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Abstract

We prove that an odd triperfect number has at least twelve distinct prime factors.

1980 Mathematics subject classification (Amer. Math. Soc): 11 A 20.

1. Introduction

A positive integer N is called a triperfect number if a(N) = 3N, where o(N) is
the sum of the positive divisors of N. Although six even triperfect numbers are
known, no odd triperfect (OT) numbers have been found.

McDaniel [8] and Cohen [4] proved that if N is OT, then u(N) > 9, where
u(N) is the number of distinct prime factors of N. The author [6] proved that
u(N) > 10 and [7] that a(N) > 11; Bugulov [3] also proved that «(JV) > 11.
Beck and Najar [2] showed that N > 1050, and Alexander [1] proved that
N > 1060. Cohen and Hagis [5] showed that the largest prime factor of JV is at
least 100129, that the second largest prime factor is at least 1009, that u(N)> 11,
and that N > 1070.

In this paper we prove the

THEOREM. IfN is an odd triperfect number, then u(N) > 12.

REMARK. This theorem was independently proved by H. Reidlinger [10].
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2. Preliminaries

In the rest of this paper we let

N=YIP?'
J - l

where the /»,'s are odd primes, p^< • • • < pn, where the a / s are positive

integers, and where N is OT. We call pfl a component of N and write pf'\\N and

a, = Vpi{N).

DEFINITION. S(N) = o(N)/N. We note that S is multiplicative, and extend
the definition is include the case a, = oo by setting

The next lemma is stated in [5].

LEMMA 1. pl0 > 1009 andpn > 100129.

LEMMA 2. px = 3, p2 = 5, p3 = 7, />4 = 11, p5 < 17, p6 < 23, />7 < 31

Ps < 79.

PROOF. Since

S(3QO50O70O130O17a>19oo23oo310O10090O10012900) < 3,

we have p1 = 3, p2~5> Pj = 7 and />4 = 11. The proofs of other parts are
similar.

The proof of the next lemma is easy.

LEMMA 3. (1) The a/s are even for all i.

(2) If q is a prime and q\o( p°') for some i, then q = 3 or q = Pj for some).

The next three lemmas are stated in [9].

LEMMA 4. Suppose p and q are odd primes and d is the order of p mod q. Then
(Vq(a + 1) ifd=l,

Vq(o{pa)) = I Vq(a + 1) + Vq(p
d - 1) ifd> landd\a + 1,

V 0 otherwise.

LEMMA 5. If p is an odd prime, if d > 1, and if d \ a + 1, then a(pa) has a
prime factor q such that the order of p is d mod q and q = 1 (d).
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COROLLARY 5. If db \ a + 1, then o{pa) has b distinct prime factors congruent to

LEMMA 6. Suppose p is a prime, q is a Fermat prime (3,5,17 etc.), a is even and
qb\a{pa). Then p = 1 (q), and o(p") has b distinct prime factors congruent to 1

LEMMA 7. N has at most seven prime factors congruent to 1 (3).

P R O O F . S ( 3 0 O 5 0 O 7 O O 1 1 0 O 1 3 0 O 1 9 O O 3 1 0 O 3 7 O O 4 3 0 O 1 0 0 9 0 O 1 0 0 1 2 9 0 0 ) < 3.

COROLLARY 7. Ifpa\\N, then 37 + a(pa).

PROOF. Suppose 3 7 | a (^ a ) . Then by Lemma 6, p = 1 (3) and o(pa) has seven
more primes congruent to 1 (3), so we get a contradiction by Lemmas 3 and 7.

The proofs of the next two lemmas are similar.

LEMMA 8. N has at most five prime factors equivalent to 1 (5).

COROLLARY 8. Ifp"\\N, then 55 + o(pa).

LEMMA 9. N has at most three prime factors equivalent to 1 (17).

COROLLARY 9.1. Ifpa\\N, then 173 + o{pa).

COROLLARY 9.2.178 + N.

PROOF. If 178|iV, then by Corollary 9.1, 17 or 172|a(pf') for four distinct /,
and pi = 1 (17) by Lemma 6, which contradicts Lemma 9.

