J. Austral. Math. Soc. (Series A) 42 (1987), 173-182

ODD TRIPERFECT NUMBERS ARE DIVISIBLE BY TWELVE DISTINCT PRIME FACTORS

MASAO KISHORE

(Received 9 April 1985; revised 27 February 1986)

Communicated by J. H. Loxton

Abstract

We prove that an odd triperfect number has at least twelve distinct prime factors.

1980 Mathematics subject classification (Amer. Math. Soc.): 11 A 20.

1. Introduction

A positive integer N is called a *triperfect number* if $\sigma(N) = 3N$, where $\sigma(N)$ is the sum of the positive divisors of N. Although six even triperfect numbers are known, no odd triperfect (OT) numbers have been found.

McDaniel [8] and Cohen [4] proved that if N is OT, then $\omega(N) \ge 9$, where $\omega(N)$ is the number of distinct prime factors of N. The author [6] proved that $\omega(N) \ge 10$ and [7] that $\omega(N) \ge 11$; Bugulov [3] also proved that $\omega(N) \ge 11$. Beck and Najar [2] showed that $N > 10^{50}$, and Alexander [1] proved that $N > 10^{60}$. Cohen and Hagis [5] showed that the largest prime factor of N is at least 100129, that the second largest prime factor is at least 1009, that $\omega(N) \ge 11$, and that $N > 10^{70}$.

In this paper we prove the

THEOREM. If N is an odd triperfect number, then $\omega(N) \ge 12$.

REMARK. This theorem was independently proved by H. Reidlinger [10].

^{© 1987} Australian Mathematical Society 0263-6115/87 \$A2.00 + 0.00

2. Preliminaries

In the rest of this paper we let

$$N = \prod_{i=1}^{11} p_i^{a_i}$$

where the p_i 's are odd primes, $p_1 < \cdots < p_{11}$, where the a_i 's are positive integers, and where N is OT. We call $p_i^{a_i}$ a component of N and write $p_i^{a_i} ||N|$ and $a_i = V_{p_i}(N)$.

DEFINITION. $S(N) = \sigma(N)/N$. We note that S is multiplicative, and extend the definition is include the case $a_i = \infty$ by setting

$$S(p_i^{\infty}) = p_i / (p_i - 1).$$

The next lemma is stated in [5].

LEMMA 1. $p_{10} \ge 1009$ and $p_{11} \ge 100129$.

LEMMA 2. $p_1 = 3$, $p_2 = 5$, $p_3 = 7$, $p_4 = 11$, $p_5 \le 17$, $p_6 \le 23$, $p_7 \le 31$ and $p_8 \le 79$.

PROOF. Since

$$S(3^{\infty}5^{\infty}7^{\infty}13^{\infty}17^{\infty}19^{\infty}23^{\infty}31^{\infty}1009^{\infty}100129^{\infty}) < 3,$$

we have $p_1 = 3$, $p_2 = 5$, $p_3 = 7$ and $p_4 = 11$. The proofs of other parts are similar.

The proof of the next lemma is easy.

LEMMA 3. (1) The a_i 's are even for all *i*. (2) If *q* is a prime and $q \mid \sigma(p_i^{a_i})$ for some *i*, then q = 3 or $q = p_i$ for some *j*.

The next three lemmas are stated in [9].

LEMMA 4. Suppose p and q are odd primes and d is the order of $p \mod q$. Then

$$V_q(\sigma(p^a)) = \begin{cases} V_q(a+1) & \text{if } d = 1, \\ V_q(a+1) + V_q(p^d-1) & \text{if } d > 1 \text{ and } d \mid a+1, \\ 0 & \text{otherwise.} \end{cases}$$

LEMMA 5. If p is an odd prime, if d > 1, and if d | a + 1, then $\sigma(p^a)$ has a prime factor q such that the order of p is $d \mod q$ and $q \equiv 1$ (d).

COROLLARY 5. If $d^b | a + 1$, then $\sigma(p^a)$ has b distinct prime factors congruent to 1(d).

LEMMA 6. Suppose p is a prime, q is a Fermat prime (3, 5, 17 etc.), a is even and $q^b | \sigma(p^a)$. Then $p \equiv 1$ (q), and $\sigma(p^a)$ has b distinct prime factors congruent to 1 (q).

LEMMA 7. N has at most seven prime factors congruent to 1 (3).

PROOF. $S(3^{\infty}5^{\infty}7^{\infty}11^{\infty}13^{\infty}19^{\infty}31^{\infty}37^{\infty}43^{\infty}1009^{\infty}100129^{\infty}) < 3$.

