properties are discussed. Additionally, two improved point estimators of R2 in multiply
imputed data are proposed, which in their computation use the pooled standardized regression coefficients.
Simulations show that the proposed pooled standardized coefficients produce only small bias and that their
95% confidence intervals produce coverage close to the theoretical 95%. Furthermore, the simulations
show that the newly proposed pooled estimates for R2 are less biased than two earlier proposed pooled
estimates.

Key words: missing data, multiple imputation, coefficient of determination, standardized coefficient,
regression analysis.

1. Introduction

Multiple imputation (Rubin 1987) is a widely recommended procedure to deal with missing
data. The complete multiple-imputation procedure works as follows: First, for each missing value
M values are filled in, based on a stochasticmodel that accurately describes the data. This results in
M plausible complete versions of the incomplete dataset. Next, the statistical analysis of interest
is applied to each of the M imputed datasets, resulting in M different outcomes of the same
analysis. Finally, the M results are combined into one pooled statistical analysis, using specific
formulas which take into account the variance of the specific parameter estimates as a result of
the variance of the imputed values in the standard errors and p-values. These specific formulas
are henceforth denoted combination rules.

In the specific context of regression analysis, several combination rules are available for
pooling various important statistics. These combination rules involve formulas for pooling the
regression coefficients (Rubin 1987), their t-tests (Rubin 1987), the degrees of freedom of these
t-tests (Barnard and Rubin 1999), the F-test for testing R2 for significance (Van Ginkel 2019;
Rubin 1987), the F-test for testing R2-change for significance (Van Ginkel 2019; Rubin 1987),
and the degrees of freedom for these F-tests (Reiter 2007).
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Although combination rules for the above-mentioned statistics in regression have been well-
established, little has been written on how to combine an important statistic in regression, namely
R2. A few exceptions are Harel (2009) and Van Ginkel (2019). The small amount of literature on
this topic is quite remarkable as R2 is reported in virtually any study that uses linear regression
as an indication of how well the model fits the data.

Additionally, the literature that does exist on this topic does not generally agree on what is
the best way to pool R2. Harel (2009) proposed a pooled estimate for R2, which uses a Fisher z
transformation. Van Ginkel (2019) criticized this method, arguing that its theoretical justification
is incorrect. Van Ginkel proposed two alternatives, namely averaging R2 across imputed datasets,
and a transformation of the pooled F-value for testing R2 for significance into a pooled estimate
of R2. Van Ginkel showed that despite the incorrect theoretical justification, Harel’s method
still produced the best results in terms of bias, followed by averaging R2 which produced slightly
larger bias. Regarding the results of R2, this study is rather unsatisfactory as the theoretically least
soundmethod (Harel’s method) produced smallest bias, while themethodwith the best theoretical
justification (transforming the F-value) produced the largest. Additionally, Van Ginkel pointed
out a number of disadvantages of both Harel’s method and averaging R2, which could be potential
sources of bias, additional to the bias that R2 already has in itself (e.g., Shieh 2008). In short,
to date no pooled measure for R2 in multiply imputed data seems to have been proposed that is
without any theoretical objections.

Besides no general agreement on combination rules for R2 in regression, no combination
rules for the pooling of standardized regression coefficients have, to the author’s knowledge, been
developed at all. However, standardized coefficients are reported in many studies that use linear
regression. In fact, in many research articles standardized regression coefficients are reported
instead of unstandardized regression coefficients, as standardized coefficients give an indication
of the effect size of the specific predictor, independent of the scales of the variables. The fact
that standardized regression coefficients are reported regularly and are occasionally even reported
instead of unstandardized regression coefficients shows that there is clearly a need for combination
rules for standardized regression coefficients in multiply imputed datasets.

Van Ginkel et al. (2019) stated that with a lack of a better alternative, an ad hoc method
for combining standardized regression coefficients may be used, such as averaging the coeffi-
cients across the M imputed datasets. However, since standardized regression coefficients can
be expressed as a function of the unstandardized regression coefficient, the standard deviation of
the predictor, and the standard deviation of the outcome variable, there is another way to look
at how the betas across multiply imputed datasets could be pooled: calculate the average of the
regression coefficient across imputed datasets, calculate the average variance of the predictor and
of the outcome variable across imputed datasets, and insert these quantities into the formula for
the standardized regression coefficient.

Since the above-mentioned approaches are not equivalent, this firstly raises the question
which approach (if any) is the correct one, and secondly, how to define “correct” in the context
of multiple imputation. Normally, a convenient criterion for determining whether a parameter
estimate is “correct,” is whether it is unbiased when all the assumptions for the specific analysis
have been met. However, since betas are biased even in complete data (Yuan and Chan 2011),
showing analytically or bymeans of simulationswhether these approaches give unbiased estimates
is not an option here. Instead, a number of other statistical properties of betas in complete data
will have to be defined. Once defined, it must be verified which of these approaches (if any) has
all of these statistical properties. If neither has all of the properties, the next question becomes
which approach will give the least bias in results and bias closest to that of the same data without
missing values.

In the current paper, four different conditions are defined that have to be met in complete
data for a parameter estimate to be a standardized regression coefficient. It should be noted that
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these conditions are not based on statistical literature; they either follow from the properties
of standardized coefficients directly, or have been found empirically in the author’s search for
combination rules for standardized coefficients, and the mathematical proof for them was derived
afterwards. For both proposed sets of combination rules, it is discussed which of these conditions
they satisfy. Additionally, combination rules are proposed for the confidence intervals for these
standardized regression coefficients, based on the delta method (e.g., Jones and Waller 2013).

Next, these two approaches are used for the calculation of two newly proposed pooled esti-
mates of R2 in multiply imputed datasets. The two proposed pooled estimates of R2 are supposed
to overcome the problems of the approaches proposed by Harel (2009) and Van Ginkel (2019).
After discussing the proposed combination rules for standardized coefficient and R2, a simulation
study investigating the bias and coverage of the proposed combination rules will be discussed.
Finally, a conclusion will be drawn about which combination rules for both R2 and standardized
coefficients are to be preferred.

