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representing ^"(E, fti) and ^"(E, Q2) with suitably chosen 'parameters' E, ^2X, Q2

- so that an argument establishing suitability of these parameters remains within the
scope of algebraic theories, and hence constitutes the 'algebraic' part of a proof.

Complete separation of arguments on internal properties of algebraic theories from
their actual representation in Top (or other categories) allows us to deal with more com-
plex questions concerning clone segments. For instance, the present paper investigates
also 'simultaneous representations' of embeddings

in various modifications m : Top —> Top, see Section 3.
All needed notions are presented in Section 0. The subsequent two 'algebraic'

sections give constructions of algebraic theories representable by topological spaces
constructed in 'topological' Sections 3, 4 and 5. Other applications of the 'algebraic'
part of this article will appear elsewhere.

0. Preliminaries

We say that a concrete category (JT, U) has concrete finite products if J ^ has finite
products and the faithful functor U : Jf -» Set preserves them. It has the transfer
property (also called transportability, see [1]) if for any J^-object a and any bijection
/ : U(a) -> X there exists a J^-object b with U{b) = X and also an isomorphism
P e JT(a, b) such that U(P) = / .

Let (Jf, U) be a concrete category with the transfer property and concrete finite
products. For any J^-object a with U(a) ^ 0, let Xa denote the full subcategory of
tf determined by all finite powers a0, a, a1,... of a, and let Ua denote the domain
restriction of U to J(fa. The concrete category (J^, Ua) will be denoted by Clo(a).
Since (J^, U) has the transfer property, we may require that each n-th power a" of a
and its product projections n\n) : a" -» a with / e {0, . . . , n — 1} = n are chosen so
that U(a") is the n-th Cartesian power U(a)" of the set U(a) and, for all i 6 n, the
map U(nln)) is the Cartesian projection

With this requirement satisfied, Clo(a) is what universal algebraists call a clone on
the set U(a), see [5]. For any integer k > 1, the concrete category (Jfa,k, Ua<k) for
which J&at is the full subcategory of J ^ determined by objects a0,..., ak~l, and Ua,k
is the domain restriction of Ua to Xa.k is denoted Clo*(a) and called the k-segment of
Clo(a).

The reason why the object a° was not included in the definition of a clone of a
topological space X given in the introduction is simply that, being just the singleton
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space X°, it has no significance for the results mentioned there. This phenomenon
is common to concrete categories {X, U) with concrete finite products and with all
constants, for a° is a terminal object in any of these categories.

Let a, b € obj X, and Clo(a) = {Xa, Ua), Clo(fc) = (Xb, Ub). For k > 1, we
write

Clot(a) = Clok(b)

if there is an isofunctor <I> of Xa,k onto Xb,t- If $ also satisfies Ubk o <t> = I/Oit we
write

Clot(a) = C\ok(b).

In universal algebra, clones on sets are sometimes considered distinct only when
there is no categorical isomorphism between them. This view is reflected by the notion
of abstract clone, see [5], closely corresponding to the notion of an algebraic theory
in the sense of [3]. An algebraic theory with a base object a is then any category J7
with

and, for every n e {0, 1,...} = at, a specified n-tuple of morphisms

7r,(n) : a" -* a with i e n

forming a categorical product of n copies of a, meaning that for every n-tuple
fo,... ,fn-\ '• am —>• a of ^-morphisms there exists a unique ^-morphism / :
am -*• a" satisfying n\n) of = / , for all i e n; we then denote / = f0 x • • • x/n_,.

Let & and &' be algebraic theories whose respective base objects are a and a'. A
functor H : !7 —*• &' is called a homomorphism of these theories if H(a") = {a')n

and H(n\n)) = nfn) for every integer n > 0 and for all i € n. Let X be a category
with finite products, and let * : & -> Jf̂  be a full and faithful functor. We say that
^ is a representation of a theory ^ in JT if it preserves the finite powers of a, that
is, the object *(a") together with {VI'CJT/'0) | i e n) is the «-th power of ^(a) in X
for every n e co. In particular, the object ^(a0) is a terminal object of Jf. Since
any finite product is determined uniquely up to an isomorphism, any representation
* : £? -* X is determined by the object *(a) uniquely up to a natural equivalence.