COROLLARY 7. If $p^a || N$, then $3^7 + \sigma(p^a)$.

PROOF. Suppose $3^7 | \sigma(p^a)$. Then by Lemma 6, $p \equiv 1$ (3) and $\sigma(p^a)$ has seven more primes congruent to 1 (3), so we get a contradiction by Lemmas 3 and 7.

The proofs of the next two lemmas are similar.

LEMMA 8. N has at most five prime factors equivalent to 1 (5).

COROLLARY 8. If $p^a || N$, then $5^5 + \sigma(p^a)$.

LEMMA 9. N has at most three prime factors equivalent to 1 (17).

COROLLARY 9.1. If $p^a || N$, then $17^3 + \sigma(p^a)$.

COROLLARY 9.2. $17^8 + N$.

PROOF. If $17^8 | N$, then by Corollary 9.1, 17 or $17^2 | \sigma(p_i^{a_i})$ for four distinct *i*, and $p_i \equiv 1$ (17) by Lemma 6, which contradicts Lemma 9.

LEMMA 10. If $13^a > (p_{10}^3 - 1)(p_{11}^3 - 1)$ and if $13^{a+2b} | \sigma(p_{10}^{a_{10}}p_{11}^{a_{11}})$, then N has at least b distinct prime factors congruent to 1 (13).

PROOF. Let $p^a = p_i^{a_i}$ and $13 | \sigma(p^a)$, where i = 10 or 11. If d is the order of p mod 13, then, by Lemma 4, d = 1 or d > 1, and d | a + 1, in which case d = 3 because a is even and d | 12. Suppose $13^b + a_{10} + 1$ and $13^b + a_{11} + 1$. Then by the same lemma

$$\begin{aligned} a + 2b &\leq V_{13} \Big(\sigma \Big(p_{10}^{a_{10}} p_{11}^{a_{11}} \Big) \Big) = V_{13} \Big(\sigma \Big(p_{10}^{a_{10}} \Big) \Big) + V_{13} \Big(\sigma \Big(p_{11}^{a_{11}} \Big) \Big) \\ &\leq V_{13} \big(a_{10} + 1 \big) + V_{13} \big(p_{10}^3 - 1 \big) + V_{13} \big(a_{11} + 1 \big) + V \big(p_{11}^3 - 1 \big) \\ &< 2b + a, \end{aligned}$$

which is a contradiction. Hence $13^{b}|a+1$, and, by Corollary 5, $\sigma(p^{a})$ has b distinct prime factors $\equiv 1$ (13).

3. The case 17 + N

In this section we assume that 17 + N and get a contradiction. The proof of the next lemma is easy.

LEMMA 11. If 17 + N, then $p_1 = 3$, $p_2 = 5$, $p_3 = 7$, $p_4 = 11$, $p_5 = 13$, $p_6 \le 23$, $p_7 \le 29$, $p_8 \le 43$ and $p_9 \le 167$.

LEMMA 12. If 17 + N, if $p^a || N$, and if $43 \le p \le 167$, then $5 + \sigma(p^a)$.

PROOF. Suppose that $5|\sigma(p^a)$. Then by Lemma 6, $p \equiv 1$ (5) and 5|a + 1, and so p = 61, 71, 101, 131 or 151, and $\sigma(p^4)|\sigma(p^a)$. Since

$$\sigma(61^4) = 5 \cdot 131 \cdot 21491,$$

$$\sigma(71^4) = 5 \cdot 11 \cdot 211 \cdot 2221,$$

$$\sigma(101^4) = 5 \cdot 31 \cdot 491 \cdot 1381,$$

$$\sigma(131^4) = 5 \cdot 61 \cdot 973001,$$

$$\sigma(151^4) = 5 \cdot 104670301,$$

we have $p \neq 61, 71, 101$ or 131 by Lemmas 1 and 11.

Suppose p = 151. Then it is easy to show that $p_8 = 29$, $p_9 = 151$, $p_{10} \le 4243$ and $p_{11} = 104670301$. Since

$$\sigma(5^2) = 31,$$

 $\sigma(5^4) = 11 \cdot 71,$
 $\sigma(5^6) = 19531,$

we have $5^7 | N$. Furthermore, $5^2 + \sigma(11^{a_4})$, $5^2 + \sigma(151^{a_9})$ and $5 + \sigma(104670301^{a_{11}})$, for otherwise N would have a prime factor q > 100000 and $q \neq 104670301$. Then $5^6 | \sigma(p_{10}^{a_{10}})$, contradicting Corollary 8. Hence $p \neq 151$.