1.1. Pooled Estimates for Standardized Regression Coefficients in Multiply Imputed Data

Define b j as the unstandardized population regression coefficient of predictor x j ( j =
1, . . . , k). Furthermore, define σx j and σy as the population standard deviations of x j and out-
come variable y, respectively. Lastly, define β as a vector containing the standardized population
regression coefficients of variables x1 . . . xk , which can be computed as:

β =

⎡
⎢⎢⎣

σx1
σy

b1
...
σxk
σy

bk

⎤
⎥⎥⎦ . (1)

In complete data, a sample estimate for β, denoted β̂, can be computed as follows: Suppose
that b̂ j is a sample estimate of the unstandardized regression coefficient of predictor variable x j ,
sx j is the standard deviation of x j , and sy is the standard deviation of y. The set of standardized
regression coefficients in the sample is:

β̂ =

⎡
⎢⎢⎣

sx1
sy
b̂1
...

sxk
sy
b̂k

⎤
⎥⎥⎦ . (2)

The first proposed set of pooled estimates for standardized regression coefficients in multiply
imputed datasets is obtained by computing unbiased pooled estimates of b j , σ 2

x j
, and σ 2

y , and

substitute the estimate b j and the square roots of the estimates of σ 2
x j

and σ 2
y into Eq. 1. Because

the standardization of the b j takes place after the pooling of b j , σ 2
x j
, and σ 2

y , the resulting pooled

beta is denoted ¯̂
βPS, where the subscript PS stands for Pooling before Standardization. Define

¯̂b j = 1
M

∑M
m=1 b̂ j,m, s̃x j =

√
1
M

∑M
m=1 s

2
x j ,m , and s̃y =

√
1
M

∑M
m=1 s

2
y,m .

¯̂
βPS is computed as:

¯̂
βPS =

⎡
⎢⎢⎣

¯̂
β1,PS

...
¯̂
βk,PS

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

s̃x1
s̃y

¯̂b1
...

s̃xk
s̃y

¯̂bk

⎤
⎥⎥⎥⎦ . (3)
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The second set of pooled estimates is obtained by applying Rubin’s rules for point estimates to
standardized coefficients directly. In other words, average the β̂ j,m’s across M imputed datasets,
and do this for all j . Here, the standardization takes place before the pooling, so the resulting

coefficient is denoted ¯̂
βSP, where SP denotes Standardization before Pooling. ¯̂βSP is computed as:

¯̂
βSP =

⎡
⎢⎢⎣

¯̂
β1,SP

...
¯̂
βk,SP

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
M

M∑
m=1

sx1,m

sy,m
b̂1,m

...

1
M

M∑
m=1

sx1,m

sy,m
b̂k,m

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4)

Next, the four conditions that can be defined for standardized regression coefficients in complete
data are given. These four conditions are:

1. A standardized regression coefficient can be computed using an unbiased estimator of
b j and estimators of σx j and σy of which the squared values are unbiased estimators of
σ 2
x j

and σ 2
y , and by inserting these estimates into Eq. 1.

2. Standardized regression coefficients can also be computed by performing a regression
analysis to the standardized predictors and outcome variable. The resulting regression
coefficients are standardized regression coefficients.

3. A t-test calculated for an unstandardized regression coefficient should be insensitive to
standardization of the variables. Hence, the same t-test calculated for the corresponding
standardized regression coefficient will have the same value as of the unstandardized
regression coefficient.

4. When computed for simple regression, β̂1 has the same value as the standardized regres-
sion coefficient β̂1,y thatwould be obtained if in the analysis the predictorx1 andoutcome
variable y were switched. Both β̂1 and β̂1,y are equal to the correlation between x1 and
y.

Regarding condition 3, it is important to note that the use of the standard t-test for regression

coefficients would only be justified for standardized coefficients if the term
s2x1
s2y

were a fixed

quantity (Jones and Waller 2013, p. 437). Since this is not the case, alternative combination rules
for t-tests testing standardized coefficients are needed, based on the delta method (Jones and
Waller 2013, pp. 439–440). Such combinations rules are proposed later on. The more general
point of condition 3 is that a t-test should be insensitive to linear transformations, regardless of
its usefulness for the transformed data.

Proof of the above four conditions in complete data is provided in Appendix I. In Appendix
II, it is analytically derived which of the two sets of combination rules for the point estimates

of standardized coefficients ( ¯̂βPS and ¯̂
βSP) meet which of the four conditions. Table 1 gives a

summary of the analytical results in Appendix II.

1.2. Statistical Tests for Standardized Regression Coefficients in Multiply Imputed Data

As noted earlier, t-tests for standardized regression coefficients cannot be used for the stan-
dardized regression coefficients because the estimates of the variances of X and y are not fixed
quantities. For complete data, Jones and Waller (2013, p. 440; also, see Yuan and Chan 2011)
discuss a t-test for β̂ j using a standard error based on the delta method. Define ĉ j as the j th
diagonal element of the covariance matrix of the predictors, SX. This standard error is computed
as:
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Table 1.
Overview of which set of combination rules ( ¯̂βPS and ¯̂

βSP) satisfy which of the four conditions of standardized regression
coefficients

Condition Combination rule
¯̂
βPS

¯̂
βSP

1. β̂ j can be computed using unbiased estimators of b j , σ
2
x j , and σ 2

y . Yes No

2. β̂ j can be computed by performing regression to standardized X and y Yes Yes
3. t-test calculated for b̂ j has same value as same t-test calculated for β̂ j Yes No
4. In simple regression, β̂1, β̂1,y , and rx1y are the same. No Yes

SE
(
β̂ j

)
=

√√√√ s2x j
ĉ j s2e

(n − 3)s2y
+

b̂2j

[
s2x j

(
b̂′SXb̂

)
− s2x j

s2e − s2x jy

]

(n − 3)s4y
. (5)

For multiply imputed data, define s̃e =
√

1
M

∑M
m=1 s

2
e,m , c̃ j =

√
1
M

∑M
m=1 ĉ j,m , s̃x jy =

1
M

∑M
m=1 sx jy, and S̄X = 1

M

∑M
m=1 SX,m . Applying Rubin’s rules for standard errors, and extend-

ing the principle of Pooling before Standardization, the proposed within-imputation variance,

between-imputation variance, and total variance of ¯̂
β j,PS are:

ŪPS = s̃2x j
c̃ j s̃2e

(n − 3)s̃2y
+

¯̂b2j
[
s̃2x j

( ¯̂
b′S̄X ¯̂b

)
− s̃2x j

s̃2e − s2x jy

]

(n − 3)s̃4y
,

BPS = s̃2x j

s̃2y (M − 1)

M∑
m=1

(b̂ j,m − ¯̂b j )
2 = s̃2x j

s̃2y
Var(b̂ j,m),

TPS = ŪPS +
(
1 + M−1

)
BPS = SE2

PS.

The corresponding t-value testing ¯̂
β j,PS for significance is:

t =
¯̂
β j,PS

SEPS
,

and the (1 − α)% confidence interval is:

¯̂
β j,PS ± t1−α/2,d f SEPS,

where df is approximated using an approximation from Barnard and Rubin (1999).

Applying Rubin’s rules for standard errors to the standard errors of ¯̂
β j,SP, the within-

imputation variance, between-imputation variance, and total variance of ¯̂
β j,SP become:

ŪSP = 1

M

M∑
m=1

SE
(
β̂ j,m

)
,
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BSP = 1

(M − 1)

M∑
m=1

(β̂ j,m − ¯̂
β j )

2 = Var(β̂ j ),

TSP = ŪSP +
(
1 + M−1

)
BSP = SE2

SP.