Let {X, £/) be a concrete category with concrete finite products and the transfer
property. If, for its terminal object t (which is a product of an empty collection of its
objects), the hom-functor J^(f, —) : JXf ->• Set and the faithful functor U : X -* Set
are naturally equivalent, we say that (X, U) is well-pointed. (This is the case for the
category Top and its natural forgetful functor.) If *I> : $" —> X is any representation
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of an algebraic theory 2f with a base object a in the category Jf, then ^ (a0) must
be a terminal object t of JT, and the set &(a°, a) must be sent bijectively onto
the hom-set X(t, ty(a)) which, in turn, is bijective to the set Uty(a). Therefore
finding a representation of & in Top amounts to finding a topology r on the set
P = ^(a°,a) for which the clone of the space X = (P, r) in Top is isomorphic to
3'. Any representation * : & —>• Top thus determines which actual maps between
finite powers of P are continuous, and this fact substantially restricts the extent of
algebraic theories that can be represented in Top.

Next we define algebraic theories we shall be concerned with.
Let E = U^lo ^« t*e a finitary type of universal algebras in which En denotes the

set of all n-ary operation symbols. For any a e E, we write ara = n to meaner e £„.
Throughout the paper, Eo will be infinite and E \ Eo # 0.

Let ^"(E) denote the algebraic theory freely generated by E. Explicitly, 5*(E)
is an algebraic theory such that every o e £„ is a ^(E)-morphism a" -> a (where
a denotes the base object of <^(E)), and <fT(E) has the usual universal property:
for any algebraic theory &' with a base object a', any mapping G : E —*• &' with
G(<J) e ^'((a')n, a') for every o e En has a unique extension to a homomorphism
H : ̂ ( E ) -». ^ ' .

For any set SI c E \ (Eo U EO, let ^ ( E , Q) denote the largest subtheory of
such that

(i) if a € ft, then a does not belong to ^ ( E , ft), and
(ii) if a e E and a are ^(E)-morphisms whose composite am —>• a" —> a

belongs to ^"(E, ft), then a belongs to 5*(E, ft) as well.

In [12], it is shown that the free theory & = ^ ( E ) with card E > 1 and Eo / 0,
and also any of its subtheories &a = ^ ( E , ft) with ft c E \ (Eo U EO are well-
pointed and satisfy

Since Eo will always be infinite, all algebraic theories considered here will have these
two properties. The result of [12] describing their internal structure is recalled in the
section below, and used extensively afterwards.

1. Representations of pairs of r-ultrametrics

D E F I N I T I O N 1.1. L e t S b e a set . A func t ion ^ : 5 x S ^ {2, 3 , . . . , oo} is c a l l e d a
reciprocal ultrametric, or an r-ultrametric on S if, for all s, t, u € S,

(1) <p(s,s) = oo,
(2) cp(s, t) = <p(t, s) , and
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(3) <p(s, u) > min{<p(s, t), <p(t, u)}.

Let S = [a, | j e S} be a set of objects of a concrete category (Jff, U) with
concrete finite products and the transfer property, such that

U(as) = V{a,)

and

{U(a) | a e X(as, as)} = {U(fi) \ fi e JT(a,, a,)} for all s,t eS,

that is, all members of § have the same underlying set and the same endomorphism
monoid. Any such set § determines a pair of r-ultrametrics on S as follows:

<p(s, t) = sup{& I Clot(as) = Clot(a,)} and

<p{s, t) = sup{k | C\ok(as) = Clot(a,)).

It is clear that these r-ultrametrics satisfy cp(s, t) < (p(s, t) for all s, t e S. In this
section we aim to show that for certain concrete categories {Jf, U), these necessary
conditions are also sufficient, in the sense that every pair (p < <p of r-ultrametrics on a
set 5 can be represented by a system § = {as | 5 € S] of its objects, see Theorem 1.3
below.

DEFINITION 1.2. A concrete category (J(T, U) is comprehensive if there exists a
cardinal number a such that every algebraic theory ^"(E, £2) with

card Eo > a + card(E \ Eo)

is representable in JH'. When it is necessary to indicate the cardinal a, we say that
(J^, U) is a-comprehensive.

In this section we prove the following result.

THEOREM 1.3. Let (Jf, IT) be a well-pointed comprehensive concrete category.
Then any two r-ultrametrics <p < cp on a set S can be represented by a system
{as | i € S} c obj J^ in the sense that, for all s, t e S,

U(as) = U(a,) and {U(a) \ a € X(as, as)) = {U(P) \ P € X{at, a,)},

<p(s, t) = sup{£ | C\ok(as) = Clo*(a,)},

^(5, 0 = sup{A; | C\ok(as) = Clo,(ar)}.

