ODD TRIPERFECT NUMBERS ARE DIVISIBLE BY TWELVE DISTINCT PRIME FACTORS

MASAO KISHORE

(Received 9 April 1985; revised 27 February 1986)

Communicated by J. H. Loxton

Abstract

We prove that an odd triperfect number has at least twelve distinct prime factors. 1980 Mathematics subject classification (Amer, Math. Soc.): 11 A 20.

1. Introduction

A positive integer N is called a triperfect number if $\sigma(N)=3 N$, where $\sigma(N)$ is the sum of the positive divisors of N. Although six even triperfect numbers are known, no odd triperfect (OT) numbers have been found.

McDaniel [8] and Cohen [4] proved that if N is OT, then $\omega(N) \geqslant 9$, where $\omega(N)$ is the number of distinct prime factors of N. The author [6] proved that $\omega(N) \geqslant 10$ and [7] that $\omega(N) \geqslant 11$; Bugulov [3] also proved that $\omega(N) \geqslant 11$. Beck and Najar [2] showed that $N>10^{50}$, and Alexander [1] proved that $N>10^{60}$. Cohen and Hagis [5] showed that the largest prime factor of N is at least 100129 , that the second largest prime factor is at least 1009 , that $\omega(N) \geqslant 11$, and that $N>10^{70}$.

In this paper we prove the

Theorem. If N is an odd triperfect number, then $\omega(N) \geqslant 12$.

Remark. This theorem was independently proved by H. Reidlinger [10].

[^0]
2. Preliminaries

In the rest of this paper we let

$$
N=\prod_{i=1}^{11} p_{i}^{a_{i}}
$$

where the p_{i} 's are odd primes, $p_{1}<\cdots<p_{11}$, where the a_{i} 's are positive integers, and where N is OT. We call $p_{i}^{a_{i}}$ a component of N and write $p_{i}^{a_{i}} \| N$ and $a_{i}=V_{p_{i}}(N)$.

Definition. $S(N)=\sigma(N) / N$. We note that S is multiplicative, and extend the definition is include the case $a_{i}=\infty$ by setting

$$
S\left(p_{i}^{\infty}\right)=p_{i} /\left(p_{i}-1\right)
$$

The next lemma is stated in [5].

Lemma 1. $p_{10} \geqslant 1009$ and $p_{11} \geqslant 100129$.
Lemma 2. $p_{1}=3, p_{2}=5, p_{3}=7, p_{4}=11, p_{5} \leqslant 17, p_{6} \leqslant 23, p_{7} \leqslant 31$ and $p_{8} \leqslant 79$.

Proof. Since

$$
S\left(3^{\infty} 5^{\infty} 7^{\infty} 13^{\infty} 17^{\infty} 19^{\infty} 23^{\infty} 31^{\infty} 1009^{\infty} 100129^{\infty}\right)<3
$$

we have $p_{1}=3, p_{2}=5, p_{3}=7$ and $p_{4}=11$. The proofs of other parts are similar.

The proof of the next lemma is easy.

Lemma 3. (1) The a_{i} 's are even for all i.
(2) If q is a prime and $q \mid \sigma\left(p_{i}^{a_{i}}\right)$ for some i, then $q=3$ or $q=p_{j}$ for some j.

The next three lemmas are stated in [9].
Lemma 4. Suppose p and q are odd primes and d is the order of $p \bmod q$. Then

$$
V_{q}\left(\sigma\left(p^{a}\right)\right)= \begin{cases}V_{q}(a+1) & \text { if } d=1 \\ V_{q}(a+1)+V_{q}\left(p^{d}-1\right) & \text { if } d>1 \text { and } d \mid a+1 \\ 0 & \text { otherwise }\end{cases}
$$

Lemma 5. If p is an odd prime, if $d>1$, and if $d \mid a+1$, then $\sigma\left(p^{a}\right)$ has a prime factor q such that the order of p is $d \bmod q$ and $q \equiv 1(d)$.

