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Abstract

We prove that an odd triperfect number has at least twelve distinct prime factors.

1980 Mathematics subject classification (Amer. Math. Soc.): 11 A 20.

1. Introduction

A positive integer N is called a triperfect number if o(N) = 3N, where a(N) is
the sum of the positive divisors of N. Although six even triperfect numbers are
known, no odd triperfect (OT) numbers have been found.

McDaniel [§] and Cohen [4] proved that if N is OT, then w(N) > 9, where
w(N) is the number of distinct prime factors of N. The author [6] proved that
w(N) > 10 and [7] that w(N) > 11; Bugulov [3] also proved that w(N) > 11.
Beck and Najar [2] showed that N > 10%°, and Alexander [1] proved that
N > 10%, Cohen and Hagis [5] showed that the largest prime factor of N is at
least 100129, that the second largest prime factor is at least 1009, that w(N) > 11,
and that N > 107°,

In this paper we prove the

THEOREM. If N is an odd triperfect number, then w(N) = 12.
ReMARK. This theorem was independently proved by H. Reidlinger [10].
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2. Preliminaries

In the rest of this paper we let

11
N=Tlp
i=1
where the p;’s are odd primes, p, < --- < p,,, where the a,’s are positive
integers, and where N is OT. We call p{ a component of N and write p#||N and

a,=V,(N).

DEFINITION. S(N) = o(N)/N. We note that S is multiplicative, and extend
the definition is include the case a, = oo by setting

S(p?) =p/(pi~1).
The next lemma is stated in [5].

LemMma 1. p,, = 1009 and p,; > 100129.

LEMMA 2. p, =3, p, =35, p3=17, p,=11, ps <17, ps <23, p, <31 and
Pg < 79.

PROOF. Since
§(3%5%7%°13%17°19*°23°31°1009°100129%) < 3,
we have p, =3, p,=5, p;=7 and p, = 11. The proofs of other parts are

similar.
The proof of the next lemma is easy.

LeMMA 3. (1) The a,’s are even for all i.
(2) If q is a prime and q|o( p{*) for some i, then q = 3 or q = p; for some .

The next three lemmas are stated in [9].

1

LemMA 4. Suppose p and q are odd primes and d is the order of p mod q. Then

V(a+1) ifd=1,
Vi(o(p?) = (V(a+1)+V,(p?~1) ifd>1andd|a+1,
0 otherwise.

LEMMA 5. If p is an odd prime, if d > 1, and if d|a + 1, then o(p®) has a
prime factor q such that the order of pisd mod qand q = 1 (d).
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COROLLARY 5. If d®|a + 1, then o( p®) has b distinct prime factors congruent to
1(d).

LEMMA 6. Suppose p is a prime, q is a Fermat prime (3,5,17 etc.), a is even and
q%1o(p®). Then p =1 (q), and o( p®) has b distinct prime factors congruent to 1

(9)-
LEMMA 7. N has at most seven prime factors congruent to 1 (3).
PROOF. S(3*°5%7*°11°13%19%°31°37°43*°1009°100129*) < 3.
COROLLARY 7. If p¢||N, then 37 + o( p°).
PrROOF. Suppose 3" |o( p?). Then by Lemma 6, p = 1 (3) and o( p®) has seven
more primes congruent to 1 (3), so we get a contradiction by Lemmas 3 and 7.
The proofs of the next two lemmas are similar.
LeMMA 8. N has at most five prime factors equivalent to 1 (5).
COROLLARY 8. If p°||N, then 5° + o( p°).
LEMMA 9. N has at most three prime factors equivalent to 1 (17).
COROLLARY 9.1. If p°||N, then17° t o( p®).

COROLLARY 9.2, 178 + N.

PROOF. If 178| N, then by Corollary 9.1, 17 or 17%|e( p#) for four distinct i,
and p; = 1 (17) by Lemma 6, which contradicts Lemma 9.

LemMa 10. If 13% > (ply — 1)(p3, — 1) and if 13“+2b|o(p‘1’(1)°p‘1'i‘), then N has
at least b distinct prime factors congruent to 1 (13).