REMARK. Theorem 1.3 can be applied to the category MTop of metrizable topolog-
ical spaces and their continuous maps because, clearly, MTop is well-pointed and, as
shown implicitly in [6] and stated explicitly in [12], it is also comprehensive. Hence
any two r-ultrametrics <p < (p can be represented by the equality and the isomorphism
of clone segments of metrizable topological spaces.
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Now we turn to the proof ofTheorem 1.3.

LEMMA 1.4. Let <p and <p be r-ultrametrics on S such that

<P(s,t) <<p(s,t) for all s,teS.

Then, for every s e S, there is a sequence {Mn(s) | n — 2, 3 , . . . } of sets such that the
collection

M = {Mn(s) | n = 2, 3 , . . . ands e S)

satisfies these two conditions:

(1) ifn <<p(s,t) then Mn(s) = Mn(t),
ifn = (p(s, t) then Mn(s) D Mn{t) = 0,

(2) ifn < <p(s, t) then card Mn (s) = card Mn (t),
ifn = <p(s, t) then cardMn(s) ^ cardMn(/).

Furthermore, ifS is countable, then all sets Mn(s) may be chosen to be finite; ifS is
finite, then all but finitely many sets Mn(s) may be chosen to be empty.

PROOF. Since <p < <p are r-ultrametrics on 5, the sets en = {(s, t) e S2 | n <
cp(s, t)} and en — {(s, t) e S2 \ n < <p(s, t)} are equivalences on 5, and en c en for
all n > 1. It is also clear that en+i c en and en+l c en for every n > 1, and that
e\ = e\ = S2. Furthermore, (5, t) G en \ en+i exactly when <p(s, t) = n + I, and
similarly for (p.

In what follows, we regard a cardinal number as the set of all smaller ordinals.
To produce the required sequences, we set Mn{s) = 0 for every s e 5 whenever

n < <p(s, t) for all s,t e S, or whenever <p(s, t) < n for all s,t e S. Next, we select
and fix a bijection y3 : cardS —> S, and for all other n > 2 set Kn(s) = min{/c 6
card5 | (P(K), S) e en}. Let kn : S -> Card+ be a mapping into the class Card+

of all nonzero cardinals such that Xn(s) = A.n(0 exactly when (s, t) e en. Write
Mn(s) = {Kn(s)} x kn(s). The system M = [Mn(s) | n = 2, 3 , . . . and s e 5} then
satisfies (1) and (2). If 5 is countable, then the values of each Xn may be chosen to be
finite. If 5 is finite, then the system M will have finitely many nonempty (and finite)
members. •

Next we describe the free theory & - &(£) and its subtheories &a = ^"(E, £2)
for Q, C E \ (Eo U E,) in structural terms.

We begin with & = ^ ( E ) . It is well-known that the set M(m) of all ^"-morphisms

am -> a is the underlying set of a free E-algebra over m generators. This set has the

form M(m) = I J ^ Q M^m), where the subsets Af*m> are defined inductively as follows.

First,

0 — 1 ^ 0 > • •• . nm-l> U \ a ' T I CT G ^O).
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where the product projections n^ play the role of generators, the expressions a • r(m)

with a e S o are constant terms, and r(m) : am —• a0 denotes the unique morphism of
am into the terminal object a° in 2f. The remaining sets M^m) are defined successively
by the inductive formula

= M<m) U ( J {a(f0,.. . , / „ „ _ , ) | /,- e M<m) for all i e a ra} ,

where CT(/0. • • • , /ara-i) is a term formally created from a and already existing terms

/0> • • • i/ara-1-

If m = 0, then r(0) : a0 ->• a0 is nothing but lflo, so that instead of a • r(0) with
CT 6 Eo we shall write a . Hence MQ0) = S o and the formula for M^ \ remains
unchanged. For m = 1, we have only one product projection KQ1), namely lo. Hence
MQ1) = [la] U {a • T(1) | a e So) and the formula for M ^ , also remains unchanged.

For n > 1, the set f7{am, a") is defined to be the set of all H-tuples (f0,..., fn_x)
of elements of ^{am, a). The unique element of ^(am, a0) has been already denoted
by r(m). The inductive definition of composition as well as the proof that <!7(X!) is
really an algebraic theory (meaning that n-n) : a" —>• a with i 6 n form a categorical
product of n copies of a) is given in [12].

