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Abstract

Case identification is an ongoing issue for the COVID-19 epidemic, in particular for out-
patient care where physicians must decide which patients to prioritise for further testing.
This paper reports tools to classify patients based on symptom profiles based on 236 severe
acute respiratory syndrome coronavirus 2 positive cases and 564 controls, accounting for
the time course of illness using generalised multivariate logistic regression. Significant
symptoms included abdominal pain, cough, diarrhoea, fever, headache, muscle ache, runny
nose, sore throat, temperature between 37.5 and 37.9 °C and temperature above 38 °C, but
their importance varied by day of illness at assessment. With a high percentile threshold
for specificity at 0.95, the baseline model had reasonable sensitivity at 0.67. To further evaluate
accuracy of model predictions, leave-one-out cross-validation confirmed high classification
accuracy with an area under the receiver operating characteristic curve of 0.92. For the baseline
model, sensitivity decreased to 0.56. External validation datasets reported similar result. Our
study provides a tool to discern COVID-19 patients from controls using symptoms and day
from illness onset with good predictive performance. It could be considered as a framework to
complement laboratory testing in order to differentiate COVID-19 from other patients
presenting with acute symptoms in outpatient care.

Introduction

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) poses ongoing challenges for rapid case detection to ensure
timely treatment and isolation [1]. The disease can progress quickly to acute respiratory distress
in severe cases, especially among at-risk groups such as older adults [2–4]. With therapeutic
options emerging [5], recognising cases at milder stages before they clinically deteriorate, usually
after the first week of illness [6], can be lifesaving. Moreover, due to the high transmissibility of
SARS-CoV-2 in the earlier phases of illness [7], earlier identification can reduce onward trans-
mission [8, 9]. Ideally, clinicians use reverse transcription polymerase chain reaction
(RT-PCR) tests for diagnosis [10] but the caseload and associated testing costs may make this
infeasible, particularly in resource-limited regions or areas where the pandemic is widespread.

Symptom-based diagnosis is challenging as many of the commonly reported symptoms of
COVID-19 are shared by other respiratory viruses, including fever and dry cough [9, 11], and
because measures put in place to control the pandemic [12] have had the effect of substantially
reducing the transmission of other droplet-borne viruses such as influenza [13, 14]. Although
several studies have developed algorithms to differentiate COVID-19 from non-COVID-19
patients, almost all were based on static clinical measurements taken at presentation, most
commonly to tertiary care facilities [15]. However, models that account for symptoms reported
at an earlier stage, when patients may first present to outpatient departments, would be advan-
tageous in reducing the delay to treatment and isolation.

To improve case identification, we developed a tool which evaluates patients based on their
symptom profile up to 14 days post-onset using a case-control design, with 236 SARS-CoV-2
positive cases evaluated at public hospitals, and 564 controls recruited from a large primary
care clinic. We determine the clinical differentiators of cases and controls and apply the algo-
rithm to independent data on cases and controls. We show the importance of incorporating
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time from symptom onset when deriving model-based risk scores
for clinical diagnosis. There was some degradation of model
performance in further testing on independent datasets which
included cases and controls presenting across several outpatient
clinics, but the model could still reasonably differentiate
COVID-19 from other patients presenting with symptoms of
acute respiratory infection. A web-app-based tool has been
developed for easy implementation as an adjunct to laboratory
testing to differentiate COVID-19 positive cases among patients
presenting in outpatient settings.

Methods

Data for model building and independent validation

Anonymised data from controls were prospectively collected in a
large public sector primary care clinic in Singapore as part of a
quality improvement project from 4 March 2020 to 7 April
2020. We included patients of at least 16 years of age, evaluated
by a doctor to be suffering from an acute infectious respiratory
infection, and who presented with any of 10 symptoms: self-
reported feverishness, cough, runny nose or blocked nose, sore
throat, breathlessness, nausea or vomiting, diarrhoea or loose
stools, headache, muscle ache and abdominal pain. Sequential
sampling was adopted wherein the first 5–10 eligible patients in
each consultation session were recruited. Doctors completed a
data collection sheet, which included patients’ age, gender,
tympanic temperature and symptoms since the onset of illness.