PROOF. Let p® = pf and 13| o( p®), where i = 10 or 11. If 4 is the order of p
mod 13, then, by Lemma 4, d =1 or d > 1, and d|a + 1, in which case 4 = 3
because a is even and d|12. Suppose 13° + a;;, + 1 and 13% + q,; + 1. Then by
the same lemma

a +2b < Vi3(o( pipp)) = Vis(o(pip)) + Vis(o( p21))
< V(g + 1)+ V13(Pio - 1) + Vis(ay +1) + V(P%l - 1)
<2b+a,
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which is a contradiction. Hence 13?|a + 1, and, by Corollary 5, o(p®) has b
distinct prime factors = 1 (13).

3.Thecase17 t+ N

In this section we assume that 17 + N and get a contradiction.
The proof of the next lemma is easy.

LEMMA 11. If 17 ¢ N, thenp, = 3, p, =5, p3; =17, ps = 11, ps = 13, p, < 23,
P7 <29, pg <43 and p, < 167.

LEMMA 12. If 17 + N, if p°||N, and if 43 < p < 167, then 5 + o( p*).

PROOF. Suppose that 5|o( p?). Then by Lemma 6, p = 1 (5) and 5|a + 1, and
so p = 61, 71, 101, 131 or 151, and o( p*) |s( p?). Since

o(61%) = 5-131 - 21491,
o(71*) =511 - 211 - 2221,
0(101%) = 5 - 31 - 491 - 1381,
0(131%) = 5 - 61 - 973001,
o(151%) = 5 - 104670301,

we have p # 61, 71, 101 or 131 by Lemmas 1 and 11.

Suppose p = 151. Then it is easy to show that pg = 29, p, = 151, p,, < 4243
and p,, = 104670301. Since

o(5?) = 31,
6(5%) =11- 71,
6(5%) = 19531,
we have 57| N. Furthermore, 5% t 6(11%), 52 t 6(151%°) and 5 + ¢(104670301),

for otherwise N would have a prime factor ¢ > 100000 and g # 104670301. Then
5] 6( p2v), contradicting Corollary 8. Hence p # 151.

LEMMA 13. If 17 + N, if p°||N, and if p = 11, 31 or 41, then 5% + o( p%).

PROOF. Suppose 52| 6( p®). Then by Lemma 4, 5?|a + 1, and so o( p**){o( p?).
Since

o(11%#) = 52. 3221 - 24151 - M,,
0(31%%) = 52-101 - 4951 - 17351 - M,,
o(41%*) = 52 . 16651 - 579281 - M,,
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where the M,’s have no prime factors less than 100000, and where 579281 t+ M,,
we get a contradiction by Lemmas 1 and 11.

LEMMA 14. If 17 + N, then 5% + oI5, p®

1

PrOOF. By Lemmas 11, 12 and 13, we have 5%+ o(IT°_,p%). Suppose
5%|e(I12_, p?). Then by the same lemmas, 5|o( p#) where p, = 11, 31, and 41.
Then 3221 - 17351 - 579281| N because

o(114) = 5 - 3221,
o(31%) = 5 - 11 - 17351,
o(41%) = 5 - 579281,

which contradicts Lemma 11.
LEMMA 15. If 17 + N, and if 5*|o(T1}_, p), then 5 t o(piopin).

PrROOF. By Lemmas 11, 12 and 13, 5|a( p®) and 5{0(g?%), where p9||N, q°||N,
and p,q = 11, 31 or 41. Then, as in the proof of Lemma 14, p,, = 3221 or
17351, and p,; = 579281. Since

0(3221*) =5-11- M|,
0(17351*) =5-11 - M,,
0(579281%) = 5 - 2131 - M,,

where the M,’s have no prime factors less than 100000, and where 579281 + M,,
we have 5 + o( p{ip}') by Lemma 11.

COROLLARY 15. If 17 + N, and if 5*| N, then 5% + a(I1}_, p?)

LEMMA 16. If 17 t N, then 5'° + N.

PROOF. Suppose that 51°| N. Then by Corollary 15, 5% + o(T1?_, p%), and so
5% la( pipii). Hence 57| o(piy)or 5° lo( pi}), contradicting Corollary 8.