Also in [12], the structure of the subtheory &n = &(£, Q) of ST = ^ ( S ) is
described as follows. For any m > 0, the hom-set T(m) — &n(am, a) has the form
T(m) = I X o Ttm\ where

T0
(m) = M(

o
m) - { ^ m ) , . . . , n ^ }u{a0- r«"> | a 0 € E o } ,

r / " ' = 7o(m> U ( J { p C T ( / o , . . . , / „ „ _ , ) | / , € r0
(n) for all i € ara}

"0' • • •' / • " - •> I / ' e 7om) for all i € ara

and either/, = fj for some i, j € arcr with i 7̂  7"

o r / j = CT0 • *<m> for some i € ar<r and a0 e Eo},

i = ?i(m) U ( J {p,tfo, • • •, /ara-,) I / , e 7?"0 for all i 6 ar a

and/ j & T^\ for somey € a ra} , for any k > 1.

Less formally, this means that r<m) is the set of all those terms in M(m> which do
not contain any subterm of the form <j{n^0),..., it^n_X)) with a e Q (1 En and a
one-to-one map ^ : n —»• m.

If n > 1, then ^ " ( a m , a") is the set of all n-tuples ( / 0 , . . . , / n _ i ) of ^a(am, a),
while the morphism r(m) is the unique member of &a(am, a0), just as in 9" = ^"(E).

Let (j> > (pbe two r-ultrametrics on the set S, and let a be an infinite cardinal for
which (J£T, U) is a-comprehensive. To any s e S we now assign an algebraic theory

fij) as follows.
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Let M = {Mn(s) \ n = 2,3,... and 5 e S} be the system of sequences from
Lemma 1.4. First we define a type £ by £ i = 0 and £,, = (J {Mn(s) | s e 5} for
each n > 2, select a set Eo with card £ 0 > a + card |J {£„ \ n > 1}, and let £ stand
for the disjoint union of all sets En with n e co.

For every s e 5 and n > 2, we define

O,,, = £„ \ Mn(s),

and then set £2S = \J {Sln<s | « > 2}.
For every s e S and each n > 1, we let <^"(£, £2s)n denote the n-segment of

the algebraic theory <^"(£, Qs), that is, its full subcategory determined by the first
n powers a°, a,..., an~l of its base object a. Since <^"(£) and all <!7(E, £2j) are
well-pointed, and because £2 c £ \ (Eo U £ , ) , from the definition of «^"(E, S2) it
immediately follows that <^(E)2 = ^" (E , S2S)2 for every s e 5 .

LEMMA 1.5. Let <p < <p be r-ultrametrics on S. For s € S, let « ^ ( E , Sls) be the

algebraic theory just defined. Then, for any s,t € S,

(a) ^ " ( E , Qs)n = ^ ( E , Q,)n if and only ifn < <p{s, t), and

(b) ^ ( E , Qs)n = 5^(E, fi,)n if and only ifn < $(s, t).

PROOF. First we show that «^(E, &s)n = 5"(E, fi,)n if and only if n < <p(s, t).
Suppose first that n < <p(s, t). In view of the paragraph preceding this lemma, we may
assume that n > 2. L e t / : a" -*• a belong to ^ ( E ) \ <^"(E, Sls). In the algebraic
interpretation, this means that the term / has a subterm g = <J(X^(0), . . . , x^(arff_i))
with a e Qs and a map \}r : a ra —* n that is one-to-one. Hence aia < n < <p(s, t),
so that MaroOs) = Mar(J(0 by Lemma 1.4(1), and therefore a € £2,. But then
/ ^ ^ ( E , £2,). Together with a symmetric argument, this proves that «^(E, £2.,)n =
^• (E , £2,)n whenever n < <p(s, t). Conversely, if n > ^>(s, f), then M^^is) /
A^»>(j,()(')5 see Lemma 1.4(1). If <r € Mv(s,,)(s) \ M v ( j / ) (0 , then CT - interpreted as a
term a(j:0, • • •, -*V(j,r)-i) - belongs to ^"(E, f2s)n but not to <fF(E, £2,)n. Altogether,
«7(E, f2,)n = ^"(E, £2,)n exactly when n < <p{s, t).

