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THE TEMPORAL EVOLUTION OF A SYSTEM
IN COMBUSTION THEORY
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Abstract

A model governing the combustion of a material is considered. The model consists of two
non-linear coupled parabolic equations with initial and boundary conditions. An ap-
proximation for the rate of reactant consumption is made to enable the system to be
treated by Laplace transform. Three simple geometries are considered; namely, an infinite
slab, an infinite circular cylinder and a sphere. The results obtained are then compared
with numerical solutions for some specific values of the parameters. There is good
agreement over the time duration for which numerical work was performed.

1. Introduction

A simple model governing the combustion of a material can be formulated in
non-dimensional form as follows,

(2)

6(x,0) = h(x), 0 = QondD, (3)
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X(x,O) = g(x), | j = 0on82>. (4)

Here 0 is the temperature, x the concentration of the combustible material; x and
t are respectively the spatial and time variables. These variables are supposed to
have been nondimensionalized. The parameters H and a are positive and e =
exp(-a). Typically, the value of a is between 10 and 100 so that e « 1. The
equations (1) and (2) are considered in a bounded domain D with initial and
boundary values given in (3) and (4). The derivation of the above system can be
found in Frank-Kamenetskii [1], and discussions on the system can be found in
Gelfand [2], Parks [4], and Sattinger [5], among others. It is known that if the
initial concentration and the initial temperature are small, x decays very slowly
and 6 remains of order one. We shall refer to such a situation as subcritical.
However, if the initial temperature and/or the initial concentration is sufficiently
large, x decays rapidly and 0 becomes extremely large before both finally decay to
zero. We shall refer to such a situation as supercritical. In using the terms
subcritical or supercritical, we do not imply that we have defined the critical
conditions when reactant consumption is taken into account. However, these
terms do describe clearly and effectively the two distinctly different situations.
For the subcritical case, Sattinger obtained an asymptotic development for 6 and
X based one « 1.

Recently, Tam [6] used a comparison theorem to construct upper and lower
solutions; and in [7], [8] used an integral equations approach to consider the
influence of the initial data. An attempt was also made in [7] to construct an
approximate description of the temporal evolution of 0 in the super-critical case.
In [3] Kassoy used the method of matched asymptotic expansions to study the
rapid transient phenomena in a similar system but only the spatially homoge-
neous problem was considered.

In this note, we wish to examine the extremely rapid transient behaviour of the
system in the supercritical case for an infinite slab, an infinite circular cylinder
and a sphere, for the case of zero initial temperature. Because of the nonlinearity,
analytical treatment of the system is difficult. However, the problem has been
studied for some time and it is known that x is almost independent of the spatial
variables (see [3]). We make use of this observation to construct approximate
descriptions for 0 and x as follows. We first combine (1) and (2) to form a linear
equation which is solved by using the Laplace transform. Then, assuming an
initial approximation for x which is spatially homogeneous, we solve for 8, from
which an improved approximation for x is obtained. The only assumption used is
that the solution is supercritical. The approximation obtained is not limited to
small t. Indeed, the multiple time scale effect is apparent in the improved
approximation for x-
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2. Approximation for 0 and x for the slab

475

We take v 2 = d2/dx2, 0 < x < 1, h(x) = 0 and g(x) = JV, a constant. If we
write ed + Hx = <p, equations (1) and (2) combine to give

subject to

and

<p(x,0) = (6)

0 = HXs(t), (7)

where x*(0 is the surface concentration to be determined. Using a Laplace
transform with respect to t, and using a bar to denote the transformed quantities,
we readily obtain

<p(p,x) = HN

where

and

We have

cos i{p/2 — cos i{p\x —

cos i{p/2

cos iyp /2 — cos i{p(x —

p cos i{p /2

0 0 / 1

" + 0"

COS!IP/2

and thus

e6(x, t) + HX(x, t) = HNVl(x, t) +
cos iifp/2

• (8)
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If we consider (8) as an expression defining G(x, t) in terms of x, we can re-write
(2) and (4) as an integral equation involving x only. However, the resulting
nonlinear integral equation remains intractable and, to proceed further, we would
have to start an iteration process. While the number of times we can iterate in
practice is extremely limited, we do have the knowledge that the iteration is
convergent since the function exp(a0/a + 6) is uniformly bounded. In view of
the above, we shall start with an initial approximation for x, and use (8) to obtain
an approximation for 6. An improved description for x can then be obtained
from (2).

We observe that as a first approximation, the concentration x can be consid-
ered as spatially homogeneous. Thus, we assume x(-*» 0 ~ Xs0)- To see what
form XsiO should take, we obtain from (2) the expression

where we have avoided inconsistency regarding the spatial independence of x by
taking x = \. Clearly, if Q{\, T) » a, xAO decays as exp(-/), whereas if 8(j, T) is
not exponentially large, x^(0 decays as exp(-ef). Since we are interested in the
super-critical case, we suppose HN is sufficiently large for the former case to
happen. We shall therefore take as our first approximation for x as

X, = (10)

This approximation is a good one as long as 0({, T) » a. From our previous
studies, [9], we have seen that 6{\, r) remains large until H\ ~ 5e(a), which is
about 2 X 10 "5 for a = 20, for all three simple geometries. When that stage is
reached, x is so small that whether its further decay is as exp(-/) or exp(-ef)
becomes unimportant as far as the explosive transient phenomenon is concerned.
Thus, we have

N

p + l'

and hence

e_
cost

_ HNcos(x-±) _t

cos { _
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Figure 1. The quantity x(0 as a function of t for the infinite slab.