Data from COVID-19 cases were obtained from patients admit-
ted to seven public sector hospitals in Singapore, to 9 April 2020.
All SARS-CoV-2 were confirmed by RT-PCR testing of respiratory
specimens as previously described [16]. Demographic data and
detailed information on symptoms, signs and laboratory investiga-
tions were collected using structured questionnaires with waiver of
consent granted by the Ministry of Health, Singapore under the
Infectious Diseases Act as part of the COVID-19 outbreak investi-
gation. We extracted data on the same fields as described above
from either the first day of presentation to hospital until they
were discharged or until 15 days from illness onset, depending
on which was earlier. For both primary care controls and
COVID-19 cases, individuals who had temperatures of 37.5 °C or
above were defined as having a fever. For COVID-19 cases follow-
ing their admission, any incomplete temperature measurements
after their fever end dates were imputed to have a temperature
<37.5 °C.

Data for independent validation came from two sources. In an
ongoing prospective study, the COVID-19 patients admitted to
the National Centre for Infectious Diseases quantified sensitivity,
while specificity was measured in classifying controls presenting
with symptoms of acute respiratory infection recruited at 34 dif-
ferent primary care clinics between 14 March and 16 June 2020.
Second, to independently assess sensitivity for cases presenting
in outpatient care, we extracted data on symptoms used by the
model through retrospective chart reviews of patients testing
positive for COVID-19 between 17 March and 22 May 2020 at
five large public sector primary care clinics which had access to
PCR-based testing.

Modelling for predictive risk using symptom characteristics

We stratified illness days into four intervals for analysis (days 1–2,
3–4, 5–7 and 8 or more) to account for the temporal evolution of

symptoms among cases and controls; day 1 was the date of symp-
tom onset.

The covariates, with interactions with illness days, were first
selected from the candidate list by fitting a generalised logistic
regression model to compare cases vs. controls. Variables were
selected with a least absolute shrinkage and selection operator
penalty; covariates with non-zero coefficients were included in
subsequent analyses. The analysis was implemented using the R
package glmnet [17]. After variable selection, it only renders
coefficient estimation at average points in the cross-validation
step, which adds difficulty in interpreting and differentiating the
role of symptom profiles. Hence a second round of unpenalised
logistic regression [18] was carried out, utilising these selected vari-
ables for case vs. control groups (Supplement 1). Covariates
included the interaction terms with illness days for symptoms
and temperature in up to three categories (<37.5 °C; 37.5–37.9 °C;
⩾38.0 °C).

We utilised observations of COVID-19 cases from the day of
admission until 14 days from symptoms onset. As incrementally
more COVID-19 cases present to care over the course of their ill-
ness, there are more observations in later dates post illness onset.
Contrariwise, the proportion of cases that can potentially present
themselves for evaluation at primary care should decrease as an
increasing proportion get diagnosed or recover. As the true distri-
bution of cases presenting to primary care on different days of ill-
ness was not available, we adopted the simplifying assumption
that each illness day would result in a linear decrease in the num-
ber of cases that can be diagnosed. Cases remaining undiagnosed
on or beyond 15 days after onset of symptoms are considered to
have recovered [19]. This was implemented by assigning weights
to cases in a logistic regression model, with details of weighting
strategy described in Supplement 2.

Performance evaluation

The performance of the model was evaluated by the area
under the curve (AUC), or the area under the receiver-operating-
characteristic (ROC) curve using leave-one-out-cross-validation
(LOOCV). The ROC curve traces sensitivity and specificity along
a sequence of cutoffs that classifies the patient group, and a high
value of AUC represents good trade-off between prediction
accuracy for discriminating cases and controls. LOOCV alleviates
issues with overfitting.

