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The Definition of a Tangent to a Curve

By T. M. FLETT.

1. In elementary geometry, the tangent to a curve C at a point
P is defined as the limiting position of the chord PQ as Q tends to P
along the curve. Further, C is said to have a continuous tangent
at P if it has a tangent at every point Q in the neighbourhood of P,
and if the tangent at Q tends to the tangent at P as Q tends to P
along G.1

It would perhaps be natural to expect that a curve which
possesses a continuous tangent at each of its points should be fairly
well-behaved, that it should for instance be rectifiable,2 and that it
should be regular if suitably parametrized (e.g. with respect to arc
length). These results, however, are false if " tangent " is interpreted
in the sense above. For example, the curve

• it sin ljt ( 0 < * < l ) ,
X — 0 , M = 1 ' "

I 0 (* = 0),
possesses a continuous tangent at every point (namely the line
x = 0) but has infinite length. This particular curve has also an
infinity of multiple points, but it is easy to construct simple curves
having these properties.

1 See e.g. Fowler, The Elementary Differential Geometry of Plane Curves (2nd
edition, Cambridge, 1929) pp. 8, 10.

2 This result is actually stated by Fowler (op. cit., p. 12).
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2 T. M. FLBTT

The reason underlying the failure of these results to hold is that
the property of possessing a continuous tangent does not prevent the
ourve from having cusps. In view of this it seems worth while to
investigate some alternative definitions of tangent which do not suffer
from this defect. We shall in fact consider three types of tangent.
One is defined in a similar manner to that above, save that both end-
points of the chord are allowed to vary, i.e. it is defined as the limiting
position of the chord QxQ% as Ql3 Q2 tend to P along C independently
of each other. The other two are directed tangents, corresponding
roughly to the two types of tangent already denned, but with the
added condition that the direction of the chords should tend to a limit.
It will appear in the sequel that, with these alternative definitions, a
curve with a continuous tangent is rectifiable, and is regular when
parametrized with respect to arc length.

It must be emphasised that there is no correlation between the
existence of (continuous) tangents and the existence of (continuous)
•derivatives. Thus a curve

x = x(t), y = y{t),

can have a continuous tangent at a point t0 (in all the senses considered
here) although the derivatives x' and y' do not exist there [e.g.
x{t) = £*, y(t) — ti, t0 — 0], and can also have continuous derivatives
at a point t0 without having a tangent there in any sense [e.g. x(t) = t2,
y(t) = t | t | , t0 = 0]. Thus our arguments must not assume the
•existence of the derivatives x' and y'.

It is hard to believe that the results of this paper do not occur
somewhere in the literature, but they are by no means well known,
and this seems sufficient excuse for bringing them together here.

2. We begin with some definitions and notation, taking the case
•of 3 dimensions as typical. A curve C is a continuous mapping of a
•closed interval / , a ^ t < b, into 3-dimensional Euclidean space,

x = x(t), y = y(t), z = z{t),

where x(t), y(t), z(t) are real-valued functions continuous in / . We refer
to the point (x(t), y(t), z(t)) of the space as the point t of C, and we use
the terms " the arc tot of C " and " the chord tot " with their obvious
meanings.

For any £ and t] of / let d(£, -q) be the length of the chord joining
the points £ and -q of C, and let Lx{i;, rj), Lt($, -i)), L3(g, rj) be the
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THE DEFINITION OF A TANGENT TO A CURVE

direction-cosines of the directed segment from £ to 7], i.e.

and similarly for L2 and L3.
We consider three types of tangent, a, /?, y, denned as follows.

We say that G has an a-tangent at the point t if the direction
of the chord $-q tends to a limit as f, rj -»t, the points f, -q always
being in the same order along C, i.e. if there exist numbers lx(t), I2(t)y

I3(t), such that, as £ and rj tend to t in such a manner that £ < -q

A(f, V)->1&) (»= 1,2,3).

The a-tangent at i is then the directed line through the point t of C
with direction-cosines Zlf £2, Z3.

In the case of the j8-tangent, we ask only that the chord grj should
tend to a limiting position. More precisely, we say that C has a
/8-tangent at t if there exist numbers lx(t), I2(t), I3(t), such that either

Ldi, v) -> W) (* = 1> 2, 3)
or

£4(f, *>)-» - 1,(0 (*=1 , 2, 3)

as £, ->j -»«. The j3-tangent at < is then the (non-directed) line through
the point t of C with direction-cosines llt l2, l3-

The y-tangent is again a directed tangent, but here we make one
of $ and r] coincide with t. Thus we say that C has a y-tangent at
t if there exist numbers m1(<), m2(t), m3(t), such that for each i

L,(£, 0-»»»i(0
as £ -> t —, and

AC. V) -> »»i(0
as 17 -» < + . The y-tangent at < is then the directed line through the
point t of C with direction-cosines mlt «i2, TO3.