Corollary 5. If $d^{b} \mid a+1$, then $\sigma\left(p^{a}\right)$ has b distinct prime factors congruent to 1 (d).

Lemma 6. Suppose p is a prime, q is a Fermat prime ($3,5,17$ etc.), a is even and $q^{b} \mid \sigma\left(p^{a}\right)$. Then $p \equiv 1(q)$, and $\sigma\left(p^{a}\right)$ has b distinct prime factors congruent to 1 (q).

Lemma 7. N has at most seven prime factors congruent to 1 (3).
Proof. $S\left(3^{\infty} 5^{\infty} 7^{\infty} 11^{\infty} 13^{\infty} 19^{\infty} 31^{\infty} 37^{\infty} 43^{\infty} 1009^{\infty} 100129^{\infty}\right)<3$.
Corollary 7. If $p^{a} \| N$, then $3^{7}+\sigma\left(p^{a}\right)$.
Proof. Suppose $3^{7} \mid \sigma\left(p^{a}\right)$. Then by Lemma 6, $p \equiv 1$ (3) and $\sigma\left(p^{a}\right)$ has seven more primes congruent to 1 (3), so we get a contradiction by Lemmas 3 and 7.

The proofs of the next two lemmas are similar.

Lemma 8. N has at most five prime factors equivalent to 1 (5).
Corollary 8. If $p^{a} \| N$, then $5^{5}+\sigma\left(p^{a}\right)$.

Lemma 9. N has at most three prime factors equivalent to 1 (17).
Corollary 9.1. If $p^{a} \| N$, then $17^{3}+\sigma\left(p^{a}\right)$.
Corollary 9.2. $17^{8}+N$.

Proof. If $17^{8} \mid N$, then by Corollary $9.1,17$ or $17^{2} \mid \sigma\left(p_{i}^{a_{i}}\right)$ for four distinct i, and $p_{i} \equiv 1$ (17) by Lemma 6, which contradicts Lemma 9.

Lemma 10. If $13^{a}>\left(p_{10}^{3}-1\right)\left(p_{11}^{3}-1\right)$ and if $13^{a+2 b} \mid \sigma\left(p_{10}^{a_{10}} p_{11}^{a_{11}}\right)$, then N has at least b distinct prime factors congruent to 1 (13).

Proof. Let $p^{a}=p_{i}^{a_{i}}$ and $13 \mid \sigma\left(p^{a}\right)$, where $i=10$ or 11 . If d is the order of p $\bmod 13$, then, by Lemma $4, d=1$ or $d>1$, and $d \mid a+1$, in which case $d=3$ because a is even and $d \mid 12$. Suppose $13^{b}+a_{10}+1$ and $13^{b}+a_{11}+1$. Then by the same lemma

$$
\begin{aligned}
a+2 b & \leqslant V_{13}\left(\sigma\left(p_{10}^{a_{10}} p_{11}^{a_{11}}\right)\right)=V_{13}\left(\sigma\left(p_{10}^{a_{10}}\right)\right)+V_{13}\left(\sigma\left(p_{11}^{a_{11}}\right)\right) \\
& \leqslant V_{13}\left(a_{10}+1\right)+V_{13}\left(p_{10}^{3}-1\right)+V_{13}\left(a_{11}+1\right)+V\left(p_{11}^{3}-1\right) \\
& <2 b+a
\end{aligned}
$$

which is a contradiction. Hence $13^{b} \mid a+1$, and, by Corollary 5, $\sigma\left(p^{a}\right)$ has b distinct prime factors $\equiv 1$ (13).

3. The case $17+N$

In this section we assume that $17+N$ and get a contradiction.
The proof of the next lemma is easy.
Lemma 11. If $17+N$, then $p_{1}=3, p_{2}=5, p_{3}=7, p_{4}=11, p_{5}=13, p_{6} \leqslant 23$, $p_{7} \leqslant 29, p_{8} \leqslant 43$ and $p_{9} \leqslant 167$.