The corresponding t-value testing ¯̂
β j,SP for significance is:

t =
¯̂
β j,SP

SESP
,

and the (1 − α)% confidence interval is:

¯̂
β j,SP ± t1−α/2,d f SESP.

Of the two above-described methods, the confidence interval and statistical test for ¯̂
β j,SP

have a better theoretical justification because the combination rules for ¯̂
β j,SP as defined above are

simply Rubin’s combination rules applied to the β̂ j,m
′s directly, without any modification. When

in complete data the sampling distribution of β̂ j is (approximately) normal with the standard error
as in Eq. 5, and in the incomplete-data case the imputation method is Bayesianly proper (Schafer
1997, p. 105) in principle, all conditions for applying Rubin’s rules (1987, Chap. 3) have been

met. In the next subsection, combination rules for R2 that use ¯̂
βPS and ¯̂

βSP are derived.

1.3. Pooled Estimates for R2 in Multiply Imputed Data

Thus far, three different point estimates for R2 formultiple regression inmultiply imputed data
have been proposed. Harel (2009) proposed a pooled estimate based on a Fisher z transformation.
This procedure works as follows: First, a Fisher z transformation is carried out to the square root of
each R2

m (m = 1, . . . , M). Next, the Fisher z transformations are averaged across the M imputed
datasets. Finally, the average Fisher z-transformed square root of R2 is transformed back using an
inverse Fisher z transformation, and squaring the result. The resulting pooled estimate is denoted
R2.

Van Ginkel (2019) criticized Harel’s approach, arguing that the use of a Fisher z transforma-
tion is based on an incorrect justification. Instead, he proposed two alternative pooled estimates
for R2: The average of the R2

m
′s across imputed datasets, denoted R̄2, and an estimate that is com-

puted from the pooled F-value for testing R2 for significance, denoted R2
F . In a simulation study,

Van Ginkel (2019) showed that R2
F was substantially lower than the R2 of the same data without

missing values and was thus not recommended. R̄2 and R2, on the other hand, were somewhat
more positively biased than the R2 of the same data without missing values. This overestimation
was somewhat larger for R̄2 than for R2.

Although both R̄2 and R2 gave substantially better estimates of R2 than R2
F , Van Ginkel

(2019) still pointed out a potential problem of both methods. When ρ2 is close to zero, both
R̄2 and R2 will be higher than R2 in case of no missing data. This phenomenon can best be
demonstrated using the bivariate case with only one predictor. When there is hardly a relationship
between x1 and y, it may happen that in some imputed datasets the correlation between x1 and
y is slightly negative and in other imputed datasets slightly positive. Since in simple regression
R2 equals the squared correlation between both variables, averaging R2

m
′s will ignore the sign
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differences in correlations across imputed dataset. Consequently, R̄2 will be higher than the square
of the average correlation across imputed datasets.R2 has the sameproblembecause it also ignores
sign differences between correlations across imputed datasets.

In the multiple-regression case, something similar may happen when in one imputed dataset
the regression coefficient of variable x j is slightly negative and in another imputed dataset slightly
positive. If the averaging takes place at the level of (a transformation of) R2 rather than at the
level of the individual regression coefficient in coming to a pooled estimate of R2, predictors
with almost zero relation with the outcome variable will give a larger contribution to the pooled
estimate of R2 than they are supposed to give.

For simple regression, the problem may be resolved by averaging the correlation across
imputed datasets, and taking the square of the average. Unfortunately, this cannot be done in
multiple regression because in multiple regression the only correlation that can be squared to
arrive at R2 is the correlation between the observed and predicted values of y, which is always
positive (in simple regression, this correlation equals the absolute value of the correlation between
x1 and y). However, we can formulate a generalization of squaring the average correlation to
multiple regression by making use of the fact that in complete data, R2 may also be expressed as:

R2 =
k∑
j=1

rx jyβ̂ j . (6)

By filling in pooled estimates for rx jy and β̂ j , we can come at a pooled estimate of R2 in multiply
imputed data, in which variables with weak relations with the outcome variable will not have
a disproportionally large contribution. Using the two sets of pooled estimates for standardized
regression coefficients that were previously defined, two pooled versions of R2 are proposed.

The first pooled estimate uses the elements in ¯̂
βPS and the pooled standard deviations s̃x j and s̃y.

As already mentioned, in complete data and simple regression the standardized coefficient and
the correlation between the predictor and the outcome are equal. Making use of this fact, pooled
estimates of the correlations between the predictors and the outcome are computed by carrying out
simple regressions to the M imputed datasets with y as the outcome variable, for each predictor
x j . For each variable, a pooled standardized simple regression coefficient is obtained using the

method of ¯̂
βPS. This estimate is denoted rx jy,PS.

As a pooled estimate for β̂ j in Eq. 6, we use
¯̂
β j,PS. The resulting pooled estimate for R2 is:

R̂2
PS =

k∑
j=1

rx jy,PS
¯̂
β j,PS.

Although it is shown in Table 1 (condition 4) that in simple regression ¯̂
β1,PS is not equal to the

average correlation between x1 and y, it was still decided to use rx jy,PS (which equals ¯̂
β1,PS in

a simple regression of x j on y) as an estimate of the correlation in R̂2
PS. The reason is that if

the average correlation across imputed datasets were used, the resulting pooled R2 would not be
equal to the square of the pooled standardized regression coefficient anymore, in case of simple
regression.

The second pooled estimate of R2 is based on ¯̂
βSP. Define r̄x jy as the average correlation

between x j and y across imputed datasets (which is, in a simple regression of x j on y, equal to
¯̂
β1,SP). Substituting r̄x jy for rx jy in Eq. 6, and ¯̂

β j,SP obtained from the multiple regression of X

on y for β̂ j , we get:
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R̂2
SP =

k∑
j=1

r̄x jy
¯̂
β j,SP.

1.4. Evaluating Advantages and Disadvantages of each Approach

An advantage of R̂2
SP over R̂2

PS is that in simple regression, R̂SP, |r̄x1y|, and | ¯̂
β1,SP|, are all

equal; just like in complete data, R, |rx jy|, and |β̂1| are equal (condition 4, Table 1). The same

is not true for R̂2
PS, of which the square root in case of simple regression will not equal |rx jy,PS|.

