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OSCILLATION IN DIFFERENTIAL EQUATIONS 
WITH POSITIVE AND NEGATIVE COEFFICIENTS 

BY 

G. LAD AS AND C. QIAN 

ABSTRACT. We obtain sufficient conditions for the oscillation of all so­
lutions of the linear delay differential equation with positive and negative 
coefficients 

y(t) + P(t)y(t - r ) - Q(t)y(t - a) = 0 

where 
P,QeC[[t0,oo),R+] and r,crG[0,oo). 

Extensions to neutral differential equations and some applications to the 
global asymptotic stability of the trivial solution are also given. 

1. Introduction. Consider the linear delay differential equation with positive and 
negative coefficients 

(1) y(t) + P(t)y(t - r ) - Q(t)y(t - a) = 0 

where 

(2) P,(2G C[[t0,oo), R+] and r , a G [0,oo). 

Our aim in this paper is to obtain sufficient conditions for the oscillation of all solutions 
of Eq. (1) and for the global asymptotic stability of the trivial solution. Extensions to 
neutral differential equations are also given. 

The oscillation of Eq. (1) when the coefficients P and Q are positive constants or when 
P and Q are positive and asymptotically constants has been investigated in [1], [5] and 
[6]. Also the asymptotically behavior of the oscillatory solutions of Eq. (1) and of the 
neutral equation 

- \y(t) - py(t - T)] + q(t)y(t - a) = 0 
at 

has been studied in [7]. 
Let m = max{r,(j}. By a solution of Eq. (1) we mean a function y G C[[t\ — 

m, oo), R], for some t\ > to, such that y is continuously differentiable on [t\, oo) and 
such that Eq. (1) is satisfied for t >t\. As in customery, a solution of Eq. (1) is said to 
oscillate if it has arbitrarily large zeroes. Otherwise the solution is called nonoscillatory. 

2. Oscillation and stability of Eq. (1). In this section we study the oscillation and 
the asymptotic behavior of all solutions of Eq.(l). 

The following lemma will be useful in the proofs of the main results. 
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LEMMA 1. Assume that (2) holds, 

(3) r > a, 

(4) P(f)>Q(t + (T-r),P(t)^Q(t + (T-r)on [t\+T-<T9oo)9foranyti>to 

and 

(5) (r - a)Q(t) < 1 for t > t0. 

Lety(t) be an eventually positive solution ofEq. (1) and set 

(6) z(t) = y(t) - f ° Q(s + a)y(s) ds for t > t0+r - a. 

Then eventually z(t) is a nonincreasing and positive function. 

PROOF. Assume that t\ > to is such that 

y(t) > 0 for t > t\. 

Then 

(7) z(t) - ~[P(t) -Q{t + a- r)]y(t - r ) < 0 for t > tx + r 

and so z(t) is nonincreasing for t > t\. Clearly, either 

(8) lim z(t) = -oo 
t—>oo 

or 

(9) ]imz(t) = £ eR. 
t—yoo 

First assume that _y(/) is unbounded function. Then there exists a sequence of points 
{tn} such that 

lim tn = oo and y(tn) — maxy(s) for n — 1,2, 
n--xx) s<tn 

From (6) we now see that for n sufficiently large 

z{tn) = y(tn) ~ I" ° Q(s + a)y(s) ds 
Jtn-T 

> [ 1 - f'"'aQ(s + a)dS]y(tn) 
Jtn-T 

>o. 

As z(t) is nonincreasing, it follows that z(t) > 0 and the proof is complete when y(t) is 
unbounded. 

Next assume that y(f) is a bounded function. Then (8) cannot hold and so (9) holds. 
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Set 
li — limsupy(0 

?—>oo 

and let { £n} be a sequence of points such that 

lim £n = oo and lim y(£n) = M-
n—>oo n—>oo 

Then for e > 0 and sufficiently small and for n sufficiently large, 

z&i) = 3>(6.) " t~° Q(s + a)y(s) ds 

>y(in)-(v + £\ 

By taking limits as n —• oo we see that 

t >-e. 

As E is arbitrary, it follows that I > 0 and so z(7) is positive. The proof is complete. 
The next theorem gives sufficient conditions so that every nonoscillary solution of 

Eq. (1) tends to zero as t —> oo. 