Next we show that «^"(E, £2s)n = <^(E, f2,)n if and only if n < <p(s, t). Assume
first that «?"(E, Qs)n = &CE, Q,)n. In [12, Section VII] it was shown that, for
any two subsets Qs and Q, of E \ Eo, the n-segment ^"(E, £ls)n is isomorphic to
^"(E, Q,)n only when card(EJk \ Qs) = card(Et \ £2,) for every ken. Since
E* \ £2̂  = M t ( i ) and E* \ £2, = Mt(f) in our case, from Lemma 1.4(2) it follows
that n < <p{s, t). For the converse, assume that n < <p{s, t). If <p(s, t) < k < n, then
the sets Mk(s), Mk(t) c E t have the same cardinality. Hence there is an involution
pk : E t -»• E t which maps M t ( i ) onto Mt(f) and vice versa. We now define a
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mapping h : E -> E by

\pk(a) if cp(s, t) <k<nsmda e Et

I CT in all other cases.

Then h1 is the identity on E and, because the algebraic theory &(E) is free over E ,
there is an involutory endomorphism ^ of J 7 ( E ) extending ft. Since * maps the
n-segment ^ " ( E , fij)n into « ^ ( E , £2,)n and vice versa, its restriction * „ to ^ " ( E , fis)n

is an isomorphism of ^ " ( E , £2j)n onto the n-segment ^ " ( E , £2,)B. •

P R O O F O F T H E O R E M 1.3 C O N C L U D E D . Since X is comprehensive, for every s e S
there exists a representation <E>S of the theory &(i) = ^ ( E , fis) in X. Write
fls = <J\(a) for every 5 € S. Then a ° = ^ jCa 0 ) is a terminal object of Jf, and hence
we may choose the representations <t>s so that ^ ( a 0 ) = z for all s € S. Recall that
^U)(a°, a) is bijective to the underlying set P of the E-algebra freely generated by
the empty set, for every s € S. From the fullness of <J>S and the fact that U is naturally
equivalent to Jf(z, —) it follows that U(as) is bijective to P for every s e S. Since
( X , U) has the transfer property, we may thus also assume that U(as) = P for every
s € S. When combined with the transfer property, claims (a) and (b) of Lemma 1.5
complete the proof of Theorem 1.3.

2. Representations of pairs of grounded quadruples

D E F I N I T I O N 2 .1 . A quadruple R = (r, 5, t{, t2) of elements of the set {2, 3 , . . . , 00}
is grounded if none of its four entries is strictly smaller than the remaining three.

Let (Jf, U) and (Jf1, £/') be well-pointed concrete categories, and let F : X —•
X' be a functor such that U' o F = U. Suppose that four objects a\, a2 € obj X and
F(ai), F(a2) € obj X' have the same underlying set and the same endomorphism
monoid. In other words, let

f/(a,) = U(a2)(= U'F(ax) = U'F(a2)) and M(at) = M(F(a,)) for ij = 1, 2,

where

M(ai) = {U(a)\a eX(ah ad) and M(F(aj)) = {U'(P)\P eJtr'(F(aj),F(aj))}.

This section discusses the equality and the isomorphism of the clone segments of
the four objects aua2 e obj JT and F(ai), F(a2) € obj X'. We define

r = sup{k I Clot(a,) = Clot(a2)},
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s = sup{k | Clo*(F(a,)) = Clot(F(a2))}, and

U = sup{* | ClotCa,) = Clo*(F(a,))} for i = 1, 2.

Replacing Clo,t(...) = Clo*(...) in these four expressions by CloJt(...) = Clo*(...),
we obtain four more parameters r, s, u and t2 reflecting isomorphism properties of
the respective clone segments. It is not difficult to see that R = (r, s, t\, t2) and
R = (r, s, t\, t2) are grounded quadruples - this is because = and = are transitive
relations, and that r < r, s < s, and tt < U for j = 1, 2. We abbreviate the latter four
relations by writing R < R.

Recall that for any finitary type £ and any two sets fi' c Q C E \ (20 u EO, the
algebraic theory ^"(E, Q) is a subtheory of ^"(E, Q'). Let

, a')
denote the resulting inclusion functor.