Optimising classification of COVID-19 cases and validation
on independent datasets

We proposed two strategies to determine the cutoff for
differentiating COVID-19 positive or negative patients which
prioritised high specificity (e.g. >0.95) with satisfactory sensitivity
(e.g. ∼0.7). High specificity was prioritised to limit wrongly clas-
sified controls to a level within the capacity of resources available
for testing patients. The first strategy obtains a single cutoff with a
minimum threshold for overall specificity. The minimum specifi-
city above the threshold corresponding to the best sensitivity on
the ROC using full dataset is chosen [20]. The second strategy cre-
ates multiple cutoffs across illness days with a minimum threshold
of overall specificity. A cutoff is chosen for each illness day group,
which gives an overall specificity that meets this minimum
threshold. For illness days 1–2, 3–4, 5–7 and 8 or more, an
optimal combination of cut-offs was determined using a stochas-
tic search algorithm, which is detailed in Supplement 3.
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Classification results are presented using observations from all
cases, and separately for 223 observations from 26 cases severe
enough to need admission to an intensive care ward, using the
full dataset and on LOOCV. To further assess potential degrad-
ation of performance when applying model to other outpatient
settings, we also tested all classification strategies on the inde-
pendent validation datasets.

Results

The model building dataset included single-day observations from
564 patients assessed at primary care clinics, and 236 COVID-19
patients admitted to the hospital who contributed to a median of
6 and a total of 1466 observations on symptoms and body tempera-
ture. The independent validation datasets included 237 COVID-19
patients and 346 controls from the prospective study, and 100
COVID-19 patients from retrospective chart reviews. Aggregate
patient and observation level data are profiled in Table 1.

Clinical characteristics of patients used in model building

SARS-CoV-2 positive cases differed from controls in the propor-
tions presenting with different symptoms over time (Fig. 1).
Overall, although only a slightly larger proportion of controls ever
had cough than the cases (79% vs. 70%), a runny nose, sore throat

and headachewere substantiallymore common in the controls than
in SARS-CoV-2 positive patients (68% vs. 25%, 71% vs. 44%, 19%
vs. 9%). A larger proportion of COVID-19 positive patients ever
had fever, diarrhoea, nausea and/or vomiting, tympanic tempera-
tures higher than 37.5 °C and temperatures higher than 38 °C
(80% vs. 24%, 24% vs. 5%, 7% vs. 3%, 28% vs. 9%, 17% vs. 3%).
Notably, among COVID-19 patients, the proportions who ever
had shortness of breath (SOB, 9%, 14%, 17%, 25%), diarrhoea
(10%, 15%, 20%, 26%) and nausea and/or vomiting (4%, 4%, 7%,
11%) increased over the course of the illness, whereas those with
temperatures ⩾37.5 °C (62%, 47%, 29%, 22%) and ⩾38 °C (41%,
27%, 18%, 13%) became fewer.

Modelling symptom cutoffs

Figure 2 shows adjusted odds ratios (ORs) for symptoms and ill-
ness days (1–2, 3–4, 5–7, 8+). Temperature readings between 37.5
and 37.9 °C significantly increased the OR by 10.89 (95% confi-
dence interval (CI): 3.91–30.35) on illness days 1–2, as well as
on illness days 3–4 (OR: 2.55, 95% CI: 1.19–5.48) but not there-
after, and likewise for temperature readings ⩾38.0 °C (days 1–2:
OR: 9.04, 95% CI: 3.78–21.60; days 3–4: OR: 3.02, 95% CI:
1.21–7.53). Ever feeling feverish was consistently associated with
SARS-CoV-2 (on days 1–2: OR: 7.47, 95% CI: 4.06–13.81; on
days 3–4: OR: 8.85, 95% CI: 5.10–15.33; on days 5–7: OR:

Table 1. Demographic and clinical profiles of case and control patients in 2020 used for model building and for model validation

Data for model building Independent dataset for validation

Controls from
primary care
(N = 564)

COVID-19
cases (N = 236)

COVID-19
observations
(N = 1466)

COVID-19 in
prospective

study (N = 237)

Controls in
prospective

study (N = 346)

COVID-19 in
retrospective chart
review (N = 100)