LEMMA 10. / / 13" > (p\0 - l ) ^ - 1) and if 13a+2b\o(p°™p°»), then N has
at least b distinct prime factors congruent to 1 (13).

PROOF. Let pa = pp and 131 o(pa), where / = 10 or 11. If d is the order of p
mod 13, then, by Lemma 4, d = 1 or d > 1, and d \ a + 1, in which case d — 3
because a is even and d 112. Suppose 13* + aw + 1 and 13* + au + 1. Then by
the same lemma

a + 2b < Vl3(o{p%p%)) = V13{o(p%)) + V13(o{p%))

< Vl3{a10 + 1) + Vl3{p\0 - 1) + Vu(an + 1) + V{p3
n - l )

<2b + a,
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which is a contradiction. Hence 13*|a + 1, and, by Corollary 5, a(pa) has b
distinct prime factors = 1 (13).

3. The case 17 + N

In this section we assume that 11 \ N and get a contradiction.
The proof of the next lemma is easy.

LEMMA 11. / / 17 + N, thenpx = 3, p2 = 5, p3 = 7, p4 = 11, p5 = 13, p6 < 23,

p7 < 29, />8 < 43 a/w//>9 < 167.

LEMMA 12. / / 17 + N, ifpa\\N, and if 43 < p < 167, r^e/j 5 + a(pa).

PROOF. Suppose that 51 o(pa). Then by Lemma 6, p = 1 (5) and 51 a + 1, and
so p = 61, 71,101,131 or 151, and a(/>4) | a(pa). Since

a(614) = 5 • 131 • 21491,

a(714) = 5 • 11 • 211 • 2221,

a(1014) = 5 • 31 • 491 • 1381,

a(l314) = 5 • 61 • 973001,

a(1514) = 5 • 104670301,

we have p * 61, 71,101 or 131 by Lemmas 1 and 11.
Suppose p = 151. Then it is easy to show that pg = 29, p9 = 151, pl0 < 4243

and pn = 104670301. Since

a(52) = 31,

a(54) = 11 - 7 1 ,

a(56) = 19531,

we have 57|iV. Furthermore, 52 + a(l l a") , 52 + a(151a') and 5 + a(104670301a»),
for otherwise N would have a prime factor q > 100000 and q # 104670301. Then
561 °(/7io0)' contradicting Corollary 8. Hence p * 151.

LEMMA 13. / / 17 \ N, ifpa\\N, and if p = 11, 31 or 41, then 52 + a(pa).

PROOF. Suppose 521 a(pa). Then by Lemma 4, 521 a + 1, and so a(p24) \ a(pa).
Since

a ( l l 2 4 ) = 52 • 3221 • 24151 • Mlt

a(3124) = 52 • 101 • 4951 • 17351 • M2,

a(412 4) = 52 • 16651 • 579281 • M3,
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where the A/,'s have no prime factors less than 100000, and where 579281 + M3,
we get a contradiction by Lemmas 1 and 11.

LEMMA 14. / / 17 + N, then 53 + o$\9
i=1pp).

PROOF. By Lemmas 11, 12 and 13, we have 54 + o($Vi=lp°'). Suppose
531oCTl;'.!/>?•)• Then by the same lemmas, 5\o(p?>) where p, = 11, 31, and 41.
Then 3221 • 17351 • 579281 \N because

a ( l l 4 ) = 5 • 3221,

a(314) = 5 • 11 • 17351,

a(414) = 5 • 579281,

which contradicts Lemma 11.

LEMMA 15. / / 17 + N, and if 521 a(n;*_i/>,"'), then 5 + a(pa^pa^).

PROOF. By Lemmas 11, 12 and 13, 5\a(pa) and 5\a(qb), where pa\\N, qh\\N,
and p,q= 11, 31 or 41. Then, as in the proof of Lemma 14, pw = 3221 or
17351, and pu = 579281. Since

a(32214) = 5 • 11 • Mx,

a(173514) = 5 • 11 • M2,

a(5792814) = 5 • 2131 • M3,

where the Af,.'s have no prime factors less than 100000, and where 579281 + A/,-,
we have 5 + a{pa^pa^) by Lemma 11.

COROLLARY 15. / / 17 + N, and if 54\N, then 52 i o<J\9
l=lpf).