Lemma 12. If $17+N$, if $p^{a} \| N$, and if $43 \leqslant p \leqslant 167$, then $5+\sigma\left(p^{a}\right)$.

Proof. Suppose that $5 \mid \sigma\left(p^{a}\right)$. Then by Lemma $6, p \equiv 1$ (5) and $5 \mid a+1$, and so $p=61,71,101,131$ or 151 , and $\sigma\left(p^{4}\right) \mid \sigma\left(p^{a}\right)$. Since

$$
\begin{aligned}
& \sigma\left(61^{4}\right)=5 \cdot 131 \cdot 21491 \\
& \sigma\left(71^{4}\right)=5 \cdot 11 \cdot 211 \cdot 2221 \\
& \sigma\left(101^{4}\right)=5 \cdot 31 \cdot 491 \cdot 1381 \\
& \sigma\left(131^{4}\right)=5 \cdot 61 \cdot 973001 \\
& \sigma\left(151^{4}\right)=5 \cdot 104670301
\end{aligned}
$$

we have $p \neq 61,71,101$ or 131 by Lemmas 1 and 11 .
Suppose $p=151$. Then it is easy to show that $p_{8}=29, p_{9}=151, p_{10} \leqslant 4243$ and $p_{11}=104670301$. Since

$$
\begin{aligned}
& \sigma\left(5^{2}\right)=31 \\
& \sigma\left(5^{4}\right)=11 \cdot 71 \\
& \sigma\left(5^{6}\right)=19531
\end{aligned}
$$

we have $5^{7} \mid N$. Furthermore, $5^{2}+\sigma\left(11^{a_{4}}\right), 5^{2}+\sigma\left(151^{a_{9}}\right)$ and $5+\sigma\left(104670301^{a_{11}}\right)$, for otherwise N would have a prime factor $q>100000$ and $q \neq 104670301$. Then $5^{6} \mid \sigma\left(p_{10}^{a_{10}}\right)$, contradicting Corollary 8 . Hence $p \neq 151$.

Lemma 13. If $17+N$, if $p^{a} \| N$, and if $p=11,31$ or 41 , then $5^{2}+\sigma\left(p^{a}\right)$.
Proof. Suppose $5^{2} \mid \sigma\left(p^{a}\right)$. Then by Lemma 4, $5^{2} \mid a+1$, and so $\sigma\left(p^{24}\right) \mid \sigma\left(p^{a}\right)$. Since

$$
\begin{aligned}
& \sigma\left(11^{24}\right)=5^{2} \cdot 3221 \cdot 24151 \cdot M_{1} \\
& \sigma\left(31^{24}\right)=5^{2} \cdot 101 \cdot 4951 \cdot 17351 \cdot M_{2} \\
& \sigma\left(41^{24}\right)=5^{2} \cdot 16651 \cdot 579281 \cdot M_{3}
\end{aligned}
$$

where the M_{i} 's have no prime factors less than 100000 , and where $579281+M_{3}$, we get a contradiction by Lemmas 1 and 11 .

Lemma 14. If $17+N$, then $5^{3}+\sigma\left(\prod_{i=1}^{9} p_{i}^{a_{i}}\right)$.
Proof. By Lemmas 11, 12 and 13, we have $5^{4}+\sigma\left(\prod_{i=1}^{9} p_{i}^{a_{i}}\right)$. Suppose $5^{3} \mid \sigma\left(\prod_{i=1}^{9} p_{i}^{a_{i}}\right)$. Then by the same lemmas, $5 \mid \sigma\left(p_{i}^{a_{i}}\right)$ where $p_{i}=11,31$, and 41. Then $3221 \cdot 17351 \cdot 579281 \mid N$ because

$$
\begin{aligned}
& \sigma\left(11^{4}\right)=5 \cdot 3221, \\
& \sigma\left(31^{4}\right)=5 \cdot 11 \cdot 17351, \\
& \sigma\left(41^{4}\right)=5 \cdot 579281,
\end{aligned}
$$