Age (years)

16 to 29 233 (41%) 29 (12%) 202 (14%) 91 (38%) 113 (33%) 26 (26%)

30 to 39 79 (14%) 54 (23%) 425 (29%) 83 (35%) 148 (43%) 39 (39%)

40 to 49 93 (16%) 31 (13%) 223 (15%) 39 (16%) 50 (14%) 21 (21%)

50 to 59 77 (14%) 51 (22%) 317 (22%) 19 (8%) 21 (6%) 9 (9%)

60 and above 82 (15%) 72 (31%) 299 (20%) 5 (2%) 14 (4%) 5 (5%)

Gender

Male 213 (38%) 97 (41%) 682 (47%) 188 (79%) 137 (40%) 11 (11%)

Female 351 (62%) 139 (59%) 784 (53%) 49 (21%) 209 (60%) 89 (89%)

Day of presentation/observation

1 to 2 225 (40%) 61 (26%) 81 (6%) 4 (1.7%) 153 (44%) 52 (52%)

3 to 4 207 (37%) 59 (25%) 168 (11%) 38 (16%) 121 (35%) 28 (28%)

5 to 7 41 (7%) 60 (25%) 325 (22%) 93 (39%) 41 (12%) 16 (16%)

8 or later 91 (16%) 56 (24%) 892 (61%) 102 (43%) 31 (9%) 4 (4%)

Consultation/admission date

23rd to 31st Jan – 13 (5%) 55 (4%) – – 0 (0%)

1st to 29th Feb – 59 (25%) 563 (38%) – – 0 (0%)

1st to 31st Mar 483 (86%) 47 (20%) 529 (37%) 72 (30%) – 6 (6%)

1st to 30th Apr 79 (14%) – – 139 (59%) 92 (27%) 89 (89%)

1st to 31st May – – – 23 (10%) 235 (68%) 5 (5%)

1st to 16th Jun – – – 3 (1%) 19 (5%) –

Epidemiology and Infection 3

https://doi.org/10.1017/S0950268821000704 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268821000704


10.38, 95% CI: 5.23–20.58, on day 8 or more: OR: 7.12, 95% CI:
4.05–12.55). Diarrhoea had a significantly increased OR on all ill-
ness days except for days 1–2 (on days 3–4: OR: 3.38, 95% CI:
1.24–9.22; on days 5–7: OR: 5.03, 95% CI: 1.59–15.89; on day 8
or more: OR: 10.58, 95% CI: 3.43–32.67).

Runny nosewas consistently associated with a decreased OR (on
days 1–2: OR: 0.13, 95% CI: 0.07–0.22; on days 3–4: OR: 0.21, 95%
CI: 0.13–0.35; on days 5–7: OR: 0.28, 95%CI: 0.14–0.53; on day 8 or
more: OR: 0.12, 95% CI: 0.07–0.21). Abdominal pain in the early
stage of illness on days 1–2 was associated with a lower OR (OR:
0.07, 95% CI: 0.01–0.44), as was muscle ache on days 1–2 (OR:
0.21, 95% CI: 0.08–0.53), but not thereafter. Having a headache
associated with a lower OR when presenting on days 3–4 (OR:
0.23, 95% CI: 0.11–0.49), and on days 5–7 (OR: 0.40, 95% CI:
0.17–0.96). Having a sore throat was also negatively associated
with COVID-19 on days 1–2 (OR: 0.14, 95% CI: 0.08–0.25), on
days 3–4 (OR: 0.28, 95% CI: 0.18–0.44).

Predictive performance

The model had an AUC of 0.89 on LOOCV (Fig. 3a). Compared
to full dataset, ROC stratified by four groups of illness days is pre-
sented in Figure 3b. We present the accuracy of model prediction
in Figure 4a by calibrating the proportion of true cases out of all

samples predicted within certain predictive scores window, in
other words precision or positive predicted value (PPV) defined
across windows of predictive scores. With predicted scores
above 0.95, 97.9% of the sample are COVID-19 cases (Fig. 4a).
For predicted scores below 0.2, the proportion of COVID-19 posi-
tive cases was 3.9%. Reasonable separation of the predicted scores
was observed between cases and control (Fig. 4b). The calculated
sample sensitivity, specificity, PPV and negative predicted value
(NPV) across a grid of cutoffs between 0 and 1 are in Figure 4c.