THEOREM 1. Assume that (2)-(5) hold and that one of the following two conditions is 
satisfied: 
(H\ ) There exists a positive constant a such that 

(10) P(t) -Q(t+a -r)>a for t>t0+r -a 

(H2) There exists a positive constant b G (0,1) such that 

(11) (T-cj)Q{t)<\-b for t>t0 

and 

(12) / [P(s)-Q(s + a-r)]ds = 00. 

Then every nono s dilatory solution ofEq. (1) tends to zero as t —-> 00. 

PROOF. It suffices to prove that every eventually positive solution y(t) of Eq. (1) tends 
to zero as t —> 00. By Lemma 1 it follows that the function z(t), which is defined by (6), 
is nonincreasing and eventually positive. Hence 

(13) l imz(0= t <E [0,oo). 
f—-KX) 

By integrating both sides of (7) from t\ to infinity, for t\ sufficiently large, we find 

/•oo 

(14) I - z{h) = / [P{s) -Q(s + a- r)]y(s - r ) ds 
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From this and either (10) or (12) it follows that 

liminf>(0 = 0. 
? — • O O 

Also (6) implies that z(t) < y(t) and so £ = 0. If r = a, then z(t) — y(t) and because 
1=0, 

(15) \imy(t) = 0. 
t—+oo 

In the remainder of the proof we will assume that r > a. First we assume that (10) 
holds. Then from (14) we see that y G Ll[t\9 oo). As Q(f) is bounded, it follows that 
Q(s + a — r)y(s) G Ll [t\, oo) and so 

(16) lim f ° Q(s + a - r)y(s) ds = 0. 
t—XX) Jt-T 

From this and the fact that I = 0 we see that (15) holds. The proof when (10) holds is 
complete. 

Next assume that (11) and (12) hold. We first claim that y(t) is bounded. Otherwise 
there exists a sequence of points { £n} such that 

lim £„ = oo, y((,n)
 = max^s) for n = 1,2,... and lim )>(£«) = oo. 

n—*oo s<£n n-^oo 

Then by (6) and (11) 

z(in) = y(U - t~° Q(s + °)y(s) ds 

>y(U / y(s)ds 
T — a Jin-r 

> y(dn) ~ (1 - b)y(Zn) 

— byi^n) ^ o o as n •—> oo 
which contradicts the fact that I = 0 and establishes our claim that y(t) is bounded. Set 

\i = limsupXO 

and let { ̂ n} be a sequence of points such that 

lim sn — oo and lim y(sn) = /x. 

Then for e > 0 and sufficiently small and for n sufficiently large, it follows from (6) 
and (11) that 

rsn—a 

z(sn) = y(sn) - Q(s + a)y(s) ds 
JSn—T 

>y(sn)-Qi+e)(l-b). 
By taking limits as n —> oo and by using the fact that £ = 0 we see that 

0 >/zfc - e(l - fc). 

As e > 0 can be taken arbitrarily small, it follows that [i = 0 and the proof is complete. 
The next result provides sufficient conditions for the oscillation of all solutions of 

Eq. (1). 
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THEOREM 2. Assume that (2)-(5) hold and that either 

rt 1 
(17) liminf / \P(s) - Q(s + a - r)] ds > -

t—KX> Jt-T e 

or 

(18) lim sup T [P(s) -Q{S + CJ - r)] ds > 1 
f-KX> Jt~T 

Then every solution ofEq. (1) oscillates. 

PROOF. Assume, for the sake of contradiction, that Eq. (1) has an eventually positive 
solution y(t). By Lemma 1 it follows that the function z(t), which is defined by (6), is an 
eventually positive function. Also by (7) and the fact that eventually 

0<z(t)<y(t\ 

we see that eventually, 

(19) z(t) + [P(t) -Q(t + o- r)]z(t - r ) < 0 

It is well known however, see [8], that under condition (17) or (18), the inequality (19) 
cannot have an eventually positive solution. This contradicts the fact that z(t) is eventu­
ally positive and completes the proof. 

In [7] it was shown that if (2) holds, if 

P(t) - Q(t + a - r ) ^ 0 for t > t0 

and if 

(20) 2 lim sup I f ° \ Q(s + cr)| ds\ + lim sup f \ P(s) - Q(s + a - r ) | ds < 1, 

then every oscillatory solution of Eq. (1) tends to zero as t —» oo. By combining this 
result with Theorems 1 and 2 we obtain immediately the following stabiltiy results. 