which contradicts Lemma 11.
Lemma 15. If $17+N$, and if $5^{2} \mid \sigma\left(\Pi_{i=1}^{9} p_{i}^{a_{i}}\right)$, then $5+\sigma\left(p_{10}^{a_{10}} p_{11}^{a_{11}}\right)$.
Proof. By Lemmas 11, 12 and $13,5 \mid \sigma\left(p^{a}\right)$ and $5 \mid \sigma\left(q^{b}\right)$, where $p^{a}\left\|N, q^{b}\right\| N$, and $p, q=11,31$ or 41 . Then, as in the proof of Lemma 14, $p_{10}=3221$ or 17351 , and $p_{11}=579281$. Since

$$
\begin{aligned}
& \sigma\left(3221^{4}\right)=5 \cdot 11 \cdot M_{1} \\
& \sigma\left(17351^{4}\right)=5 \cdot 11 \cdot M_{2} \\
& \sigma\left(579281^{4}\right)=5 \cdot 2131 \cdot M_{3}
\end{aligned}
$$

where the M_{i} 's have no prime factors less than 100000 , and where $579281+M_{i}$, we have $5+\sigma\left(p_{10}^{a_{10}} p_{11}^{a_{11}}\right)$ by Lemma 11.

Corollary 15. If $17+N$, and if $5^{4} \mid N$, then $5^{2}+\sigma\left(\prod_{i=1}^{9} p_{i}^{a}\right)$.
Lemma 16. If $17+N$, then $5^{10}+N$.
Proof. Suppose that $5^{10} \mid N$. Then by Corollary $15,5^{2}+\sigma\left(\prod_{i=1}^{9} p_{i}^{a_{i}}\right)$, and so $5^{9} \mid \sigma\left(p_{10}^{a_{10}} p_{11}^{a_{11}}\right)$. Hence $5^{5} \mid \sigma\left(p_{10}^{a_{10}}\right)$ or $5^{5} \mid \sigma\left(p_{11}^{a_{11}}\right)$, contradicting Corollary 8 .

Lemma 17. If $17+N$, then $5^{6}+N$.
Proof. Suppose that $5^{8} \| N$. Then $829 \| N$ because $829 \| \sigma\left(5^{8}\right)$, which contradicts Lemmas 1 and 11. Suppose $5^{6} \| N$. Since $\sigma\left(5^{6}\right)=19531$, it follows that $p_{10}=$ 19531; moreover, $5+\sigma\left(p_{10}^{a_{10}}\right)$ because 191| $\sigma\left(19531^{4}\right)$, and because $p_{9} \leqslant 167$ by Lemma 11. By Corollary 15, $5^{2}+\sigma\left(\prod_{i=1}^{10} p_{11}^{a_{11}}\right)$, contradicting Corollary 8. Lemma 17 now follows from Lemma 16.

Definition. Suppose that p is a prime. Define

$$
\begin{aligned}
& a(p)=\operatorname{minimum}\left\{c \mid c \text { is even and } p^{c+1}>10^{11}\right\}, \\
& b_{i}= \begin{cases}a_{i} & \text { if } a_{i}<a\left(p_{i}\right), \\
a\left(p_{i}\right) & \text { if } a_{i} \geqslant a\left(p_{i}\right),\end{cases} \\
& c_{i}= \begin{cases}a_{i} & \text { if } a_{i}<a\left(p_{i}\right), \\
\infty & \text { if } a_{i} \geqslant a\left(p_{i}\right)\end{cases}
\end{aligned}
$$