LEMMA 16. / / 17 + N, then 510 + N.

PROOF. Suppose that 510|iV. Then by Corollary 15, 52 + a(Tlf=1pf0, and so
591 a(p^p^). Hence 551 a(p^) or 551 a(p^), contradicting Corollary 8.

LEMMA 17. / / 17 + N, then 56 + N.

PROOF. Suppose that 5S\\N. Then 8291N because 8291 a(58), which contradicts
Lemmas 1 and 11. Suppose 56\\N. Since a(56) = 19531, it follows that pl0 =
19531; moreover, 5 + a(pa^) because 191 jo(195314), and because p9 < 167 by
Lemma 11. By Corollary 15, 52 + a(TI}° IP^X contradicting CoroUary 8. Lemma
17 now follows from Lemma 16.
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D E F I N I T I O N . Suppose that p is a prime. Define

a(p) = m i n i m u m { c | c is even and pc+1 > 1 0 1 1 } ,

'a,. if a, <a ( /> , . ) ,

'at \iai<a(pi),
C:== { -t ^ /- \oo if a,. >a(/>,.).

LEMMA 18. LetM = n j i^ f ' . Then 0 < Iog3 - logS(Af) < 11 • 10

PROOF. Suppose that p"\\N and that a ^ a(p). Then

0 < log S(/>")-log S(/;"<*>)

"11

- 1) = log(l + l/{pa^ + 1 - 1))

< \/(pa(p)+l - 1) < 10"11.

Hence

0 < Iog3 - logS(M) = \ogS(N) - \ogS{M)

< E

LEMMA 19. / / 17 + iV, thenpw < 3547.

PROOF. Suppose that p10 > 3547. Then

E log£(/>,"•) < log3

and 9

f') + logS(35470O10012900) > log 3.

Using a computer (Burroughs 6800 at East Carolina University), we searched for
an M = Il^ipf' which satisfied Lemmas 3 (pt < 71 and a, < a{pt)) 11, 17, and
also

logS(A0<log3
m logS(M) + 9 • 10"u + logS(35470O10012900) > log3.
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The results were
(1)32452714111O131O198238318596,
(2) 3454714112131O198238318716,
(3) 3454714112131O198238318712,
(4) 345472111O131O198238298716.
In (1), 32 + a(7fl3), 3 + a(13a'), 3 + a(19a')> 3 + a(31"8) because 371 a(78),

611 <T(132), 1271 a(192), and 3311 a(312). Hence, 3231 o{pa^pa£). Then 3121 o(/>?«>)
or 3121 o(^j ' 1) , contradicting Corollary 7.

In (2) and (3), a(34) = I I 2 and a(54) = 11 • 71, so that 113|JV, which is a
contradiction.

In (4), 14591 < p10 < 17053, and pn < 15613471 because

S(3454721100130019<:0230029007100170770010012900) < 3,

S(345472111O131O198238298716145632) > 3,
ind

S(345472ll0O1300190O230o290O710O145910O15613483co) < 3.

If 10 < as < 38, then a(13"5) has a prime factor q < 100129, and q * pt for
1 < / < 10, or it has two prime factors greater than 17053. Hence a5 > 40. For
1 < / ^ 9 and i ¥= 8, the order of />, mod 13 is even, so that 13 + o(pf<) by
Lemmas 3 and 4. Also 13 + a(29"8) because the order of 29 mod 13 is 3, and
because 671 a(292). Hence 13"51 a(p^p^). Since a5 > 40, and since

{Pio ~ 1)(P\I ~ 1) < (170533 - 1)(156134713 - 1) < 1331,

N would have four prime factors congruent to 1 (13) by Lemma 10, and this is a
contradiction because pt =£ 1 (13) for 1 < / < 9.

LEMMA 20. / / 17 + N, then N is not OT.

PROOF. By Lemma 19, p10 < 3547. Using the computer, we searched for an
M = Il)° xP,*' which satisfied Lemmas 1, 3 (/», < 71 and a, < «(/»<)), 11,17, and
also

logS(M) < Iog3

logS(M) + 10 • 10"11 + logS(100129°°) > log3.