COROLLARY 1. Assume (2), (3), (5) and (20) hold. Also suppose that 

(21) P(t)-Q(t + a - r ) > 0 for t > t0 

and that either (10) or (11) and (12) hold. Then the trivial solution ofEq. (1) is globally 
asymptotically stable. 

COROLLARY 2. In addition to the hypotheses of Theorem 2, assume that (20) and (21) 
hold. Then the trivial solution ofEq. (1) is globally asymptotically stable. 

EXAMPLE 1. The delay differential equation 

y(t) + 2 sin2 t y(t - n) - - cos2 t y(t - | ) - 0 
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satisfies (17) and (2)-(5). Therefore by Theorem 2, every solution of this equation os­
cillates. 

EXAMPLE 2. The delay differential equation 

2 1 
y(t)+-y(t-2)--y(t 

satisfies the hypotheses of Corollary 1 with to = 2 
as t —» oo. 

EXAMPLE 3. The delay differential equation 

y(t) + —(3 + cosO y(t - TT) - —(1 + sin/) y(t - ^-) = 0 
57T D7T 2 

satisfies the hypotheses of Theorem 2 and Corollary 2. Hence every solution oscillates 
and tends to zero as t —+ oo. 

3. Oscillation and stability of neutral equations. In this section we extend the 
results of Section 2 to the neutral delay differential equation with positive and negative 
coefficients 

(22) y[y(t) - R(t)y(t - p)] + P(t)y(t - r ) - Q(t)y(t - r) = 0 
at 

where 

(23) P,Q,R£ C[[f0,oo),R+],p G (0,oo) and r , a G [0,oo). 

Let m = max{ p,T, cr}. By a solution of Eq. (22) we mean a function y G C[[fi — 
m, oo), R ] for some t\ > to, such that y(t) — R(t)y(t — p) is continuously differentiable 
for r > t\ and such that Eq. (22) is satisfied for t > t\. Such a v is also called a solution 
on |>i,oo). 

Let t\ be a given initial point and let <j> G [[t\ — m, t\], R ] be a given initial function. 
Then one can show, by the method of steps, that Eq. (22) has a unique solution on [t\, oo) 
satisfying the initial condition 

y(t) = </>(0 for t\ - m < t < tx. 

The oscillation of neutral delay differential equations with positive and negative con­
stant coefficients was studied in [3], and [4]. 

The following lemma which is extracted from [2] is needed in the proof of Theorem 3. 

LEMMA 2 ([2]). Let F, G, R: [to, oo) —• R and c G R be such that 

F(t) = Gif) - R(t)G(t - c), t > t0 + max{ 0, c}. 

Assume that there exists a positive number r such that 

0 < R(t) < r. 

Suppose also that G(t) > Ofor t > to, liminf G(t) = 0 and that linv-K» F(t) = L G R, 
t—KX) 

exists. Then L — 0. 

The next lemma and the following two theorems are the duals of Lemma 1 and The­
orems 1 and 2, respectively, for neutral equations and will be stated without proofs. 

- 1 ) = 0 

. Hence every solution tends to zero 
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LEMMA 3. Assume that (23) holds, 

(24) r > a, 

(25) P(t)>Q(t + a-r) 

and P(t) — Q(t + a — r) ^ 0 on [t\ + r — <r, oo), for any t\ > to 

(26) 0 < R(t) <r<\ for t> t0 and some r G [0,1] 

and 

(27) (r - cr)0(0 < 1 - r for t > t0. 

Le£ j (0 &e an eventually positive solution ofEq. (22) and set 

v(0 = y(t) - R(t)y(t -p)- [^ Q(s + a) ds. 
Jt-T 

Then eventually v(t) is nonincreasing and positive. 

THEOREM 3. Assume that (23)y (24) and (25) hold, Q(t) is bounded, 

R{t) <r<\ for t> to and some r G [0,1) 

and 
(r - a)Q(t) <\-r for t > t0. 

Suppose also that one of the following two conditions is satisfied: 
(H\ ) There exists a positive constant a such that 

P(t) — Q(t + a —T) > a for t>t0+T-a 

(H2) There exists a positive constant b such that 

(T - (j)Q(t) <\-r~b for t > t0 

and 
roo 

/ [P(,s) - Q(s + a - r)] ds = 00. 