Lemma 18. Let $M=\prod_{i=1}^{11} p_{i}^{b_{i}}$. Then $0 \leqslant \log 3-\log S(M)<11 \cdot 10^{-11}$.
Proof. Suppose that $p^{a} \| N$ and that $a \geqslant a(p)$. Then

$$
\begin{aligned}
0 & \leqslant \log S\left(p^{a}\right)-\log S\left(p^{a(p)}\right) \\
& <\log p /(p-1)-\log \left(p^{a(p)+1}-1\right) / p^{a(p)}(p-1) \\
& =\log p^{a(p)+1} /\left(p^{a(p)+1}-1\right)=\log \left(1+1 /\left(p^{a(p)+1}-1\right)\right) \\
& <1 /\left(p^{a(p)+1}-1\right)<10^{-11}
\end{aligned}
$$

Hence

$$
\begin{aligned}
0 & \leqslant \log 3-\log S(M)=\log S(N)-\log S(M) \\
& \leqslant \sum_{i=1}^{11}\left(\log S\left(p_{i}^{a_{i}}\right)-\log S\left(p_{i}^{b_{i}}\right)\right)<11 \cdot 10^{-11}
\end{aligned}
$$

Lemma 19. If $17+N$, then $p_{10}<3547$.
Proof. Suppose that $p_{10} \geqslant 3547$. Then
and

$$
\sum_{i=1}^{9} \log S\left(p_{i}^{a_{i}}\right)<\log 3
$$

$$
\sum_{i=1}^{9} \log S\left(p_{i}^{a_{i}}\right)+\log S\left(3547^{\infty} 100129^{\infty}\right) \geqslant \log 3
$$

Using a computer (Burroughs 6800 at East Carolina University), we searched for an $M=\prod_{i=1}^{9} p_{i}^{b_{i}}$ which satisfied Lemmas $3\left(p_{i} \leqslant 71\right.$ and $\left.a_{i}<a\left(p_{i}\right)\right) 11,17$, and also
and

$$
\begin{aligned}
& \log S(M)<\log 3 \\
& \log S(M)+9 \cdot 10^{-11}+\log S\left(3547^{\infty} 100129^{\infty}\right) \geqslant \log 3
\end{aligned}
$$

The results were
(1) $3^{24} 5^{2} 7^{14} 11^{10} 13^{10} 19^{8} 23^{8} 31^{8} 59^{6}$,
(2) $3^{4} 5^{4} 7^{14} 11^{2} 13^{10} 19^{8} 23^{8} 31^{8} 71^{6}$,
(3) $3^{4} 5^{4} 7^{14} 11^{2} 13^{10} 19^{8} 23^{8} 31^{8} 71^{2}$,
(4) $3^{4} 5^{4} 7^{2} 11^{10} 13^{10} 19^{8} 23^{8} 29^{8} 71^{6}$.

In (1), $3^{2}+\sigma\left(7^{a_{3}}\right), 3+\sigma\left(13^{a_{5}}\right), 3+\sigma\left(19^{a_{6}}\right), 3+\sigma\left(31^{a_{8}}\right)$ because $37 \mid \sigma\left(7^{8}\right)$, $61\left|\sigma\left(13^{2}\right), 127\right| \sigma\left(19^{2}\right)$, and $331 \mid \sigma\left(31^{2}\right)$. Hence, $3^{23} \mid \sigma\left(p_{10}^{a_{10}} p_{11}^{a_{11}}\right)$. Then $3^{12} \mid \sigma\left(p_{10}^{a_{10}}\right)$ or $3^{12} \mid \sigma\left(p_{11}^{a_{11}}\right)$, contradicting Corollary 7 .

In (2) and (3), $\sigma\left(3^{4}\right)=11^{2}$ and $\sigma\left(5^{4}\right)=11 \cdot 71$, so that $11^{3} \mid N$, which is a contradiction.