LEMMA 17. If 17 + N, then 5% t N.

PROOF. Suppose that 58||N. Then 829| N because 829|0(5%), which contradicts
Lemmas 1 and 11. Suppose 5¢||N. Since o(5%) = 19531, it follows that p,, =
19531; moreover, 5 t o( pjic) because 191}6(19531%), and because p, < 167 by
Lemma 11. By Corollary 15, 52 + o(I1}2, py), contradicting Corollary 8. Lemma
17 now follows from Lemma 16.
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DEFINITION. Suppose that p is a prime. Define

a( p) = minimum{ c|c is even and p°*! > 10"},

b — a; if a; < a(p;),

o a(p;) ifa;>a(p),
_fa; ifa; < a( p,),
“Tle if a;>a(p,).

LEMMA 18. Let M =TT1'L, p%. Then 0 < log3 — log S(M) < 11 - 10711,

PROOF. Suppose that p?||N and that a > a( p). Then
0 < log S( p®) — log S(p°®)
<logp/(p — 1) —log(p®»*! = 1) /p*»(p — 1)
= logpa(p)+1/(pa(p)+1 _ 1) = log(l + 1/( Pa(p)+1 _ 1))
<1/(p*P+1 - 1) <1071
Hence

0 <log3 —logS(M) =logS(N) — logS(M)

1
< Y (logS(p2) — logS(pt)) < 11 -1071,
i=1

LEMMA 19. If 17 + N, then p,, < 3547.

PROOF. Suppose that p,, > 3547. Then

9
> logS(pf) < log3
i=1

and 5
Y log S(p®) + log S(3547°100129%) > log3.
i=1

Using a computer (Burroughs 6800 at East Carolina University), we searched for
an M = [1?_, p? which satisfied Lemmas 3 (p, < 71 and g, < a(p,)) 11, 17, and
also :

log S(M) < log3

and
log S(M) + 9 - 107! + log S(3547*100129%) > log 3.
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The results were

(1) 3245271411101319198238318596,

(2) 3454714112131919823831871¢,

(3) 345471411%131°198238318712,

(4) 34547211101310198238293718,

In (1), 32+0(7%), 3+a(13%), 3 +0(19%), 3 + 6(31%) because 37]|0(7%),
61]0(132), 127 6(192), and 331|0(312). Hence, 32 |o( phop?s). Then 32| o( p%s)
or 3| a( p§1), contradicting Corollary 7.

In (2) and (3), 6(3*) =112 and o6(5%) = 11 - 71, so that 113| N, which is a
contradiction.

In (4), 14591 < p,, < 17053, and p,; < 15613471 because

S(34547211°13*19°23°29°71°17077*100129°) < 3,
S(345477111°1319198238298716145632) > 3,
S(34547%11°13*19°23°29°71°14591°15613483%) < 3.

If 10 < a5 < 38, then ¢(13“) has a prime factor ¢ < 100129, and ¢ # p; for
1 < i < 10, or it has two prime factors greater than 17053. Hence as > 40. For
1<i<9 and i+ 8, the order of p, mod13 is even, so that 13 + o( p/) by

Lemmas 3 and 4. Also 13 + 6(29%) because the order of 29 mod13 is 3, and
because 67 | 6(292). Hence 134 | o( Pyep). Since as > 40, and since

(Pl — 1)(p} — 1) < (17053 — 1)(15613471° — 1) < 13%,

ind

N would have four prime factors congruent to 1 (13) by Lemma 10, and this is a
contradiction because p; # 1 (13)for1 < i < 9.

LemMA 20. If 17 + N, then N is not OT.

ProoF. By Lemma 19, p,, < 3547. Using the computer, we searched for an
M =TT11%, p% which satisfied Lemmas 1, 3 (p; < 71 and a; < a(p,)), 11, 17, and
also

log S(M) < log3

and
logS(M) + 10 - 107 + log $(100129%) > log 3.