Classification cutoffs

Table 2 shows results from implementing various cutoffs with tar-
get specificities of 90–95% using the two proposed strategies (see
‘Methods’ section). The model performed better for severe cases
with an overall detection rate of 88% for strategy 1 (with a single
threshold for all illness days), and 83% for strategy 2 for a target
specificity ⩾95%. With a relaxed 90% minimum specificity
threshold, the detection rates for severe cases were 98% for strat-
egy 1, and 96% for strategy 2.

Validation using the prospective study caused little change in
sensitivity for strategies 1 and 2 at target specificities >90%, but
a decrease in sensitivity of 10% and 5%, respectively, for a target
specificity of >95%. There was also a decrease in observed

Fig. 1. Distribution of 12 symptoms across illness days separated by control and COVID-19 groups. Blue bars indicate the proportion of control group out of all
controls having a symptom, and orange bars show the corresponding proportions of COVID-19 patients.
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Fig. 2. Estimated coefficients for adjusted ORs and their CIs for symptoms at illness days 1–2, 3–4, 5–7 and 8+. The effects of selected variables from LASSO are
plotted as line segments to indicate CIs and dots as mean estimates; those did not enter the second round of modelling are marked as dots without line segments
as place holders for aesthetic and contrast. CIs coloured in black indicate significant effects, and in grey indicate non-significant effects. Having nausea or vomiting,
is omitted from the figure because all of its interaction effects with illness days are excluded by GLM LASSO. The scale of parameter effect on the OR is exponen-
tially spaced for visualisation.

Fig. 3. (a) ROC curve with LOOCV. AUC = 0.89. Using full data, AUC = 0.92. With a minimum specification threshold at 0.95 and 0.9, the cutoff points are found at 0.92
and 0.74 respectively as indicated by the orange and red stars on the curve. (b) ROC curve stratified by illness days 1–2, 3–4, 5–7 and 8+.
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specificity of between 6% and 9% across all four combinations.
Using the data from retrospective chart review, we observed
11% drop in sensitivity for both strategy 1 at 95% specificity
(from 67% to 56%) and strategy 2 at 90% specificity (from 79%
to 68%), with a slight increase of 2% for strategy 2 at 95% speci-
ficity and decrease of 8% for strategy 1 at 90% specificity.

Discussion

Summary

Our findings demonstrate the importance of utilising the symp-
tom profile of COVID-19 across time. Notably, some symptoms
were highly differentiated in the proportions observed for cases
vs. controls, conditional on the time of reporting relative to the
day of illness onset (Fig. 1). These differences informed a model
that is reasonably discriminatory and can be set to give reasonably
high specificity while retaining good sensitivity. In resource scarce
regions, utilising critical symptom cutoffs as a function of time
from symptom onset can facilitate rapid diagnosis where test kits
are constrained. Model performance was superior for severe as
compared to mild cases in need of more pro-active management.

The list of symptoms used is reasonably parsimonious, and can
be implemented to rapidly classify and prioritise testing, isolation
and hospitalisation of potential cases through a simple tool to risk
stratify patients based on reported symptoms and their dayof illness
onset, as we have done (URL).