X

In each case we can also define the tangents at t from the left
and from the right by imposing the obvious restrictions on | and r\.

It is evident that an a-tangent is also a y-tangent, but the con-
verse is false; a curve can have a y-tangent although the a-tangent
does not exist. It is also obvious that if C has an a-tangent at tt

then it has a jS-tangent there. We shall show in § 4 that the converse

1 We could also define the direction-cosines of the 7-tangent as the limits of Li (f, y)
as f, v->t in such a manner that £ < t < v, t N= y. It is easily verified that this
definition of the 7-tangent is equivalent to that given above.
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4 T. M. FLETT

here is true; the existence of the /3-tangent implies that of the
a-tangent.

We say that an a-tangent (and similarly /3- and y-tangents)
exists at each point of a set E c I if C has an a-tangent at every
point of E interior to / , and also has an a-tangent from the right at
t = a and an a-tangent from the left at t = b whenever these points
belong to E. The tangent (a, /3, or y) is continuous at a point t0 of C
if it exists at every point t of C for all t in some neighbourhood of /0
and, for each i, lt(t) [or m,(i)] is continuous at tQ.

Finally, for any £, 77 of / we denote by s (£, 77) the length of the
arc £rj of C (i.e. the supremum of the lengths of inscribed polygons,
the value + °° being permitted). If s (£, 77) < 00 , the arc £77 is
rectifiable.

3. We consider now some consequences of the existence of the
a-tangent, and here our arguments are very straightforward. We
have first

THEOBEM 1. If the a-tangent exists at each point of a set E c / ,
then it is continuous in E.

Given e > 0, for each t of E we can find 8(t, e) such that

I Lt(i, v)-li(t) I < e ( » = 1, 2, 3)

for all £, rj of I such t h a t £ < -q and j £ — t \ < 8(t, e), | i\ — t | < S(/, e).
If now t0, t are points of E such t h a t j t — t0 \ < 8 (t0, e), and f, 17 are
points of / for which £ < 77 and | $ — t0 | < S (t0, e), | 77 — t0 | < S(/o, e),

£ — t I < S(/, <r), | 77 — t I < 8(t, e), then for each t

! J,-(0 ~ h(tB) I < ! ^(0 - Lt(Z, 77) ] + I A(^, 77) - i,.(/0) I < 2e,

and this proves the theorem.

THEOREM 2. / / /Ae a-tangent exists at each point t of a closed set
Eel, then, for each i, Li(^, rj) -> l^t) as £, 77 -> i in such a manner that
£ < 77, uniformly with respect to t in E.

Suppose for example that Lx does not converge uniformly to lx in
E. Then for some e > 0 we can find a sequence {tn} of points of E and
points $n, r]n of / such that 4 < 77,,, j £n — tn | < 1/n, | rjn- tn | < l/»,
and

I ^,(f», %) - h(t») ] > e- (3.1)

The sequence {/„} contains a convergent subsequence, {tnj say, con-
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THE DEFINITION OF A TANGENT TO A CURVE 5

verging to a point t of E, and, by the continuity of lx in E, li{tn)-*l-i(t).
But also £^, r]nv ->$, and, by (3.1),

1,(1) = lim £,(£,„, ,,,,.) # lim l{tni),

a contradiction.
We come now to theorems concerning arc length, and here we

require the following

LEMMA. Let a < <0 < i < 6, and let 0 < p < -}. If, for each i

| Lt(i, r,) - LAh, t)\<p

whenever t0 < $ < -q < t, then
s (te, t) 1

The first inequality in (3.2) is obvious. To prove the second, let
to<€< V <t> a nd *or e a c n * write Li = Li(£, vf), L/ = Li(t0, t). If
0 is the angle between the directed segment from £ to 17 and that from
<0 to t, then [since | Lt | < 1]

cos 0=SLiL/ =l -SL ( (L,—L/)>l-2 | i , | | A - A' | > l - 3 p . (3.3>
Now let t0 <tt< ... < tn = t. Then

n
S <*(<„!, /r) cos B, = d(<0. 0.

where dv is the angle between the directed segment from <„_] to f,
and that from t0 to t [for, by (3.3), \dv\<\n for each v\. Since
cos 5, > 1 — 3p, we thus have

n
(1 - Zp) S «*(«,_!, «,) < d(t0, t),

p = l

and taking the supremum of the sum on the left we obtain the required
inequality.