DEFINITION 2.2. Let (X, U) and (Jf\ U') be well-pointed concrete categories,
and let F : Jf -*• X' be a functor satisfying U' o F = C/. We say that such a functor
F is comprehensive if there exists a cardinal number a such that, for every finitary
type E with

card Eo > a + card(E \ Eo)

and for any choice of

to' c n C E \ (Eo U

there exist representations $ : ^"(E, Q) -> JT and <!>' : ^"(E, fi') -̂ - J^ ' such that
the diagram

* *'

commutes. We say that F is a-comprehensive if the cardinal a needs to be mentioned
explicitly.

THEOREM 2.3. Let {X, U) and (X', U') be well-pointed concrete categories and
let F : X -> X' be a comprehensive functor such that U o F = [/. Then for any
two grounded quadruples R = (r, s, tu t2), R = (r, s, tt, t2) with R < R there exist
aua2 € obj X and F(ai), F(a2) G obj X' such that

- £/(a2)(= U'F{ax) = U'F{a2)) and M{at) = M(F{aj))for ij =1,2
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and, for i = 1, 2, their clones satisfy

r = sup{Jfc|Clot(a,)=Clot(a2)}, f = sup{Jk|Clot(a,)^Clot(a2)},

s = sup{* | Clot (F(a,)) = C\ok{F{a2))}, s = sup{£ | Clot(F(a,)) = Clok(F(a2))},

ti = sup{k | Clot(a,-) = Clot(F(af))}, U = sup{£ | Clo*(a,) = Clot(F(a,-))}-

The proof of Theorem 2.3 involves a combinatorial discussion, and will be the
subject of the remainder of this section. In Section 3, we apply Theorem 2.3 to
the case when (X, IT) = W, U') = Top and F : Top -> Top is a topological
modification satisfying certain natural requirements, stated in Theorem 3.3 for lower
modifications and in Theorem 3.8 for upper modifications. The requirements are mild
enough to allow these theorems to be applied to the compactly generated modification,
the sequential modification, the completely regular (= Tychonoff) modification, and to
some other modifications. Proofs of topological results described in Section 3, namely
that all these modifications are 21*0 -comprehensive, are presented in the Section 4 and
5. These three sections thus form the 'topological' part of the paper. Moreover,
the spaces F(a{) and F(a2) constructed in Sections 4 and 5 are metrizable, and this
provides a joint strengthening of those results of [8,9] and [6] which concern clone
segment equality and isomorphism.

We begin to prove Theorem 2.3 as follows.

DEFINITION 2.4. Let R = (r,s,tut2) be a grounded quadruple. On a four-
element set D = {a{, a2, aua2] define a binary symmetric function <p : D x D -*
{2, 3 , . . . , oo} by setting cp(d, d) = oo for all d e D, by (p(a{, a2) = r, <p(aua2) = s,
by (p(at, at) = tt for i = 1, 2, as indicated in the diagram

T
(r) (s)

I I
a2 < to) • a2

and by

<p(cii, a-j-i) = max{min{r, f3_,-}, min{5, r,-}} for / = 1, 2.

LEMMA 2.5. The function <p is an r-ultrametric on the set D = {ai,a2,ai,d2}
Furthermore, for any n > 1, the relation

en = {(d, d')€Dx D\n< tp(d, d')\
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is an equivalence satisfying

(aua2), (aua2) € en =>• en = D x D.

PROOF. Since the quadruple R = (r, s,tu t2) is grounded, at least two of its entries
equal m = min{r, 5, t\, t2}. If r = s = m or f, = t2 = m then (p(aua2) = <P(«i. ai) =
m by the definition of <p, and so it follows that <p(x,y) > min{<pO, z), <p(y, z)}
for all x,y,z 6 D. Otherwise r ^ s and ^ ^ t2. With no loss of generality,
assume that r < s, and let f, < f3_,-. But then r = f, = w because (r, 5, fi, ?2)
is grounded, and hence ^(a;,a3_,) = m and (p(aiy a3_,) = min{s,/3_,-}. Again,
*>(*> y) > min{^)(x, z), <p(y, z)} for all x, y,z e D is easily verified. Therefore <p is
an r-ultrametric on D.

The relation en is clearly an equivalence. If (a,-, a3_,-) e ^n for i = 1,2, then « is
smaller than at least three entries of the grounded quadruple R. Since en is transitive
and D has only four elements, it follows that en = D x D. •

Let R = (r,s,t\,t2) and R = (r,s,ti,t2) be grounded quadruples satisfying
R < R. Let <p be the r-ultrametric o n D = {a, a, b, b} defined in 2.4, and let en be
its associated equivalence from Lemma 2.5. Replacing R by R, we similarly define
an r-ultrametric <p on D and its associated equivalence en. Clearly <p < <p. Set
AT = (1 4- sup £5) \ {0, 1}. It is clear that en+i c en c en and en+i c in for all n e N,
and that Lemma 2.5 holds for ^ and £„ as well as for <p and en.