Then every nonoscillatory solution ofEq. (22) tends to zero as t —> 00. 

COROLLARY 3. Assume that the hypotheses of Theorem 3 are satisfied. Then every 
unbounded solution ofEq. (22) oscillates. 

THEOREM 4. Assume that conditions (23)-(27) hold and that either (17) or (18) is 
satisfied. Then every solution ofEq. (22) oscillates. 

Next, we will obtain an oscillation result for the neutral delay differential equation 

(28) -\y(t) - R(t)y(t - p)] +py(t - r ) - qy(t - a) = 0 
at 
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where 

(29) R G Cl[[t0joo),R+lp G (0,oo) and p,q,T,a G [0,oo). 

THEOREM 5. Assume that (29) holds, 

P > q,T > ff,T > p , 

0 < R(t) <r< I and R(t) > 0 for t > t0 and some r G [0, \\q(r - a) < 1 - r 

and 

(30) (r-p)(p-q) 1 
v ' 1 - lim /{(/) e 

t—KX) 

Then every solution ofEq. (28) oscillates. 

PROOF. Assume, for the sake of contradiciton, that Eq. (28) has an eventually positive 
solution y(t). Set 

v(0 = y(t) - R(t)y(t -p)-q f~a y(s) ds. 

Then it follows by direct substitution into Eq. (28) that v(i) is a differentiable solution 
of the neutral equation 

v(t) - R(t - r)v(t - p) + pv(t - T) - qv(t - a) = 0. 

Also, by Lemma 3 and Theorem 3, v(t) is eventually nonincreasing and positive and 
lim y(t) = 0. Hence, lim v(t) = 0. Set 

w( 
rt—a 

v{i) = v(t) - R(t - r)v(t - p)-q v(s) ds. 
Jt-T 

Then 
lim w(t) = 0 

t—>OQ 

and 
w(t) = -ip- q)v{t - r ) - R(t - r)v(t - p) < 0 

which imply that eventually, 

(31) w{t) > o. 

Now observe that 

w(t) < v(t) - R(t - r)v(t - p) < [1 - R(t - r)]v(t - p) 

and so _ 
P q -w(t +p-T)>-(p-q)v(t-r)>w(t). 

l-R(t + p-2T) 
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Hence eventually, 

(32) w(t) + -?~q
 0 Mt - (r - p)) < 0. 

1 — R(t + p — 2 r ) 

But from (30) we see that 

çt p — a 1 
liminf / -f-—-—— ds > -

t^oo Jt-(j-p) 1 — R(s + p — 2T) e 

and so (32) cannot have an eventually positive solution. This contradicts (31) and the 
proof is complete. 

Concerning the asymptotic behaviour of the oscillatory solutions of Eq. (22) we can 
establish the following extension of the result preceeding Corollary 1. This result is a 
slight extension of a similar result in [7] and its proof will be omitted. 

THEOREM 6. Assume that 

P,Q,Re C[[f0 ,oo),R] andr,(T,p G [0,oo). 

Suppose that 

(33) P(t) -Q(t + (j - T ) ^ 0 for t>t0+r -a 

and that 

(34) 21imsup[|/?(0| +\f ° \P(s + a)\ ds|]+limsup f \P(S)-Q(S+T-CJ)\ ds < 1. 
t—+00 L \Jt—T IJ r—+00 Jt—T 

then every oscillatory solution ofEq. (22) tends to zero as t —• 00. 

By combining Theorem 6 with Theorem 3, 4 and 5 we obtain immediately the fol­
lowing stability results for neutral equations. 

COROLLARY 4. In addition to the hypotheses of Theorem 3 assume that (33) and (34) 
hold. Then every solution ofEq. (22) tends to zero as t —> 00. 

COROLLARY 5. In addition to the hypotheses of Theorem 4 assume that (33) and (34) 
hold. Then every solution ofEq. (22) oscillates and tends to zero as t —• 00. 

COROLLARY 6. In addition to the hypotheses of Theorem 5 assume that 

(3/7 - q)r - 2 / 7 d + 2 lim R(t) < 1. 

Then every solution ofEq. (28) oscillates and tends to zero as t —> 00. 
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