We now have

THEOREM 3. / / C has an a-langent at the point t0, then as t->t0

1.«(<„»
d(to,t)

We prove the result as t -> t0 from the right. An exactly similar
argument applies to values of t less than t0.

Given e such that 0 < e < | , we can find S such that for each *

I L(tf, ij) - lt(t0) I < e
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6 T. M. FLBTT

whenever f, 17 are points of / such that £ < 17 and | | —10 \ < S,
I 7] — /„ I < 8. If now <0 < £ < 77 < < < t0 + 8, then for each i

I Z,(& v) - Lfa, t) I < 2e.

Hence, by the lemma,

"""" d(to,t) 1 — 6e '

and this is the required result.

THEOREM 4. If the a-tangent exists at each point of C, then C is
rectifiable.

By Theorem 2, given e such that 0 < e < '£, we can find 8 such
that for each i

I A(f, i?) - WO I < € (3.4)

whenever £ < ij and | £ — < | < S, | 17 — < | < 8 . Further, since l( is
continuous in I, we can find points a = t0 < tt < . . . < tn = 6 such that
for each i

I WO - W*,-i) I < « (3.5)
whenever ^_a ^ << tr; and the points tv can evidently be chosen so
that also sup {tv — ^_x) < 8. It follows from (3.4) and (3.5) that

v

I Lt{£, r,) - Lt{tr_u t,) I < 3e

whenever i,,_1 < | < TJ < <„, whence, by the lemma,

S&-U O < ^ ^-d(h-i> K)-

Since the tv depend only on e, the result follows by addition.
Combining Theorems 3 and 4 we now have

THEOREM 5. If the a-tangent exists at each point of C, then x, y, z
•are continuously differentiable functions of s — s(a, t) in a < / < b, and
dx dy dz n . 7. r
—, —, — are never 0 simultaneously,
ds ds ds

4. We consider now the jS-tangent, and prove

THEOREM 6. If C has a ^-tangent at t0, then it also has an a-tangent
there.

We have to show that in the neighbourhood of t0 the curve C
cannot have two chords pointing in approximately opposite directions.
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THE DEFINITION OF A TANGENT TO A CURVE 7

By hypothesis, given e > 0 we can find a neighbourhood U of ta

(in / ) such that (i) when f and rj belong to U the acute angle between
the chord g-q and the /?-tangent at t0 is Jess than e, and (ii) the arc C"
of C corresponding to t in U is simple. Let now £ belong to U, and
let V — V(g) be the conex with vertex at the point £ of C, with axis
parallel to the /8-tangent at t0, and with semi-vertical angle e. By (i),
the arc C" of G lies in F. Moreover, the arc of C" for which t > £ lies
in one half of F, say F + (£), while the arc of C" for which t < tj lies in
the other half, V~(£) [for C" can only pass from one half of F to the
other via the vertex, and this is impossible except at t = £, since C"
is simple].

If now C" has two chords pointing in approximately opposite
directions, it is easy to see that we can find £x and g2 in U with &<£ 8

and such that V+(^t) and F+(£2) point in opposite directions. Since
the point g2 of C lies in F+f^), we have F+(£2) =3 F~(f1), and this is a
contradiction, since F"(f1) and F~(£2) have points in common, other
than the point £, of C. This completes the proof.

From Theorem 6 we deduce immediately the

COROLLARY. The results of Theorems 1-5 continue to hold if
" a-tangent" is replaced throughout by " ^-tangent ".

5. We consider finally the y-tangent, and^here our arguments apply
only to the plane, although the results presumably continue to hold in
spaces of higher dimensions. We use a geometrical form of the mean-
value theorem which I do not recall having seen in print elsewhere.
We include for the sake of completeness a result concerning simple
curves which we do not actually require here.2

THEOREM 7. If the (plane) curve x = x(t), y = y{t) (a < t < b) has a
y-tangent at every interior point, there is at least one £ in a < £ <b such
that the line of the y-tangent at $ (direction being disregarded) is parallel
to the chord ab. Moreover, either $ can be so chosen that the direction of
the y-tangent at $ is that of the directed segment from a to b, or there is at
least one -q in a <-q <b such that the y-tangent at ij is perpendicular to
the chord ab.

1 Infinite in both directions.

2 I have used it without giving a proof in my paper " Some remarks on schlicht
functions and harmonic functions of uniformly bounded variation", Quart. J. of Math.
{Oxford 2nd Series), 6 (1955), 59-72.
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8 T. M. FLETT

If in addition the curve is simple, then | can always be chosen so
that the direction of the y-tangent at $ is that of the directed segment
from a to b.