COROLLARY 2.6. For n e N, the equivalence pairs en c en associated with r-
ultrametrics <p < <p by 2.5 are exactly those in which neither en nor en partition D
into classes [aua2], {a\,a2}. Such pairs are called admissible.

LEMMA 2.7. For D = [at, a2, au a2) and any admissible pair en c en of equiva-
lences on D, there exists a collection [Mn(d) \ d £ D, n €. N) of sets such that

(a) M.CCi) CAfafa)/or i = 1,2,
(b) Mn(d) = Mn(d')ifandonlyif(d,d')zen,
(c) cardMn(d) = cardMn(d') if and only if{d, a") e ~en.

PROOF. For each admissible pair en c en of equivalences and i = 1, 2, we shall
construct four sets A, = Mn(a,) and Mn(aj) — Ai U A\ - where the latter union will
always be disjoint, and the set A\ will be infinite when (a,, a,-) G en\en. Nonextremal
equivalences will be identified by their nonsingleton classes. The obvious choice of
cardinalities in cases when en is the total equivalence will be left out in what follows.
Case 0: Let en be the diagonal. To satisfy (a) and (b), we choose nonvoid sets A { ^ A2

and A', ^ A'2. In order to also satisfy (c), we select their cardinalities as follows:

for£n = en select card A! < cardA2 < card A'x < cardA2,
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for en ~ [au a2} select card A \ < card A2 < card A, = card A'2,
for en ~ {at, a2] select card A i = card A2 < card A', < card A'2,
for en ~ {a,, a,} select card A, = card A^ < card A3_* < card A'3_t,
foren ~ {a3_i,a,} select card A, < card A; = cardA3_, < cardA'3_(,
for en ~ {hi, a3_,, a3_,} select card A; < card A3_, = card A\ = card A3_,.,
for en ~ {a,, a3_(, a3_,} select card A, = card A3_, = card A3_, < card A\,
foren ~ {aua2}, {aua2} select card At =ca rdA 2 < card A', = cardA2,
for en ~ {auai}, {a2, a2] select card A! = card A, < card A2 = card A2.

Case 1: en ~ {aua2}. To satisfy (a) and (b), we choose pairwise disjoint sets C and
A, =4 0 with / = 1,2, and set A'J_j = A, U C for / = 1,2. For the equivalences
en 2 en we satisfy (c) through the following choices of cardinalities:

for en = en select card A i < card A 2 < card C,
for £„ ~ {a,, a3_,, a3_,} select card A, < card A3_, = card C,
for en ~ {ai, a2}» {ai, a2] select card A! = card A2 < card C.

Case 2: en ~ {ai, a2}. Here we set Ai = A2 = A and choose nonvoid A', ^ A2. Then
(a) and (b) hold. To satisfy (c), we make these choices of cardinalities:

foren = en select card A < cardA2 < cardA'p
for en ~ {a,, a3_,, a3_,} select card A = cardA^, < cardA^,
for en ~ {ai,a2}, {ay, a2} select card A < card A2 = card A\.

Case 3: en ~ {a,, a,}. We set A\ = 0 and choose nonvoid sets Aj ^ A2. Then (a) and
(b) hold with any A'-i_i ^ 0, and we choose the cardinalities as follows:

for en = en select card A3_, < card A, < card A3_(.,
for en ~ {a,, a;, a3_,} select card A3_( < card A, = card A^,.,
for en ~ {a,, a3_,, a3_,} select card A3_, = card A, < card A'3_,,
for en ~ [di, ai}, [a2, a2} select card A, < card A3_, = card A'3_,.

Case 4: en ~ {a3_,, a,}. Here we choose nonvoid disjoint sets A\ and A2, and set
A3_, = A, U A'r It is clear that (a) and (b) hold with any such choice. To satisfy (c),
we choose cardinalities of these sets as follows:

for en — en select card A, < card A\ < card A3_,,
for en ~ {a3_,, a,, a3_,} select card A, < cardA^ = cardA3_(,
for en ~ {a,, a3_f, a,} select card A, = card A; < card A'3_..