LEMMA 13. If 17 + N, if $p^a || N$, and if p = 11, 31 or 41, then $5^2 + \sigma(p^a)$.

PROOF. Suppose $5^2 | \sigma(p^a)$. Then by Lemma 4, $5^2 | a + 1$, and so $\sigma(p^{24}) | \sigma(p^a)$. Since

 $\sigma(11^{24}) = 5^2 \cdot 3221 \cdot 24151 \cdot M_1,$ $\sigma(31^{24}) = 5^2 \cdot 101 \cdot 4951 \cdot 17351 \cdot M_2,$ $\sigma(41^{24}) = 5^2 \cdot 16651 \cdot 579281 \cdot M_3,$ LEMMA 14. If 17 + N, then $5^3 + \sigma(\prod_{i=1}^9 p_i^{a_i})$.

PROOF. By Lemmas 11, 12 and 13, we have $5^4 + \sigma(\prod_{i=1}^9 p_i^{a_i})$. Suppose $5^3 | \sigma(\prod_{i=1}^9 p_i^{a_i})$. Then by the same lemmas, $5 | \sigma(p_i^{a_i})$ where $p_i = 11$, 31, and 41. Then $3221 \cdot 17351 \cdot 579281 | N$ because

$$\sigma(11^4) = 5 \cdot 3221,$$

$$\sigma(31^4) = 5 \cdot 11 \cdot 17351,$$

$$\sigma(41^4) = 5 \cdot 579281,$$

which contradicts Lemma 11.

LEMMA 15. If 17 + N, and if $5^2 | \sigma(\prod_{i=1}^9 p_i^{a_i})$, then $5 + \sigma(p_{10}^{a_{10}} p_{11}^{a_{11}})$.

PROOF. By Lemmas 11, 12 and 13, $5|\sigma(p^a)$ and $5|\sigma(q^b)$, where $p^a||N, q^b||N$, and p, q = 11, 31 or 41. Then, as in the proof of Lemma 14, $p_{10} = 3221$ or 17351, and $p_{11} = 579281$. Since

$$\sigma(3221^4) = 5 \cdot 11 \cdot M_1,$$

$$\sigma(17351^4) = 5 \cdot 11 \cdot M_2,$$

$$\sigma(579281^4) = 5 \cdot 2131 \cdot M_3,$$

where the M_i 's have no prime factors less than 100000, and where $579281 + M_i$, we have $5 + \sigma(p_{10}^{a_{10}}p_{11}^{a_{11}})$ by Lemma 11.

COROLLARY 15. If 17 + N, and if $5^4 | N$, then $5^2 + \sigma(\prod_{i=1}^9 p_i^a)$.

LEMMA 16. If 17 + N, then $5^{10} + N$.

PROOF. Suppose that $5^{10}|N$. Then by Corollary 15, $5^2 + \sigma(\prod_{i=1}^9 p_i^{a_i})$, and so $5^9|\sigma(p_{10}^{a_{10}}p_{11}^{a_1})$. Hence $5^5|\sigma(p_{10}^{a_{10}})$ or $5^5|\sigma(p_{11}^{a_{11}})$, contradicting Corollary 8.

LEMMA 17. If 17 + N, then $5^6 + N$.

PROOF. Suppose that $5^8 || N$. Then 829 | N because $829 | \sigma(5^8)$, which contradicts Lemmas 1 and 11. Suppose $5^6 || N$. Since $\sigma(5^6) = 19531$, it follows that $p_{10} =$ 19531; moreover, $5 + \sigma(p_{10}^{a_{10}})$ because $191 | \sigma(19531^4)$, and because $p_9 \le 167$ by Lemma 11. By Corollary 15, $5^2 + \sigma(\prod_{i=1}^{10} p_{11}^{a_{11}})$, contradicting Corollary 8. Lemma 17 now follows from Lemma 16. DEFINITION. Suppose that p is a prime. Define

$$a(p) = \min \{c \mid c \text{ is even and } p^{c+1} \ge 10^{11}\},\$$

$$b_i = \begin{cases} a_i & \text{if } a_i < a(p_i),\\ a(p_i) & \text{if } a_i \ge a(p_i), \end{cases}$$

$$c_i = \begin{cases} a_i & \text{if } a_i < a(p_i),\\ \infty & \text{if } a_i \ge a(p_i). \end{cases}$$

LEMMA 18. Let $M = \prod_{i=1}^{11} p_i^{b_i}$. Then $0 \le \log 3 - \log S(M) \le 11 \cdot 10^{-11}$.