Suppose first that the curve has a y-tangent at t0, and let ifi0 be a
solution of the equations

cos >/t0 = m^o), sin ̂ 0 = m2(tQ),

and for given positive e and 8 let W+(t0; e, 8) be the set of points
(x(t0) + u cos ift, y(t0) + u sin tfi) for which | ijj — I/J0 \ < e and 0< « < 8.
Let also W~(t0; e, 8) be the corresponding set of points such that
I "A ~ fAo I < e and —8 < u < 0. Then each of W+ and W~ is a wedge-
shaped region with vertex at the point t0 of the curve and with the
tangent at /0 as axis of symmetry. It is evident that W+ contains
«11 points t of the curve for which t is sufficiently near t0 and t> t0

while W~ contains all those points t for which t is sufficiently near
ttt and t < t0.

Consider now the proof of the theorem. We may evidently
suppose that y{a) = y(b) = 0, and that x(b) > x(a). If the curve and
chord coincide, there is nothing to prove, and we may therefore
suppose that y is somewhere positive or negative, say the former.
Since y is continuous, it attains its supremum in (a, 6) at a point $,
and a < £ < b since y(a) = y(b) = 0. If now the y-tangent at £ is not
parallel to the a;-axis, we can choose e so small that TF+(|; e, 8) and
W-($; c, 8) do not meet the line y = «/(£). Then one of W+ and W~
lies in y > y(£), and since both contain points of the curve, we have
the necessary contradiction.

Suppose next that the direction of the y-tangent at f is opposite
to that of the chord from a to 6. Then W+(£) lies to the left of £ and
W~(£) to the right, so that x(t) — x(£) attains positive values in a<t<£
and negative values in £ <t< b. Since either x(a) — x(£) is negative
or x(b) — x(£) is positive, x(t) — x(£) either attains its supremum in
a < t sg $ at an interior point -q of this interval, or attains its infimum
in £ < t < b at an interior point t] of this interval. The argument above
now shows that the y-tangent to the curve at r\ is parallel to the axis
of y, i.e. is perpendicular to the chord ab.

Suppose finally that the curve is simple. Let ^ be the first
point (after a) at which y attains its supremum in {a, b), and let | a

be the first point after £x at which y attains its infimum in (̂ 1( b).
If the direction of the tangent at £x is opposite to that of the chord
from a to b, TF + (̂ 1) lies to the left of the point $x. In order to reach
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the point 6, the curve must therefore pass to the left of the point a
after leaving £x

 1, whence y takes negative values in (£x, b) and £2=t= b.
If now the direction of the tangent at £2 is also opposite to that of
the chord from a to b, W+(g2) lies to the left of the point £2 °f C-
Moreover, for small enough e and S, TF+(£2) does not meet the arc £x£2

of G [for there is a £3 4= £2
 o n the a r c £i& such that the open arc £3|2

lies in W~(g2). Since £2 is the first point after £x at which y attains
its infimum in ^ < t < b, the infimum of y in £t < £ < £3 is strictly
greater than y((j2), and the statement follows]. But since the arc of
the curve from £2 to 6 joins points of W+(f2) to b, it must cross the
arc of the curve from gt to £2, and this gives the necessary contradic-
tion. Hence the direction of the tangent at either £t or £2 is the
same as that of the chord ab.

From Theorem 7 we deduce immediately

THEOREM 8. / / C is a plane curve, and if the y-tangent to C exists
and is continuous at t0, then C has an a-tangent at tQ.

If the result is false, we can find a positive e and sequences
L, Vn, L', Vn -> h s u c h that L < Vn, U < Vn> a nd

I Ltf,, Vn) - LMn, Vn) \>e (» = 1, 2).

It follows now from Theorem 7 that there exist pairs of points tn, tn'
as close to t0 as we please such that the angle between the y-tangents
at tn, t^ exceeds some positive fixed number,2 contradicting the con-
tinuity of the tangent at t0.

We thus have the

COROLLARY. The results of Theorems 2-5 continue to hold if the
existence of the a-tangent is replaced by the existence and continuity of
the y-tangent.

1 Else it crosses itself. This, and the similar point which occurs later in the
argument, seem to require something akin to the Jordan curve theorem for their
disposal.

2 Either there are points between the end-points of the chords invn, inVn a* which
the y-tangents are parallel to the (directed) chords, or there are points at which the
7-tangents are perpendicular to each other.
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