This also illustrates an important advantage of ¯̂
βSP over

¯̂
βPS because the elements in ¯̂

βSP are used
for calculating R̂2

SP. Thus, when in a multiply imputed dataset a simple regression is carried out,

the values of R̂2
SP, r̄x1y,

¯̂
β1,SP, and even

¯̂
β1,y,SP all relate to one another the way they are supposed

to be related.
A disadvantage of ¯̂

βSP is that it violates condition 3 (Table 1). This is an advantage of
¯̂
βPS over¯̂

βSP. However, the question is to what extent this violation of condition 3 is problematic. Given
that standardized regression coefficients are tested using a different t-test anyway, this violation
of assumption might as well simply be ignored.

Since all proposed pooled estimates of R2 and β have their disadvantages, and none of them
meet all of the necessary conditions, an important question becomes how well they perform in
terms of bias and coverage. If onemethod clearly produces a less biased estimate of the population
parameter in question and the population parameter is better covered by the confidence interval
than the other, the method producing the least bias and best coverage is the preferred one. To
answer the question about bias and coverage, all methods discussed here were investigated in a
simulation study, which is discussed next.

2. Method

2.1. Fixed Design Characteristics

The general form of the simulation model in this study was:

yi = b0 + b1x1i + b2x2i + b3x3i + b4x4i + εi (7)

(a regression model with four predictors). The values of b0 to b4 were varied and are dis-
cussed later on in the independent variables section. The means of predictors x1 to x4 were
μ = (μ1, μ2, μ3, μ4) = (2, 5, 10, 20). The covariance matrix for the predictors is:

� =

x1 x2 x3 x4⎡
⎢⎣

⎤
⎥⎦

5 0 0 0
0 5 1 0
0 1 5 0
0 0 0 10

.

Values of μ and � were based on earlier studies by Harel (2009) and Van Ginkel (2019). The
variance of the error term εi was set at σ 2

ε = 0.6. Using these means and covariances, in each
design cell, one thousand (D = 1000) replicated sets of predictors were drawn from a specific
population distribution and with a specific sample size (both to be discussed in the independent
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variables section). Additionally, for each case in the sample, an εi was drawn from N (0, σ 2
ε ). In

each replicated dataset, y was constructed using the model in Eq. 7.
Next, the complete datasets were made incomplete with a specific percentage of missingness,

and using a specific missingness mechanism. The resulting incomplete datasets were multiply
imputed using fully conditional specification (FCS; Van Buuren 2012, p. 108–116; Van Buuren
et al. 2006) using the mice package (Van Buuren and Groothuis-Oudshoorn 2011) in R (R
Development Core Team 2018). The number of imputations was fixed at M = 25.

2.2. Independent Variables

Value of ρ2 Two values of ρ2 were studied. Their values and the values of their corresponding
regression coefficients were:

ρ2 = 0 ρ2 = 0.455

b =

⎡
⎢⎢⎢⎢⎣

b0
b1
b2
b3
b4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0
0
0
0
0

⎤
⎥⎥⎥⎥⎦

b =

⎡
⎢⎢⎢⎢⎣

b0
b1
b2
b3
b4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0.2
0.1
0.1
0.2
0.1

⎤
⎥⎥⎥⎥⎦

.

The corresponding standardized regression coefficients (computed using Eq. 2) were:

ρ2 = 0 ρ2 = 0.455

β =

⎡
⎢⎢⎣

β1
β2
β3
β4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ β =

⎡
⎢⎢⎣

β1
β2
β3
β4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0.213
0.213
0.426
0.302

⎤
⎥⎥⎦ .

Sample size Two different sample sizes were studied: N = 100 and N = 500.
Population distribution To see how robust the proposed combination rules for standardized

regression coefficients and R2 were to different types of population distributions, the predictors
were simulated under a multivariate normal distribution and under a multivariate lognormal dis-
tribution with the same means and covariances. Skewness and kurtosis of predictors x1 to x4 were
(4.75, 1.43, 0.68, 0.48) and (57.60, 3.85, 0.84, 0.41), respectively. Random values from a mul-
tivariate normal distribution were generated using the mvnorm procedure in the MASS package
(Venables and Ripley 2002) in R; random values from a lognormal distribution were generated
using the mvlognormal function in the MethylCapSig package (Ayyala et al. 2016).

Within the mice package, there are two different variants of FCS, namely the regression
approach (e.g., Van Buuren 2012, p. 13; Little and Schenker 1995, p. 60) and predictive mean
matching (Van Buuren 2012, p. 68–74; Van Buuren et al. 2006; Rubin 1986). The regression
approach imputes each variable using a normal regression model with the other variables as
predictors for the missing data. When the data are multivariate normally distributed, this is the
preferred method for imputation. However, when the data are not normally distributed (such as in
case of amultivariate lognormal distribution), the regression approachmay not preserve the shapes
of the distributions of the variables. Predictive mean matching is a method that has been shown
to better preserve distributional shapes when data are not normally distributed than the regression
approach (Marshall et al. 2010a; Marshall et al. 2010b). Thus, for the current simulation study
it was decided to impute the data using the regression approach when the data were normally
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distributed, and to use predictive mean matching when the data were multivariate lognormally
distributed.

Percentage of missingness In each simulated complete dataset, missingness was simulated
with three different percentages of missing data: 12.5%, 25%, and 50%. These percentages were
based on Van Ginkel (2019).

Missingness mechanism Missingness was simulated according to two missingness mecha-
nisms, namely missing completely at random (MCAR) and missing at random (MAR; Little and
Rubin 2002, p. 10). Under MCAR, variable x1 was always observed; for the remaining variables
x2 to y, the following strategy was adopted: An N × k matrix A with uniform random numbers
ranging from 0 to 1 was generated. For a specific proportion of missingness c, the c × N × k
highest entries in matrix A were removed in matrix [x2, x3, x4, y].

UnderMAR, besidesmatrixA the followingmatrixW = x11
′
k−[min(x1)−0.01]×1N1

′
k was

computed. The c×N ×k highest entries in matrixW ∗ Awere removed in matrix [x2, x3, x3, y].
Thus, the higher the value of x1, the higher the probability of missing data on the other variables.

Set of combination rulesThe influence of two different sets combination rules on the estimates

of the standardized regression coefficients and their confidence intervals was studied, namely ¯̂
βPS

and ¯̂
βSP. For estimates of R2, the influence of four different combination rules was studied: the

two newly proposed pooled estimates, R̂2
PS and R̂2

SP, and two existing methods, namelyR2 (Harel

2009), and R̄2 (Van Ginkel 2019). MethodsR2 and R̄2 were included to serve as a benchmark for
comparing the new methods with. The development of R̂2

PS and R̂2
SP as pooled estimates of R2

can be considered successful when they produce less bias than the existing simple method that
lacks a theoretical justification (R̄2) and produce at least as little bias as (but preferably less bias
than) the existing method that works better than R̄2, but has an incorrect justification (R2).