PROOF. Suppose that $p^a || N$ and that $a \ge a(p)$. Then

$$\begin{aligned} 0 &\leq \log S(p^{a}) - \log S(p^{a(p)}) \\ &< \log p/(p-1) - \log(p^{a(p)+1}-1)/p^{a(p)}(p-1) \\ &= \log p^{a(p)+1}/(p^{a(p)+1}-1) = \log(1+1/(p^{a(p)+1}-1)) \\ &< 1/(p^{a(p)+1}-1) < 10^{-11}. \end{aligned}$$

Hence

$$0 \le \log 3 - \log S(M) = \log S(N) - \log S(M)$$
$$\le \sum_{i=1}^{11} \left(\log S(p_i^{a_i}) - \log S(p_i^{b_i}) \right) < 11 \cdot 10^{-11}.$$

LEMMA 19. If 17 + N, then $p_{10} < 3547$.

PROOF. Suppose that $p_{10} \ge 3547$. Then

and

$$\sum_{i=1}^{9} \log S(p_i^{a_i}) < \log 3$$

$$\sum_{i=1}^{9} \log S(p_i^{a_i}) + \log S(3547^{\infty}100129^{\infty}) \ge \log 3.$$

Using a computer (Burroughs 6800 at East Carolina University), we searched for an $M = \prod_{i=1}^{9} p_i^{b_i}$ which satisfied Lemmas 3 ($p_i \leq 71$ and $a_i < a(p_i)$) 11, 17, and also

and
$$\frac{\log S(M) < \log 3}{\log S(M) + 9 \cdot 10^{-11} + \log S(3547^{\infty}100129^{\infty}) \ge \log 3}.$$

The results were

 $(1) 3^{24} 5^2 7^{14} 11^{10} 13^{10} 19^8 23^8 31^8 59^6,$

(2) $3^4 5^4 7^{14} 11^2 13^{10} 19^8 23^8 31^8 71^6$,

(3) 3⁴5⁴7¹⁴11²13¹⁰19⁸23⁸31⁸71²,

 $(4) 3^4 5^4 7^2 11^{10} 13^{10} 19^8 23^8 29^8 71^6.$

In (1), $3^2 + \sigma(7^{a_3})$, $3 + \sigma(13^{a_5})$, $3 + \sigma(19^{a_6})$, $3 + \sigma(31^{a_8})$ because $37 | \sigma(7^8)$, $61 | \sigma(13^2)$, $127 | \sigma(19^2)$, and $331 | \sigma(31^2)$. Hence, $3^{23} | \sigma(p_{10}^{a_{10}}p_{11}^{a_{11}})$. Then $3^{12} | \sigma(p_{10}^{a_{10}})$ or $3^{12} | \sigma(p_{11}^{a_{11}})$, contradicting Corollary 7.

In (2) and (3), $\sigma(3^4) = 11^2$ and $\sigma(5^4) = 11 \cdot 71$, so that $11^3 | N$, which is a contradiction.

In (4), $14591 \le p_{10} \le 17053$, and $p_{11} \le 15613471$ because

$$S(3^{4}5^{4}7^{2}11^{\infty}13^{\infty}19^{\infty}23^{\infty}29^{\infty}71^{\infty}17077^{\infty}100129^{\infty}) < 3,$$

$$S(3^{4}5^{4}7^{2}11^{10}13^{10}19^{8}23^{8}29^{8}71^{6}14563^{2}) > 3,$$

$$S(3^{4}5^{4}7^{2}11^{\infty}13^{\infty}19^{\infty}23^{\infty}29^{\infty}71^{\infty}14591^{\infty}15613483^{\infty}) < 3$$

ınd

If $10 \le a_5 \le 38$, then $\sigma(13^{a_5})$ has a prime factor q < 100129, and $q \ne p_i$ for $1 \le i \le 10$, or it has two prime factors greater than 17053. Hence $a_5 \ge 40$. For $1 \le i \le 9$ and $i \ne 8$, the order of $p_i \mod 13$ is even, so that $13 + \sigma(p_i^{a_i})$ by Lemmas 3 and 4. Also $13 + \sigma(29^{a_8})$ because the order of 29 mod 13 is 3, and because $67 | \sigma(29^2)$. Hence $13^{a_5} | \sigma(p_{10}^{a_{10}} p_{11}^{a_{11}})$. Since $a_5 \ge 40$, and since

$$(p_{10}^3 - 1)(p_{11}^3 - 1) < (17053^3 - 1)(15613471^3 - 1) < 13^{31},$$

N would have four prime factors congruent to 1 (13) by Lemma 10, and this is a contradiction because $p_i \neq 1$ (13) for $1 \leq i \leq 9$.