In (4), $14591 \leqslant p_{10} \leqslant 17053$, and $p_{11} \leqslant 15613471$ because
ind

$$
\begin{aligned}
& S\left(3^{4} 5^{4} 7^{2} 11^{\infty} 13^{\infty} 19^{\infty} 23^{\infty} 29^{\infty} 71^{\infty} 17077^{\infty} 100129^{\infty}\right)<3 \\
& S\left(3^{4} 5^{4} 7^{2} 11^{10} 13^{10} 19^{8} 23^{8} 29^{8} 71^{6} 14563^{2}\right)>3 \\
& S\left(3^{4} 5^{4} 7^{2} 11^{\infty} 13^{\infty} 19^{\infty} 23^{\infty} 29^{\infty} 71^{\infty} 14591^{\infty} 15613483^{\infty}\right)<3
\end{aligned}
$$

If $10 \leqslant a_{5} \leqslant 38$, then $\sigma\left(13^{a_{5}}\right)$ has a prime factor $q<100129$, and $q \neq p_{i}$ for $1 \leqslant i \leqslant 10$, or it has two prime factors greater than 17053 . Hence $a_{5} \geqslant 40$. For $1 \leqslant i \leqslant 9$ and $i \neq 8$, the order of $p_{i} \bmod 13$ is even, so that $13+\sigma\left(p_{i}^{a_{1}}\right)$ by Lemmas 3 and 4. Also $13+\sigma\left(29^{a_{8}}\right)$ because the order of $29 \bmod 13$ is 3 , and because $67 \mid \sigma\left(29^{2}\right)$. Hence $13^{a_{5}} \mid \sigma\left(p_{10}^{a_{10}} p_{11}^{a_{11}}\right)$. Since $a_{5} \geqslant 40$, and since

$$
\left(p_{10}^{3}-1\right)\left(p_{11}^{3}-1\right)<\left(17053^{3}-1\right)\left(15613471^{3}-1\right)<13^{31}
$$

N would have four prime factors congruent to 1 (13) by Lemma 10, and this is a contradiction because $p_{i} \neq 1(13)$ for $1 \leqslant i \leqslant 9$.

Lemma 20. If $17+N$, then N is not OT.

Proof. By Lemma 19, $p_{10}<3547$. Using the computer, we searched for an $M=\prod_{i=1}^{10} p_{i}^{b_{i}}$ which satisfied Lemmas $1,3\left(p_{i} \leqslant 71\right.$ and $\left.a_{i}<a\left(p_{i}\right)\right), 11,17$, and also
and

$$
\log S(M)<\log 3
$$

$$
\log S(M)+10 \cdot 10^{-11}+\log S\left(100129^{\infty}\right)>\log 3
$$

There were forty-eight such M 's; however, in every case there were primes q and r such that $q<r$, such that no primes occurred between q and r, and such that

$$
\begin{aligned}
& S\left(\prod_{i=1}^{10} p_{i}^{b_{i}}\right) S\left(q^{2}\right)>3 \\
& S\left(\prod_{i=1}^{10} p_{i}^{c_{i}}\right) S\left(r^{\infty}\right)<3
\end{aligned}
$$

(In eight cases it was necessary to consider higher values for the b_{i} 's.) Hence N cannot be OT.

4. The case $17 \mid N$

In this section we assume that $17 \mid N$.

Lemma $21.17^{6}+N$.
Proof. By Corollary $9.2,17^{8}+N$. Suppose that $17^{6} \| N$. Since $\sigma\left(17^{6}\right)=$ 25646167, it follows that $25646167 \mid N$. By Lemmas 2, 6, 9, and by Corollary 9.1, $17^{2} \mid \sigma\left(p_{i}^{a_{i}}\right)$ for $i=9,10,11$ because 103 is the smallest prime congruent to 1 (17). Then we get a contradiction by Lemma 2 because $1123 \cdot q \cdot r \mid \sigma\left(2564167^{288}\right)$, where q and r are distinct primes exceeding 100000 and different from 25646167.