There were forty-eight such M 's; however, in every case there were primes q and
r such that q < r, such that no primes occurred between q and r, and such that

10

n
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(In eight cases it was necessary to consider higher values for the £>,'s.) Hence N
cannot be OT.

4. The case 171N

In this section we assume that 171N.

LEMMA 21.176 + N.

PROOF. By Corollary 9.2, 178 + N. Suppose that 176||JV. Since a(176) =
25646167, it follows that 256461671 iV. By Lemmas 2,6,9, and by Corollary 9.1,
1721 o(pf') for i = 9,10,11 because 103 is the smallest prime congruent to 1 (17).
Then we get a contradiction by Lemma 2 because 1123 • q • /-|a(2564167288),
where q and r are distinct primes exceeding 100000 and different from 25646167.

LEMMA 22. / / 174||Ar, thenpg < 61, p9 > 103, p10 = 88741 and 56 + N.

PROOF. Since a(174) = 88741, it follows that pw (or pg) = 88741. If 1721 a(pa)
for some pa\\N, then, by Lemma 6, N has three prime factors congruent to 1
(17); otherwise, \l\a{p") for four distinct components pa, which contradicts
Lemmas 6 and 9. Since 103 is the smallest prime congruent to 1 (17), we have
103 < p9 = pl0 = pu = 1 (17). Then ps < 61 because

S(3oo5°o7QOlloo130O17oo190O670O103°o88741oo10012900) < 3

Since 4451 • 5441 • 4655894788110(887414), 3221|a(ll4) and 3221 # 1 (17),
since 173511(314) and 17351 # 1 (17), since 579281 |a(414) and 579281 # 1 (17),
and since 214911 a(614) and 21491 & 1 (17), it follows that we have 5 + a(TI8

=1/>,a)
and 5 + a(pa^). Suppose that S1 0!^. Then 55\a(p^) or 55\o(pa

l\>), contradict-
ing Corollary 8. Since 829|a(58) and 821 # 1 (17), and since 19531 |a(56) and
19531 # 1 (17), we have 58 tt N and 56 # N.

LEMMA 23. / / 172||Af, thenp% < 43, pg = 307 and 54 + N.

PROOF. Since o(172) = 307, we have p9 = 307 by Lemmas 1 and 2. Then
p% < 43 because

.5(3oo50O70Oll0O13oo17219oo47oo307oo10090O1001291X1) < 3.

As in the proof of Lemma 13, we have 52 + o(pa) if p"\\N and if p = 11, 31 or
41. Then 54 + a(n'_i/>,a') because 5 + a(p^) by Lemma 6. Suppose that 510\N.
Then 57\o(p°$p°f), and so 5 4 | a (^^° ) or 54|a(/>^')- Hence N has five prime
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factors = 1 (5), which is a contradiction because

5(3oo50O70Oll0O130O172310O410O3070O1021oo10015100) < 3.

Since 829|a(58) , we have 58 tt N by Lemma 1. Suppose that 56\\N. Then
p10 = 19531 because a(56) = 19531. As in the proof of Lemma 13, we have
52ia(pa) if pa\\N and if p = 41. Since 3221 |a( l l 4 ) , 17351 |'a(314) and
1911 a(195314), we have 52 + a(Tl}° ^ f ' ) . Then 551 o(pft), contradicting Corollary
8. Since 711 a(54), we have 54 tt N.

LEMMA 24. / / 171N, then N is not OT.

PROOF. AS in the case 17 + TV, we searched for an M = Y\^_1pf' which satisfied
Lemmas 2, 3 (/>, < 71 and a, < a{ />,)), 22, 23, and also

l o g S ( M ) < Iog3
aU logS(M) + 9 • 1 0 " n + 5(35470O10012900) > log3,

but there were none. (If 174\\N, we let p9 = 88741, so that possibly p10 < p9 <
pn.) Hence pl0 < 3547. Then we searched for an M = YV^L^pf1 which satisfied
Lemmas 1,2,3 (/>, < 71 and a, < a(/>,-)), 22, 23, and also

logS(M) < Iog3

logS(M) + 10 • 10~ u + log(100129°°) > Iog3,

but there were none. Hence N is not OT.
Lemmas 20 and 24 prove our theorem. The computer time for Lemmas 19, 20

and 24 was less than 10 minutes.
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