2.3. Dependent Variables

The dependent variables in this study were 1) the biases in the sample estimates of parameters
β1 to β4, 2) the number of times β1 to β4 were covered by the confidence intervals of their
corresponding sample estimates, denoted coverage percentages, and 3) the bias in the sample
estimate of ρ2. For comparison, the same outcome measures in the original data without missing
values are reported as well.

3. Results

When visually inspecting the results of the standardized regression coefficients, it turned out
that with the exception of estimates and coverage percentages of β1, results were very similar
across standardized coefficients of the different predictors.Unlike the otherβ j estimates, estimates
for β1 had coverage percentages as low as 90% under ρ2 = 0.455 and a multivariate lognormal
distribution of the predictors, for both the imputed data and the original data without missing
values. Under a multivariate lognormal distribution, x1 was more heavily skewed to the right than
the others (skewness of above 4 versus values around 1 for the other variables). Since Yuan and
Chan (2011) point out that the coverages of the confidence intervals of standardized regression
coefficients are influenced by the shape of the multivariate distribution of X as well, and the poor
coverage of β1 was found for both the imputed data and the original data without missing values,
it was concluded that this was most probably not a problem of multiple imputation but of the delta
method-based confidence interval itself. For this reason, it was decided to ignore this finding and
focus only on the remaining three standardized regression coefficients.
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Table 2.
Bias (standard deviations between brackets) and coverage percentages of the estimated β j s, and bias in estimates of ρ2

N Missingness mechanism Q̂ ρ2 = 0 ρ2 = 0.45

B(Q̂) (SD) Coverage
percentage

B(Q̂) (SD) Coverage
percentage

100 Original β̂ j∗ .000 (.209) .943 .002 (.080) .945

MCAR ¯̂
β j,PS∗ .001 (.142) .949 −.004 (.110) .957
¯̂
β j,SP∗ .001 (.142) .948 −.005 (.110) .950

MAR ¯̂
β j,PS∗ −.001 (.119) .945 .001 (.090) .952
¯̂
β j,SP∗ −.001 (.119) .945 .001 (.090) .947

500 Original β̂ j∗ .000 (.047) .947 .001 (.034) .947

MCAR ¯̂
β j,PS∗ .000 (.058) .948 .001 (.043) .953
¯̂
β j,SP∗ .000 (.058) .948 .001 (.043) .949

MAR ¯̂
β j,PS∗ .000 (.049) .950 .001 (.036) .953
¯̂
β j,SP∗ .000 (.049) .950 .001 (.036) .950

100 Original R2 ∗ ∗ .042 (.028) .016 (.076)

MCAR R̂2
PS ∗ ∗ .065 (.048) .007 (.099)

R̂2
SP ∗ ∗ .065 (.048) .006 (.099)

R2 ∗ ∗ .087 (.052) .034 (.096)

R̄2 ∗ ∗ .092 (.052) .039 (.096)

MAR R̂2
PS ∗ ∗ .050 (.035) .006 (.084)

R̂2
SP ∗ ∗ .050 (.035) .005 (.084)

R2 ∗ ∗ .059 (.037) .025 (.082)

R̄2 ∗ ∗ .062 (.037) .030 (.083)

500 Original R2 ∗ ∗ .008 (.006) .001 (.035)

MCAR R̂2
PS ∗ ∗ .012 (.008) −.001 (.041)

R̂2
SP ∗ ∗ .012 (.008) −.001 (.041)

R2 ∗ ∗ .014 (.009) .014 (.041)

R̄2 ∗ ∗ .016 (.009) .020 (.041)

MAR R̂2
PS ∗ ∗ .009 (.006) −.003 (.037)

R̂2
SP ∗ ∗ .009 (.006) −.003 (.037)

R2 ∗ ∗ .010 (.007) .011 (.037)

R̄2 ∗ ∗ .010 (.007) .016 (.037)

For each outcome measure, results are shown for different sample sizes, missingness mechanisms, values
of ρ2, and combination rules. Estimates of the original data are denoted β̂ j and R2.

* Results in this row are aggregations across the remaining factors and predictors 2 to 4.
** Results in this row are aggregations across the remaining factors.

Because of the size of the simulation design, a selection of factors to be displayed in a results
table was made, based on effect sizes of ANOVAs.1 These effect sizes revealed that in general,

1 Without getting into too much detail, a specific factor was reported in the table of results if its effect or any of
its interaction effect with other factors, on any of the outcome measures, was large according to Cohen (1988; partial
η2 > 0.14).
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the value of ρ2, sample size, missingness mechanism, and set of combination rules were the most
influential factors. The results of the simulation study are given in Table 2 for all combinations of
the different levels of these specific factors. Results for the estimated β j s are aggregated across
predictors, because it was found that differences in bias and coverage between different predictors
were not substantial. The complete results are provided in supplemental material.

The table shows that in general, the differences between the estimates of ¯̂
βPS and ¯̂

βSP are
negligibly small and often not even visible in the third decimal. In general, the bias in the estimated

β j s is close to 0. Additionally, for both methods ¯̂
βPS and ¯̂

βSP, the coverage of the confidence
intervals is close to the theoretical 95% in all situations.

Like the results for ¯̂
βPS and ¯̂

βSP, the results for R̂
2
PS and R̂2

SP are similar across all situations
displayed in the table. However, there are clear differences between R̂2

PS and R̂2
SP on the one hand,

and R2 and R̄2 on the other hand. For the newly proposed estimates, the biases are substantially
smaller than the biases of R2 and R̄2 are.

4. Discussion

In the current paper, two procedures for pooling standardized regression coefficients ( ¯̂βPS
and ¯̂

βSP), and two new pooled estimates of R2 (R̂2
PS and R̂2

SP) in multiply imputed datasets, were
proposed and investigated. Neither of the two procedures for standardized coefficients meets all
the defined conditions for a statistic to be a standardized coefficient, as shown in Appendix II.
However, simulation results showed that bothmethods produce very similar estimates and produce
estimates that are close to the estimates of the original data and close to the corresponding
population values. With the exception of β1 under ρ2 = 0.45 and in skewed data, confidence
intervals of both methods produced coverage percentages close to 95% for all other regression
coefficients, and in all situations. Additionally, the two newly proposed pooled estimates of R2,
namely R̂2

PS and R̂2
SP, outperformed the existing estimates R2 and R̄2 in terms of bias. Both

methods may thus be better alternatives than R2 and R̄2.
Although the poor coverage of the confidence interval of β1 in some situations may seem

disappointing at first, it does not imply that the development of these combination rules for confi-
dence intervals of standardized coefficients has been unsuccessful. Yuan and Chan (2011) already
showed that even in complete data the coverage of the confidence intervals of the standardized
regression coefficients depends on the distribution of the predictors. The fact that the coverage of
β1 under ρ2 = 0.45 and in skewed data was not any worse in the multiply imputed data than in
the original data, suggests that this is a more of a problem of confidence intervals of standardized
regression coefficients in general than of the proposed combination rules.