Lemma 22. If $17^{4} \| N$, then $p_{8} \leqslant 61, p_{9} \geqslant 103, p_{10}=88741$ and $5^{6}+N$.
Proof. Since $\sigma\left(17^{4}\right)=88741$, it follows that $p_{10}\left(\right.$ or $\left.p_{9}\right)=88741$. If $17^{2} \mid \sigma\left(p^{a}\right)$ for some $p^{a} \| N$, then, by Lemma $6, N$ has three prime factors congruent to 1 (17); otherwise, $17 \mid \sigma\left(p^{a}\right)$ for four distinct components p^{a}, which contradicts Lemmas 6 and 9 . Since 103 is the smallest prime congruent to 1 (17), we have $103 \leqslant p_{9} \equiv p_{10} \equiv p_{11} \equiv 1$ (17). Then $p_{8} \leqslant 61$ because

$$
S\left(3^{\infty} 5^{\infty} 7^{\infty} 11^{\infty} 13^{\infty} 17^{\infty} 19^{\infty} 67^{\infty} 103^{\infty} 88741^{\infty} 100129^{\infty}\right)<3 .
$$

Since $4451 \cdot 5441 \cdot 46558947881\left|\sigma\left(88741^{4}\right), 3221\right| \sigma\left(11^{4}\right)$ and $3221 \not \equiv 1$ (17), since $17351 \mid\left(31^{4}\right)$ and $17351 \not \equiv 1(17)$, since $579281 \mid \sigma\left(41^{4}\right)$ and $579281 \not \equiv 1$ (17), and since $21491 \mid \sigma\left(61^{4}\right)$ and $21491 \not \equiv 1(17)$, it follows that we have $5+\sigma\left(\prod_{i=1}^{8} p_{i}^{a_{i}}\right)$ and $5+\sigma\left(p_{10}^{a_{10}}\right)$. Suppose that $5^{10} \mid N$. Then $5^{5} \mid \sigma\left(p_{9}^{a_{9}}\right)$ or $5^{5} \mid \sigma\left(p_{11}^{a_{11}}\right)$, contradicting Corollary 8 . Since $829 \mid \sigma\left(5^{8}\right)$ and $821 \not \equiv 1(17)$, and since $19531 \mid \sigma\left(5^{6}\right)$ and $19531 \not \equiv 1$ (17), we have $5^{8} H N$ and $5^{6} H N$.

Lemma 23. If $17^{2} \| N$, then $p_{8} \leqslant 43, p_{9}=307$ and $5^{4}+N$.
Proof. Since $\sigma\left(17^{2}\right)=307$, we have $p_{9}=307$ by Lemmas 1 and 2. Then $p_{8} \leqslant 43$ because

$$
. S\left(3^{\infty} 5^{\infty} 7^{\infty} 11^{\infty} 13^{\infty} 17^{2} 19^{\infty} 47^{\infty} 307^{\infty} 1009^{\infty} 100129^{\infty}\right)<3 .
$$

As in the proof of Lemma 13, we have $5^{2}+\sigma\left(p^{a}\right)$ if $p^{a} \| N$ and if $p=11,31$ or 41. Then $5^{4}+\sigma\left(\prod_{i=1}^{9} p_{i}^{a_{i}}\right)$ because $5+\sigma\left(p_{9}^{a_{9}}\right)$ by Lemma 6. Suppose that $5^{10} \mid N$. Then $5^{7} \mid \sigma\left(p_{10}^{a_{10}} p_{11}^{a_{11}}\right)$, and so $5^{4} \mid \sigma\left(p_{10}^{a_{10}}\right)$ or $5^{4} \mid \sigma\left(p_{11}^{a_{11}}\right)$. Hence N has five prime
factors $\equiv 1(5)$, which is a contradiction because

$$
S\left(3^{\infty} 5^{\infty} 7^{\infty} 11^{\infty} 13^{\infty} 17^{2} 31^{\infty} 41^{\infty} 307^{\infty} 1021^{\infty} 100151^{\infty}\right)<3 .
$$