Combining the two expressions, we have

ed + HX

0 .8

COS j
n=o

2 7 7 2 -1)277
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Figure 2. The quantity e8({, t)/HN as a function of t for the infinite slab.

from which follows

e0(±,t)=HN\0A39494e-'-
n = 0 1)277

2 -
- (11)
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The time tm at which B{{, t) acquires its maximum can be readily obtained. We
observe that tm is independent of e, H and N to this order of approximation.
Using the expression for 6(\, t) in (11), we can calculate an improved description
for x (0 from (9). The integral has to be evaluated numerically, but the multiple
time scale feature is apparent. While the iteration can be carried forward in
principle, no such attempt will be made.

To see how well (11) approximates the true solution, we solve equations (1) and
(2) numerically, for 0 < x < 1, h{x) = 0, g(x) = N= 1000, a = 10, H = 10. It is
found that x is practically independent of the spatial variable so that the
assumption of equation (10) is justified. In Figures 1 and 2 the comparisons for x
and e0(\, t)/HN are presented for 0 < t < 0.9.

3. Approximations for 6 and x for the sphere

Assuming spherical symmetry, with 0 < r < 1, and using the same notation as
in Section 2, we have

d2y ,2dy _
— T H j - —p<p = -HN,
dr2 r dr

<p(l,p)=Hx,,

from which we obtain

_ , , HN I TT_ HN\ sin i{pr
<p(r,p)= — + [HXs-—) . , r -

P V P I rsin i^p

To invert the above, we introduce the same simplification on x as in Section 2.
Then we have

z ^ r , . J sin r , , „
«p(r, t) = HN\ -^—re'1 + 2 (wV - 1) r j

and in particular

£0(0, t) = HN\0.m395e-' + 2 f -^—e-"V'l. (12)
[ „=! n2ir2 - 1 J

An improved approximation for x is as given in (9).
To provide a comparison, we solve the governing equations numerically for the

sphere with 0 < r < 1, h(r) = 0, g(r) = N= 1000, a = 10, H = 10. In Figure 3,
the quantity e#(0, t)/HN given by (12) is compared with the corresponding
numerical result.
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Figure 3. The quantity £0(0, t)/HN as a function of t for the sphere.
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4. Approximations for 0 and x for the infinite cylinder

481

Assuming cylindrical symmetry, with 0 < r < 1, and with the same notation as
before, we have

r dr y v

ip{\,p)=Hx,,

0 .1 0.2 0.3 0.4 0.5 0.6 0.7 0 .8 0.9

Figure 4. The quantity £0(0, t)/HN as a function of l for the infinite cylinder.
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from which we obtain

Using the same simplification on x, we obtain

where A:n, « = 1,..., are the zeros of JQ(r). In particular, we have

=, kn(k
2
n-

An improved description for x is as given in (9).
Again, we solve the governing equations numerically for the infinite cylinder

with 0 < r < 1, h(r) = 0, g(r) = N = 1000, a = 10, H = 10. In Figure 4, we
compare e0(O, t)/HN obtained from (13) and from the numerical solution.

5. Concluding remarks

For each geometry, we have constructed an approximation for 6 whose depen-
dence on e, H and TV is explicitly demonstrated. As seen from the plots presented,
the approximation agrees well with the numerical result. The relative ease with
which the result is obtained depends crucially on the initial approximation for x,
which in turn is based on the assumption of rapid transient phenomenon in 9.
The nature of the approximation suggests that the accuracy of the expressions for
6 and x will decrease as time increases. This is not serious, however, as the main
interest here is the description of the rapid transient behaviour.

We have dealt with the case of 0(x, 0) = 0, but the influence of a non-zero
6(x,0) can be studied without much difficulty. In particular, if 6(x,0) = K —
constant, our results holds if HN is replaced by i/iV" + eK in the expression for <p.

The case of higher order reaction can be treated in a similar manner, and is
under study. It is clear that x will decay algebraically instead of exponentially and
the corresponding expression for 6 will be more difficult to obtain.

https://doi.org/10.1017/S0334270000003830 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000003830


in] Temporal evolution in combustion theory 483

Acknowledgements

This research was supported by the Natural Science and Engineering Research
Council of Canada under Grant S-5228. The author also thanks Mr. D. Collins
for obtaining the numerical solutions.

References

[1] D. A. Frank-Kamenetskii, Diffusion and heat transfer m chemical kinetics (Translation editor J.
P. Appleton), (Plenum Press, New York, 1959).

[2] I. M. Gelfand, "Some problems in the theory of quasi-linear equations", A MS Translations Ser.
2, 29 (1963), 295-381.

[3] D. R. Kassoy, "Extremely rapid transient phenomena in combustion, ignition and explosion",
SIAM-AMS Proceedings 10 (1976), 61-72.

[4] J. R. Parks, "Criticality criteria for various configurations of a self-heating chemical as
functions of activation energy and temperature of assembly", / . Chem. Phys. 34 (1961),
46-50.

[5] D. H. Sattinger, "A nonlinear parabolic system in the theory of combustion", Quart. Appl.
Math. 33 (1975), 47-61.

[6] K. K. Tarn, " Construction of upper and lower solutions for a problem in combustion theory",
J. Math. Anal. Appl. 69 (1979), 131-145.

[7] K. K. Tarn, "Initial data and criticality for a problem in combustion theory ",/. Math. Anal.
Applic. 77 (1980), 626-634.

[8] K. K. Tarn, "On the influence of the initial data in a combustion problem", J. Austral. Math.
Soc. Ser. B 22 (1980), 193-209.

[9] K. K. Tarn, "Computation of critical parameters for a problem in combustion theory",/.
Austral. Math. Soc. Ser. B 24 (1982), 40-46.

https://doi.org/10.1017/S0334270000003830 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000003830