Comparison with existing literature

We observed COVID-19 symptoms largely in line with previous
studies. Cough, breathlessness and fever were present in the clin-
ical presentation of a large proportion [11, 15, 21], but we must
point out how cough has little discriminatory value against
other primary care consults and breathlessness is a late symptom
associated with more severe illness (15.1% in non-severe cases and
37.6% in severe cases). Our study concurs that feverishness
(88.7%) is a dominant symptom, but diarrhoea was less common
in some other studies (<8.9% in [19–21]). Some studies, particu-
larly of hospitalised patients, do suggest the majority would have
feverishness (>66.9% in [19–21, 35]), and higher proportions with
gastrointestinal complaints (∼26–37% in [24, 36–38]). Differences
between studies may be attributable to the inclusion of patients at
varying stages of their illness: studies based on hospitalised cases
would include more patients at later disease stages, with higher
proportions having breathlessness and diarrhoea. In our study,
diarrhoea was not common in early illness but increased in pro-
portion and discriminatory value as the disease progressed. Early
presentation of fever and cough is supported in studies [22, 23],
SOB is presented later at 7 days [22] or 5 days [23], which concur
our findings of symptoms through the course of illness (Fig. 1).
On the contrary, although the importance of feverishness as a
symptom has been emphasised, we caution that in a large propor-
tion of COVID-19 cases, the proportion with temperatures ⩾37.5
°C is only slightly over 60% on days 1–2, then drops below 30%
from day 5 onwards. It decreases in discriminatory value in
later illness, and at a stage when a patient may still be infectious.

Strengths and limitations

Compared to existing predictive models for diagnosing COVID-19
patients from symptomatic patients as reviewed in [15], the absence
of laboratory and radiographic investigations and even medical
measurements besides body temperature (e.g. blood pressure, oxy-
gen saturation or clinical signs in [3, 9, 23–28]),makes our diagnosis
tool easier to implement in outpatient practice. Notably, none of the
existing diagnostic models in our review of published research
account for how illness days modifies the predictive value of differ-
ent symptoms, although some accounted for the effect of illness day
in the variable selection process (e.g. by restricting the analyses to
earlier infections [3, 24, 25, 29]). We intentionally omitted demo-
graphic and epidemiologic variables as predictors, given the pro-
pensity of such associations to change over the course of an
epidemic. In spite of this, our model has one of the highest areas
under the curve, even on LOOCV, among those that do not rely
on laboratory investigations. Its performance was still respectable
when validated in the prospective study described.

This study has several limitations. First, the distinction
between dry and productive cough, and anosmia as a symptom
were not captured in this study, particularly because the latter
was reported only after our study was started. These have been
reported as clinically relevant characteristics for SARS-CoV-2
positive individuals [2, 30, 31], and their inclusion may have
improved the performance of the algorithm further. However,

Fig. 4. Comparisons of predicted risk to observations: (a) shows bars with the height
indicating the percentage of cases in respective intervals of predicted risk, (b) plots
the predicted risk grouped by case or control and (c) traces the calculated in-sample
sensitivity, specificity, PPV and NPV for a grid of predicted risks as cutoffs spaced at
0.001 from 0 to 1.
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we would point out that even without including these, our algo-
rithm performs well. For instance, a multivariate analysis includ-
ing anosmia [32] had a lower AUC of 0.76 compared to ours (0.89
on LOOCV). Second, our controls were not tested for COVID-19.
They were collected from outpatient clinics and were diagnosed as
other diseases than COVID-19. However, there was no wide-
spread transmission of COVID-19 at the time of data collection
for our controls. For instance, testing of 774 residual sera samples
collected in early April 2020, around the time we ceased collecting
data controls, identified no seropositive individuals (unpublished
data [33]). Cumulative number of laboratory confirmed cases was
926 as of 31 March 2020 and concurrent studies showed success-
ful containment strategies in Singapore at the time [34]. The risk
of misclassifying a case as a control was negligible. Third, we rec-
ognise that the ‘controls’ against which our COVID-19 patients
must be distinguished may differ due to variations in the epidemi-
ology of background illnesses by place and time. This limitation
can potentially be overcome by collecting, then repeating the ana-
lyses using, updated data from locally relevant ‘control patients’,
collected through the simple data collection format we used.

Conclusions and relevance

Our study provides a tool to discern COVID-19 patients from
controls using symptoms and day from illness onset with good
predictive performance. It could be considered as a framework

to complement laboratory testing in order to differentiate
COVID-19 from other patients presenting with acute symptoms
in outpatient care.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268821000704.
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