Since $829 \mid \sigma\left(5^{8}\right)$, we have $5^{8} \# N$ by Lemma 1 . Suppose that $5^{6} \| N$. Then $p_{10}=19531$ because $\sigma\left(5^{6}\right)=19531$. As in the proof of Lemma 13, we have $5^{2}+\sigma\left(p^{a}\right)$ if $p^{a} \| N$ and if $p=41$. Since $3221\left|\sigma\left(11^{4}\right), 17351\right| \sigma\left(31^{4}\right)$ and $191 \mid \sigma\left(19531^{4}\right)$, we have $5^{2}+\sigma\left(\prod_{i=1}^{10} p_{i}^{a_{i}}\right)$. Then $5^{5} \mid \sigma\left(p_{11}^{a_{1}}\right)$, contradicting Corollary 8. Since $71 \mid \sigma\left(5^{4}\right)$, we have $5^{4} \# N$.

Lemma 24. If $17 \mid N$, then N is not OT.
Proof. As in the case $17+N$, we searched for an $M=\prod_{i=1}^{9} p_{i}^{b_{i}}$ which satisfied Lemmas 2, 3 ($p_{i} \leqslant 71$ and $a_{i}<a\left(p_{i}\right)$), 22, 23, and also
and

$$
\log S(M)<\log 3
$$

$$
\log S(M)+9 \cdot 10^{-11}+S\left(3547^{\infty} 100129^{\infty}\right) \geqslant \log 3
$$

but there were none. (If $17^{4} \| N$, we let $p_{9}=88741$, so that possibly $p_{10}<p_{9}<$ p_{11}.) Hence $p_{10}<3547$. Then we searched for an $M=\prod_{i=1}^{10} p_{i}^{a_{i}}$ which satisfied Lemmas $1,2,3$ ($p_{i} \leqslant 71$ and $a_{i}<a\left(p_{i}\right)$), 22, 23, and also
and

$$
\begin{aligned}
& \log S(M)<\log 3 \\
& \log S(M)+10 \cdot 10^{-11}+\log \left(100129^{\infty}\right)>\log 3,
\end{aligned}
$$

but there were none. Hence N is not OT.
Lemmas 20 and 24 prove our theorem. The computer time for Lemmas 19, 20 and 24 was less than 10 minutes.

Acknowledgement

The author would like to thank the referee, Professor C. Pomerance, and Professor S. Nakamura for bringing [3] and [10] to his attention.

References

[1] L. B. Alexander, Odd triperfect numbers are bounded below by 10^{60} (M. A. Thesis, East Carolina University, 1984).
[2] W. E. Beck and R. M. Najar, "A lower bound for odd triperfecta", Math. Comp. 38 (1982), 249-251.
[3] E. A. Bugulov, "On the question of the existence of odd multiperfect numbers" (in Russian), Kabardino-Balkarsk. Gos. Univ. Ucen. Zap. 30 (1966), 9-19.
[4] G. L. Cohen, "On odd perfect numbers II, multiperfect numbers and quasiperfect numbers", J. Austral. Math. Soc. 29 (1980), 369-384.
[5] G. L. Cohen and P. Hagis, Jr., Results concerning odd multiperfect numbers, to appear.
[6] M. Kishore, "Odd triperfect numbers", Math. Comp. 42 (1984), 231-233.
[7] M. Kishore, "Odd triperfect numbers are divisible by eleven distinct prime factors", Math. Comp. 44 (1985), 261-263.
[8] W. McDaniel, "On odd multiply perfect numbers", Boll. Un. Mat. Ital. (1970), 185-190.
[9] C. Pomerance, "Odd perfect numbers are divisible by at least seven distinct primes", Acta Arith. 35 (1973/74), 265-300.
[10] H. Reidlinger, "Über ungerademehrfach vollkommene Zahlen", Osterreichische Akad. Wiss. Math.-Natur. 192 (1983), 237-266.

Department of Mathematics

East Carolina University
Greenville, NC 27834
U.S.A.

[^0]: (C) 1987 Australian Mathematical Society 0263-6115/87\$A2.00 +0.00