Additionally, it is worth mentioning that variable x1 did not have any missing data. Conse-
quently, the estimates of β1 and its confidence interval may have been less affected by imputed
values and the combination rules than the estimates of the other standardized coefficients (although
not entirely unaffected as imputed values on other variables will affect the estimation of the entire
regression model, including β1). The fact that coverage of β1 was poor even though x1 did not
contain any missing data while the coverages of other coefficients was satisfactory, makes an even
stronger case for the hypothesis that the poor coverage of β1 was caused by the distribution of x1
rather than by the proposed combination rules.

The poor results found for the coverage of β1 do, however, raise the question how to obtain
a valid confidence interval for standardized coefficients in multiply imputed data, when the pre-
dictors are highly skewed. In general, when analytic confidence intervals break down, bootstrap
confidence intervals may provide a solution. Van Ginkel and Kiers (2011) proposed combination

https://doi.org/10.1007/s11336-020-09696-4 Published online by Cambridge University Press

https://doi.org/10.1007/s11336-020-09696-4


JOOST R. VAN GINKEL 197

rules for bootstrap confidence intervals of principal component loadings. Their procedure may be
generalizable to confidence intervals for standardized regression coefficients. However, whether
these combination rules would give accurate coverage when applied to standardized coefficients
is the topic of another study.

The remaining question is whether ¯̂
βPS and R̂2

PS should be preferred, or ¯̂
βSP and R̂2

SP. This
question is not easily answered. When looking at the conditions that have to be met for regression

coefficients to be standardized coefficients, ¯̂βPS meets three of the four conditions, while ¯̂
βSP meets

only two. Using this as a criterion, it would follow that ¯̂
βPS is the preferred method for pooling

standardized regression coefficients and that the corresponding R̂2
PS is the preferred method for

pooling R2.

However, when looking at the specific conditions that ¯̂
βSP does not satisfy, it may bewondered

towhat extent this is problematic. The first condition that ¯̂βSP does not satisfy is that a standardized
regression coefficient can be computed using unbiased estimators of b j , σ 2

x j and σ 2
y . This violation

is mainly a problem from a theoretical point of view. As long as it does not cause substantial

differences in simulation results between ¯̂
βSP and ¯̂

βPS, the violation of this condition has little
relevance.

The second condition that ¯̂
βSP violates is that a t-test calculated for an unstandardized regres-

sion coefficient should be insensitive to standardization of the variables. On the one hand, this

could be considered a disadvantage of ¯̂
βSP compared to ¯̂

βPS. On the other hand, the fact that

this condition is violated for ¯̂
βSP actually illustrates an important property of the specific data

transformation used for standardized regression coefficients. Although this transformation is lin-
ear, it is sample dependent because it depends on the sampling estimates s2x j

and s2y . As these
estimates get affected by the imputed values in multiply imputed data as well, it makes sense that
the standardization is slightly different for each imputed dataset.

The different standardizations across imputed datasets may cause the pooled t-tests of the
unstandardized regression coefficient to be different from the same pooled t-tests applied to
the standardized variables. However, the fact that the specific standardization of variables is
dependent on the sample, is a reason why a different t-test (Jones and Waller 2013) is used for
standardized regression coefficients in the first place. When standardized regression coefficients
are calculated for each imputed datasets in the same way as one would normally do in complete
data, and Rubin’s rules are applied to the resulting coefficients and their correct standard errors
next, this will automatically lead to the combination rules for point estimates and standard errors

as defined by combination method ¯̂
βSP. Given that with the corrected standard error (Jones and

Waller 2013) the sampling distribution of a standardized regression coefficient is (approximately)
normal and Rubin’s combination rules have been defined under the assumption of a normal
sampling distribution of the specific parameter, there seems to be no theoretical objection to using
¯̂
βSP as a method for pooling standardized regression coefficients and their confidence intervals.

The combination rules for the confidence intervals defined by method ¯̂
βPS, on the other hand,

are not a direct application of Rubin’s rules to the standardized regression coefficients of each
individual imputed dataset. Of course, this is only a problem from a theoretical point of view as

the simulation results show that confidence intervals of methods ¯̂
βPS and

¯̂
βSP cover the population

coefficients equally well.

Given that the theoretical objections to either method given so far are largely irrelevant when
both methods perform equally well in terms of bias and coverage, the question is whether there
is any reason left to prefer one method over the other. The answer to that question may lie in the

only condition that the point estimates produced by ¯̂
βPS do not satisfy. When simple regression
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is applied to a complete dataset, the estimates of β1, β1,y , and ρx1y are all equal. This is not the

case for the estimates produced by ¯̂
βPS, while it is the case for

¯̂
βSP. For interpretational purposes,

it may be important that researchers are not faced with inconsistencies among the estimates of
β1, β1,y , and ρx1y . Even when the differences are small, this could still cause some confusion on

the part of the researcher. It could therefore be argued that ¯̂
βSP and R̂2

SP are slightly preferred as

pooled estimates for standardized coefficients and percentage of explained variance over ¯̂
βPS and

R̂2
PS, respectively.

To conclude, this paper has proposed two sets of combination rules for standardized regression
coefficients and their confidence intervals, and R2 inmultiply imputed datasets. Since the proposed
methods all performwell in terms of bias and coverage, and the proposed methods for R2 produce
less bias than the earlier proposed measures of R2 in various situations, one of these sets of
combination rules may henceforth be used in future studies that use multiple regression in a

multiply imputed dataset, with a slight preference for ¯̂
βSP and R̂2

SP.
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Appendix I

Below proof will be given that in complete data the standardized coefficients meet the conditions
stated in Table 1.
Condition 1 For complete data, there is not much to prove about standardized coefficients satis-
fying Condition 1 as that condition already follows from the formula for standardized regression
coefficients itself (Eq. 2).
Condition 2 Suppose that we have a complete dataset with N cases, which consists of predictor
variable matrix:

X =
⎡
⎢⎣
1 x11 . . . x1k
...

...
...

...

1 xNk . . . xNk

⎤
⎥⎦ , (8)

and outcome variable matrix:

y =
⎡
⎢⎣
1 y1
...

...