LEMMA 20. If 17 + N, then N is not OT.

PROOF. By Lemma 19, $p_{10} < 3547$. Using the computer, we searched for an $M = \prod_{i=1}^{10} p_i^{b_i}$ which satisfied Lemmas 1, 3 ($p_i \leq 71$ and $a_i < a(p_i)$), 11, 17, and also

and

$$\log S(M) < \log 3$$

$$\log S(M) + 10 \cdot 10^{-11} + \log S(100129^{\infty}) > \log 3.$$

There were forty-eight such M's; however, in every case there were primes q and r such that q < r, such that no primes occurred between q and r, and such that

$$S\left(\prod_{i=1}^{10} p_i^{b_i}\right) S(q^2) > 3,$$

$$S\left(\prod_{i=1}^{10} p_i^{c_i}\right) S(r^{\infty}) < 3.$$

(In eight cases it was necessary to consider higher values for the b_i 's.) Hence N cannot be OT.

4. The case 17 | N

In this section we assume that 17 | N.

LEMMA 21. $17^6 + N$.

PROOF. By Corollary 9.2, $17^8 + N$. Suppose that $17^6 || N$. Since $\sigma(17^6) = 25646167$, it follows that 25646167 | N. By Lemmas 2, 6, 9, and by Corollary 9.1, $17^2 |\sigma(p_i^{a_i})$ for i = 9, 10, 11 because 103 is the smallest prime congruent to 1 (17). Then we get a contradiction by Lemma 2 because $1123 \cdot q \cdot r |\sigma(2564167^{288})$, where q and r are distinct primes exceeding 100000 and different from 25646167.

LEMMA 22. If $17^4 || N$, then $p_8 \le 61$, $p_9 \ge 103$, $p_{10} = 88741$ and $5^6 + N$.

PROOF. Since $\sigma(17^4) = 88741$, it follows that p_{10} (or p_9) = 88741. If $17^2 | \sigma(p^a)$ for some $p^a || N$, then, by Lemma 6, N has three prime factors congruent to 1 (17); otherwise, $17 | \sigma(p^a)$ for four distinct components p^a , which contradicts Lemmas 6 and 9. Since 103 is the smallest prime congruent to 1 (17), we have $103 \le p_9 \equiv p_{10} \equiv p_{11} \equiv 1$ (17). Then $p_8 \le 61$ because

 $S(3^{\infty}5^{\infty}7^{\infty}11^{\infty}13^{\infty}17^{\infty}19^{\infty}67^{\infty}103^{\infty}88741^{\infty}100129^{\infty}) < 3.$

Since $4451 \cdot 5441 \cdot 46558947881 | \sigma(88741^4)$, $3221 | \sigma(11^4)$ and $3221 \neq 1$ (17), since $17351 | (31^4)$ and $17351 \neq 1$ (17), since $579281 | \sigma(41^4)$ and $579281 \neq 1$ (17), and since $21491 | \sigma(61^4)$ and $21491 \neq 1$ (17), it follows that we have $5 + \sigma(\prod_{i=1}^{8} p_i^{a_i})$ and $5 + \sigma(p_{10}^{a_{10}})$. Suppose that $5^{10} | N$. Then $5^5 | \sigma(p_{99}^{a_9})$ or $5^5 | \sigma(p_{11}^{a_{11}})$, contradicting Corollary 8. Since $829 | \sigma(5^8)$ and $821 \neq 1$ (17), and since $19531 | \sigma(5^6)$ and $19531 \neq 1$ (17), we have $5^8 \# N$ and $5^6 \# N$.

LEMMA 23. If $17^2 || N$, then $p_8 \leq 43$, $p_9 = 307$ and $5^4 + N$.