There were forty-eight such M’s; however, in every case there were primes g and
r such that ¢ < r, such that no primes occurred between g and r, and such that

10
S(gpf")s(qz) > 3,
S(;IPIlpf")S(r”) < 3.
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(In eight cases it was necessary to consider higher values for the b,’s.) Hence N
cannot be OT.

4. The case 17| N

In this section we assume that 17| N.
LEMMA 21.17% ¢ N.

Proof. By Corollary 9.2, 178 + N. Suppose that 17%|N. Since ¢(17%) =
25646167, it follows that 25646167 | N. By Lemmas 2, 6,9, and by Corollary 9.1,
17%|o( p%) for i = 9, 10, 11 because 103 is the smallest prime congruent to 1 (17).
Then we get a contradiction by Lemma 2 because 1123 - ¢ - r|a(25641672%%),
where ¢ and r are distinct primes exceeding 100000 and different from 25646167.

LEMMA 22. If 17%||N, then py < 61, py > 103, p;, = 88741 and 5° + N.

PROOF. Since ¢(174) = 88741, it follows that p,, (or py) = 88741. If 172 |o( p%)
for some p?||N, then, by Lemma 6, N has three prime factors congruent to 1
(17); otherwise, 17|o( p?) for four distinct components p?, which contradicts
Lemmas 6 and 9. Since 103 is the smallest prime congruent to 1 (17), we have
103 < pg = pyg = p1; = 1 (17). Then pg < 61 because

S(3°5%7°11*13*17*19°67°103*°88741°100129*) < 3.

Since 4451 - 5441 - 46558947881|0(88741%), 3221|0(11%) and 3221 # 1 (17),
since 17351|(31%) and 17351 # 1 (17), since 579281|06(41*) and 579281 # 1 (17),
and since 21491 |0(61%) and 21491 # 1 (17), it follows that we have 5 + o(T1_, p&)
and 5 + o( p%v). Suppose that 5'°| N. Then 5°|o( ps°) or 5°|o( p¢1), contradict-
ing Corollary 8. Since 829|a(5%) and 821 # 1 (17), and since 19531|0(5%) and
19531 # 1 (17), we have 5% # N and 5° # N.

LEMMA 23. If 172||N, then pg < 43, pg = 307 and 5% + N.

PRrOOF. Since ¢(17%) = 307, we have py = 307 by Lemmas 1 and 2. Then
Ps < 43 because
- §(3%°5°7*11°13*17219%°47*°307*°1009°100129>) < 3.
As in the proof of Lemma 13, we have 52 t o( p®) if p?||N and if p = 11, 31 or

41. Then 5% + o(T17_, p) because 5 t 6( pg°) by Lemma 6. Suppose that 51| N.

Then 57| o( pSpen), and so 54| a( pé) or 54|o( pé). Hence N has five prime
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factors = 1 (5), which is a contradiction because
S(3*5%°7%°11°13%17231°41°307*1021°100151°) < 3.

Since 829|a(5%), we have 5% # N by Lemma 1. Suppose that 5°||N. Then

P10 = 19531 because o(5°) = 19531. As in the proof of Lemma 13, we have

524 0(p%) if p°|N and if p =4l Since 3221|o(11%), 17351[0(31%) and

191|6(19531%), we have 5% + a(IT1!2, p&). Then 5°| a( p§}), contradicting Corollary

8. Since 71| a(5*), we have 5% & N.

LeMMa 24. If 17| N, then N is not OT.

PROOF. As in the case 17 + N, we searched for an M = [17_, pb which satisfied
Lemmas 2, 3 (p; < 71 and a; < a( p,)), 22, 23, and also

logS(M) < log3

and u
logS(M) + 9107 + §(3547*100129%) > log 3,

but there were none. (If 174|{N, we let p, = 88741, so that possibly p;, < py <
p11-) Hence p,, < 3547. Then we searched for an M =19, p2 which satisfied

Lemmas 1,2,3 (p; < 71 and q, < a( p;)), 22, 23, and also
log S(M) < log3

and 1
logS(M) + 10 - 107! + 1og(100129%) > log 3,

but there were none. Hence N is not OT.
Lemmas 20 and 24 prove our theorem. The computer time for Lemmas 19, 20
and 24 was less than 10 minutes.
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