1 yN

⎤
⎥⎦ .
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AX is a (k + 1) × (k + 1) transformation matrix that transforms X into a predictor matrix with
standardized variables. AX and A

′−1
X are defined as:

AX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . . . . 0
− x̄1

sx1

1
sx1

0 . . . 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
− x̄k

sxk
0 . . . 0 1

sxk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and A
′−1
X =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 x̄1 . . . . . . x̄k
0 sx1 0 . . . 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
0 . . . . . . 0 sxk

⎤
⎥⎥⎥⎥⎥⎥⎦

,

respectively.
Next, suppose that Ay is a 2 × 2 transformation matrix that transforms y into a standardized
outcome variable matrix. More specifically:

Ay =
[

1 0
− ȳ

sy
1
sy

]
, A

′−1
y =

[
1 ȳ
0 sy

]
.

Standardized predictors and a standardized outcome variable may be obtained by means of:

ZX = XA′
X =

⎡
⎢⎢⎣
1 x11−x̄1

sx1
. . .

x1k−x̄k
sxk

...
...

...
...

1 xN1−x̄1
sx1

. . .
xNk−x̄k

sxk

⎤
⎥⎥⎦ ,

Zy = yA′
y =

⎡
⎢⎢⎣
1 y1−ȳ

sy
...

...

1 yN−ȳ
sy

⎤
⎥⎥⎦ .

Using these standardized predictors, it can be shown that regression coefficients obtained from
a regression using ZX and Zy as predictors and an outcome variable, respectively, will provide
standardized regression coefficients, as defined in Eq. 2. First, the unstandardized regression
coefficients are computed as:

b̂ = (X′X)
−1X′y.

Equivalently, the standardized regression coefficients are computed as:

β̂ = (Z′
XZX)

−1Z′
XZy. (9)

By substitutingAXX and yAy forX and y, respectively, it follows that Eqs. 2 and 9 are equivalent:

β̂ = (AXX′XA′
X)

−1AXX′yA′
y

= A′
X

−1
(X′X)

−1A−1
X AXX′yA′

y

= A′
X

−1
(X′X)

−1X′yA′
y
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= A′
X

−1b̂A′
y

=

⎡
⎢⎢⎢⎢⎣

1 0
0

sx1
sy
b̂1

...
...

0
sxk
sy
b̂k

⎤
⎥⎥⎥⎥⎦

(10)

(ignoring the first row and column, which are only meant for the intercepts in matrices X and y).
Condition 3 Before proving condition 3 for complete data, it is once again emphasized that the
standard t-test for testing a regression coefficient is not suitable for standardized coefficients.
Having said that, in complete data a linear transformation of the data does not affect the outcome
of a t-test. Since standardizing the data is a linear transformation, the values of t-tests testing
the resulting regression coefficients (which are now standardized coefficients) will not have been
affected by this standardization. To show this, the formula for the t-test of a regression coefficient
for unstandardized regression coefficients in complete data is given first. Suppose se is the standard
deviation of the error of the regressionmodel, coefficient b̂ j is tested for significance the following
t-statistic:

t = b̂ j
se

sx j
√

(N−1)

= b̂ j

SE
, (11)

with n– k – 1 degrees of freedom. Now suppose both the predictors and outcome variable are
standardized, the (centered) values of the outcome variable are all divided by sy. Consequently,
when a regression analysis is applied to these standardized variables, the standard deviation of
the error in y becomes se,β = se

sy
. Furthermore, the standardized coefficient of variable x j is

β̂ j = sx j
sy
b̂ j (Eq. 2). Substituting these quantities into Eq. 11, and making use of the fact that

sz j = 1, we get:

t = β̂ j
se,β

sz j
√

(N−1)

=
sx j
sy
b̂ j

se
sy√

(N−1)

,

= b̂ j
se

sx j
√

(N−1)

.

Condition 4 In simple linear regression performed on complete data, the standardized coefficient
must equal the correlation between x1 and y. An implication of this is that when y is regressed
on x1, the standardized regression coefficient has the same value as the standardized regression
coefficient that is obtained when x1 is regressed on y, namely the correlation. If in complete data
we regress variable x1 on variable y, and we write β̂1 as a function of rx1y we get:

β̂1 = sx1
sy

b̂1 = sx1
sy

sy
sx1

rx1y = rx1y.

If we do the same for ¯̂
β1,y when we regress y on x, we get:

β̂1,y = sy
sx1

sx1
sy

rx1y = rx1y.
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Appendix II

Below it will be mathematically derived for both ¯̂
βPS and ¯̂

βSP whether they meet the conditions
in Table 1.
Condition 1 Assuming that the imputation model is Bayesianly proper (Schafer 1997, p. 105), it
follows that b̂1,m , s2x j ,m and s2y,m in imputed dataset m are unbiased estimates of b j , σ 2

x j
and σ 2

y ,

respectively. Consequently, since E
(∑M

m=1 b̂ j,m

)
= ∑M

m=1 E(b̂ j,m), it follows that

1

M

M∑
m=1

E
(
b̂ j,m

)
= 1

M

M∑
m=1

b j =b j .

The same can be shown for 1
M

∑M
m=1 s

2
x j ,m and 1

M

∑M
m=1 s

2
y,m . Next, taking the square roots of

the latter estimates will yield s̃x j and s̃y. Note that these estimates are not unbiased estimates
of σx j and σy as sample standard deviations are generally not unbiased estimators (Keeping
1962). However, this is also the case for sx j and sy when there are no missing data. Thus, since

s̃2x1 and s̃2y are unbiased estimates, the use of their square roots for the computation of ¯̂
βPS will

not introduce additional bias on top of the bias that a standardized regression coefficient has in

itself. To summarize, since ¯̂b1, s̃2x1 , and s̃2y are all unbiased estimates under Bayesianly proper

imputations, ¯̂
βPS satisfies condition 1.

Next, the question is whether ¯̂
βSP satisfies condition 1 as well. Since all three statistics in the term

sx j ,m
sy,m

b̂ j,m behind the summation sign (Eq. 4) depend onm, no separate unbiased pooled estimates

of b j , σ 2
x j
, and σ 2

y can be derived which, when inserted in Eq. 1, will provide the same pooled

standardized regression coefficients as in Eq. 4. In short, ¯̂
βSP does not satisfy condition 1.

Condition 2 First, it is verified whether ¯̂
βPS satisfies condition 2. Calculating s̃x j for all j , these

estimates can be used to construct a transformation matrix for standardizing the set of predictors
in imputed dataset m, denoted Xm :

ÃXm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . . . . 0
− x̄1m

s̃x1

1
s̃x1

0 . . . 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
− x̄km

s̃xk
0 . . . 0 1

s̃xk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Ã
′−1
Xm =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 x̄1m . . . . . . x̄km
0 s̃x1 0 . . . 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
0 . . . . . . 0 s̃xk

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Similarly, a transformation matrix for standardizing the outcome variable in imputed dataset m,
denoted ym , can be constructed:

Ãym =
[
1 0
− ȳm

s̃y
1
s̃y

]
, Ã

′−1
ym =

[
1 ȳm
0 s̃y

]
.
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The standardized versions of Xm and ym are computed as Z̃Xm = XÃ′
Xm

and Z̃ym = yÃ′
ym ,

respectively. Using the same steps as in Eq. 9 for complete data, it now follows that:

β̂PS,m =

⎡
⎢⎢⎢⎢⎢⎣

1 0

0
s̃x1
s̃y
b̂1,m

...
...