PROOF. Since $\sigma(17^2) = 307$, we have $p_9 = 307$ by Lemmas 1 and 2. Then $p_8 \leq 43$ because

 $S(3^{\infty}5^{\infty}7^{\infty}11^{\infty}13^{\infty}17^{2}19^{\infty}47^{\infty}307^{\infty}1009^{\infty}100129^{\infty}) < 3.$

As in the proof of Lemma 13, we have $5^2 + \sigma(p^a)$ if $p^a || N$ and if p = 11, 31 or 41. Then $5^4 + \sigma(\prod_{i=1}^9 p_i^{a_i})$ because $5 + \sigma(p_{9^9}^{a_9})$ by Lemma 6. Suppose that $5^{10} | N$. Then $5^7 | \sigma(p_{10}^{a_{10}} p_{11}^{a_{11}})$, and so $5^4 | \sigma(p_{10}^{a_{10}})$ or $5^4 | \sigma(p_{11}^{a_{11}})$. Hence N has five prime factors $\equiv 1$ (5), which is a contradiction because

$$S(3^{\infty}5^{\infty}7^{\infty}11^{\infty}13^{\infty}17^{2}31^{\infty}41^{\infty}307^{\infty}1021^{\infty}100151^{\infty}) < 3.$$

Since 829 $|\sigma(5^8)$, we have $5^8 \# N$ by Lemma 1. Suppose that $5^6 || N$. Then $p_{10} = 19531$ because $\sigma(5^6) = 19531$. As in the proof of Lemma 13, we have $5^2 + \sigma(p^a)$ if $p^a || N$ and if p = 41. Since $3221 |\sigma(11^4)$, $17351 |\sigma(31^4)$ and $191 |\sigma(19531^4)$, we have $5^2 + \sigma(\prod_{i=1}^{10} p_i^{a_i})$. Then $5^5 |\sigma(p_{11}^{a_1})$, contradicting Corollary 8. Since $71 |\sigma(5^4)$, we have $5^4 \# N$.

LEMMA 24. If 17 | N, then N is not OT.

PROOF. As in the case 17 + N, we searched for an $M = \prod_{i=1}^{9} p_i^{b_i}$ which satisfied Lemmas 2, 3 ($p_i \leq 71$ and $a_i < a(p_i)$), 22, 23, and also

and

$$\log S(M) < \log 3$$

$$\log S(M) + 9 \cdot 10^{-11} + S(3547^{\infty}100129^{\infty}) \ge \log 3,$$

but there were none. (If $17^4 || N$, we let $p_9 = 88741$, so that possibly $p_{10} < p_9 < p_{11}$.) Hence $p_{10} < 3547$. Then we searched for an $M = \prod_{i=1}^{10} p_i^{a_i}$ which satisfied Lemmas 1, 2, 3 ($p_i \leq 71$ and $a_i < a(p_i)$), 22, 23, and also

and $\log S(M) < \log 3$ $\log S(M) + 10 \cdot 10^{-11} + \log(100129^{\infty}) > \log 3,$

but there were none. Hence N is not OT.

Lemmas 20 and 24 prove our theorem. The computer time for Lemmas 19, 20 and 24 was less than 10 minutes.

Acknowledgement

The author would like to thank the referee, Professor C. Pomerance, and Professor S. Nakamura for bringing [3] and [10] to his attention.

References

- [1] L. B. Alexander, Odd triperfect numbers are bounded below by 10⁶⁰ (M. A. Thesis, East Carolina University, 1984).
- [2] W. E. Beck and R. M. Najar, "A lower bound for odd triperfecta", Math. Comp. 38 (1982), 249-251.
- [3] E. A. Bugulov, "On the question of the existence of odd multiperfect numbers" (in Russian), Kabardino-Balkarsk. Gos. Univ. Ucen. Zap. 30 (1966), 9–19.

- [4] G. L. Cohen, "On odd perfect numbers II, multiperfect numbers and quasiperfect numbers", J. Austral. Math. Soc. 29 (1980), 369-384.
- [5] G. L. Cohen and P. Hagis, Jr., Results concerning odd multiperfect numbers, to appear.
- [6] M. Kishore, "Odd triperfect numbers", Math. Comp. 42 (1984), 231-233.
- [7] M. Kishore, "Odd triperfect numbers are divisible by eleven distinct prime factors", Math. Comp. 44 (1985), 261-263.
- [8] W. McDaniel, "On odd multiply perfect numbers", Boll. Un. Mat. Ital. (1970), 185-190.
- [9] C. Pomerance, "Odd perfect numbers are divisible by at least seven distinct primes", Acta Arith. 35 (1973/74), 265-300.
- [10] H. Reidlinger, "Über ungerademehrfach vollkommene Zahlen", Osterreichische Akad. Wiss. Math.-Natur. 192 (1983), 237-266.

Department of Mathematics East Carolina University Greenville, NC 27834 U.S.A.