0
s̃xk
s̃y
b̂k,m

⎤
⎥⎥⎥⎥⎥⎦

.

When averaging the β̂PS,m
′s across the M imputed datasets, we get:

¯̂
βPS = 1

M

M∑
m=1

β̂PS,m = 1

M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M 0

0
M∑

m=1

s̃x1
s̃y
b̂1m

...
...

0
M∑

m=1

s̃xk
s̃y
b̂km

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 0

0
s̃x1
s̃y

¯̂b1m
...

...

0
s̃xk
s̃y

¯̂bkm

⎤
⎥⎥⎥⎥⎥⎦

,

which is equivalent to Eq. 3, except for the first row and column, which are omitted in Eq. 3.
The idea behind this standardization is that within each imputed dataset the variable means of
the specific imputed dataset m are used for the centering to ensure that the pooled intercept will
be 0. At the same time, the normalization is done by dividing the same estimates of the standard
deviations across imputed datasets to ensure that the resulting standardized regression coefficients
will be the same as in Eq. 3.
This type of standardizing data is similar to standardization that is used in three-way models
(Kroonenberg 2008, p. 127), where centering takes place at the level of fibers within a slice (in
multiple imputation this corresponds with the computation the mean of a variable x j within a
specific imputed dataset m), and normalization takes place at the level of the complete slice (in
multiple imputation, this corresponds with computing one standard deviation of a variable x j

across all imputed datasets). To summarize, when using a specific form of standardization and

applying Rubin’s rules for point estimates (i.e., averaging), ¯̂
βPS satisfies condition 2 as well.

As for ¯̂
βSP, the only difference with ¯̂

βPS is that in the standardization both the centering and
normalization take place at the level of imputed datasetm. The standardized regression coefficients

in ¯̂
βSP are the result of standardizing the predictors and outcome variable per imputed dataset m,

applying a regression analysis to the standardized variables for each imputed dataset, and pooling
the resulting regression coefficients using Rubin’s rules for point estimates (i.e., averaging). In

short, using the general combination rules, ¯̂
βSP satisfies condition 2 as well.

Condition 3 When t-tests are calculated for ¯̂
βPS in multiply imputed data using Rubin’s rules

(1987, Chap. 3), the question is whether they will give the same t-tests as when the unstandardized

coefficients in ¯̂b are tested for significance using the same rules. When applying Rubin’s rules to

an element ¯̂b j in
¯̂b, we get:

Q̄ = 1

M

M∑
m=1

b̂ j,m = ¯̂b j
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Ū = 1

M

M∑
m=1

s2e,m
s2x j,m

(N − 1)

B = 1

M − 1

M∑
m=1

(b̂ j,m − ¯̂b j )
2 = Var(b̂ j )

T = 1

M

M∑
m=1

s2e,m
s2x j,m

(N − 1)
+

(
1 + M−1

)
Var

(
b̂ j

)
= SE2

t =
¯̂b j

SE
.

When we do the same for an element ¯̂
β j,PS in ¯̂

βPS, we get:

Q̄ = 1

M

M∑
m=1

s̃x j

s̃y
b̂ j,m = s̃x j

s̃y
¯̂b j

Ū = 1

M

M∑
m=1

s2e,m
s̃2y

s2x j ,m

s̃2x j
(N − 1)

= s̃2x j

s̃2y

1

M

M∑
m=1

s2e,m
s2x j,m

(N − 1)

B = 1

M − 1

M∑
m=1

(
s̃x j

s̃y
b̂ j,m − s̃x j

s̃y
¯̂b j

)2

= s̃2x j

s̃2y
Var

(
b̂ j

)
,

T = s̃2x j

s̃2y

1

M

M∑
m=1

s2e,m
s2x j,m

(N − 1)
+

(
1 + M−1

) s̃2x j

s̃2y
Var

(
b̂ j

)
= s̃2x j

s̃2y
SE2

t =
s̃x j
s̃y

¯̂b j

s̃x j
s̃y

SE
=

¯̂b j

SE
.

In words, the term
s̃2x1
s̃2y

appears in both the estimate ¯̂
β j,PS and its standard error. Since it does not

depend on the imputation number m, it can be separated from the terms behind the summation

sign, so that when ¯̂
β j,PS is divided by its standard error, the terms

s̃2x j
s̃2y

in both the numerator and

denominator cancel each other out. The resulting pooled t-test will then reduce to the t-test for

unstandardized regression coefficients. The same cannot be done for ¯̂
βSP because the term

sx j ,m
s̃y,m

in Eq. 4 depends also on the imputation number. In summary, ¯̂
βPS satisfies condition 3 and ¯̂

βSP
does not.
Condition 4 To see whether this condition holds for ¯̂

βPS, we first write the pooled unstandardized

coefficient ¯̂b1 as a function of the correlations of each of the M imputed datasets:

¯̂b1 = 1

M

M∑
m=1

sy,m
sx1,m

rx1y,m .
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The standardized coefficient ¯̂
β1,PS can be written as a function of rx1y,m as follows:

¯̂
β1,PS = s̃x1

s̃y

1

M

M∑
m=1

sy,m
sx1,m

rx1y,m . (12)

If we do the same for the standardized regression coefficient of y on x1, denoted
¯̂
β1,y,PS, we get:

¯̂
β1,y,PS = s̃y

s̃x1

1

M

M∑
m=1

sx1,m
sy,m

rx1y,m,

which is not equal to ¯̂
β1,PS in Eq. 12. Thus, ¯̂

βPS does not satisfy condition 4.

In contrast, if we write ¯̂
β1,SP as a function of rx1y,m , we get:

¯̂
β1,SP = 1

M

M∑
m=1

sx1,m
sy,m

b̂1,m = 1

M

M∑
m=1

sx1,m
sy,m

sy,m
sx1,m

rx1y,m = 1

M

M∑
m=1

rx1y,m .

If we do the same for ¯̂
β1,y , we get:

¯̂
β1,y,SP = 1

M

M∑
m=1

sy,m
sx1,m

sx1,m
sy,m

rx1y,m = 1

M

M∑
m=1

rx1y,m .

In other words, in simple regression, both ¯̂
β1,SP and ¯̂

β1,y,SP will give the same value, namely

the average correlation across imputed datasets. Thus, ¯̂
βSP meets condition 4 in the sense that

regressing y on x1 and regressing x1 on y give the same pooled standardized coefficient.
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