In view of Corollary 2.6, this completes the proof for all pairs en c en in which en has

more than two classes. The remainder, concerning pairs in which en T6 {a, b), [a, b)

and en has at most two classes, is left to the reader. •

PROOF OF THEOREM 2.3 CONCLUDED. Let D = {au a2, aua2}, and let <j> > <p be

r-ultrametrics on D. Given their associated system {Mn(d) | d e D, n e N] con-
structed in Lemma 2.7, for any n e N we set Sn = | J [Mn(d) \ d e D], and then
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choose So so that card Eo > a + card (J {En | n € N], where a is an infinite cardinal
for which F : J f -*• JF' is comprehensive. We set Qnid = En \ Mn(d) for all n e N
andd e D, and then write Sld = (J {find | n 6 Af}.

By Lemma 1.5 and Lemma 2.7, the algebraic theories «^"(E, S2d) with d e D are
such that their n-segments are isomorphic exactly when n < <p(d, d') and coincide
exactly when n < <p(d, d'). Since Mn(at) c Mn{fli) for i = 1, 2 and all n e N, there
exist inclusion homomorphisms

Ei : &(E, J2J -* ^ ( E , £2j,) for i = 1, 2.

Since the functor F : JV -± JV' is comprehensive for the infinite cardinal a, we
have U' o F = U for the respective forgetful functors U and £/', and there exist
representations

<D, : ^ ( S , aai) - • JT and 4>; : ^ ( E , na,) - • JT;

satisfying 4>;.o£, = Fo<D,fori = 1,2. Since 5"" (a0, a) = &(a°, a) is the underlying
set of the images 4>f(a) and <t>'j(a) of the base object a of any of these theories, as
in Section 1 we conclude that U<&{(a) = [/4>2(«) and U'<&\(a) = U'<P'2(a). From
U'oU = Fit then follows that the four objects <J>,(a) € obj X and 4>;(a) € Jf' have
the same underlying set. But then the grounded quadruples R < R are represented by
these four objects, exactly as claimed in Theorem 2.3.

3. Topological modifications

DEFINITION 3.1. Recall that a functor m : Top —>• Top is called a modification if
mom = m, and U o m = U for the forgetful functor £/ : Top —> Set. If this is the
case, for any space X = (P, t) we write mX = (P, mt). \f t < mt for all spaces
X = (P, 0 (which means that the identity map (P, /) —> (P, mt) is continuous, that
is, the topology / is finer than mt), we say that m is an upper modification and write
X < mX .\fmt<t for a\l X = (P, f), then m is a lower modification, and we write

< X. We also note that [2] uses these terms in a somewhat wider sense.

To apply Theorem 2.3 in case when F = m is an upper or lower topological
modification, we need only show that m is comprehensive. Theorems 3.3 and 3.8
below give the respective sufficient conditions for comprehensivity.

OBSERVATION 3.2. We note that the lower modifications m : Top —>• Top are exactly
all full coreflections c : Top —• Top other than the constant one to the empty space.
Indeed, if m is a lower modification, then the identity map 1P carries the coreflecting
map Cx : mX —• X for every space X = (P, t), and the resulting coreflection c maps
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Top onto the full subcategory J^ , determined in Top by all spaces mX with X 6 Top.
Conversely, if c : Top —• Top is a coreflection onto a full subcategory Jf of Top
containing a nonvoid space then, because of the continuity of constant maps, every
coreflecting map cx : cX —> X is carried by the identity map, and hence cX < X.
Therefore U o c = U, and c o c = c follows.

THEOREM 3.3. A lower modification m : Top —> Top is comprehensive when-
ever

(a) mX = X for every metrizable space X,
(b) mY is a closed subspace ofmX whenever Y is a closed subspace ofX, and
(c) there exists a Hausdorfftotally disconnected space Xofor which mXo ^ Xo and

o is metrizable.

Theorem 3.3 can be applied to many coreflections. From [2], we recall a well-
known fact that every class *€ of topological spaces determines a lower modification
m<# by the following rule:

for every space X, a set O is open in m<#X exactly when / ~' (O) is open in Y
for every continuous f : Y -*• X with Y e *€.

For any given class ^ c Top, the full subcategory i> of Top determined by all spaces
X with m<gX = X is the coreflective hull of "^, and it is clear that m<g = m% is its
corresponding coreflection.

OBSERVATION 3.4. Let y c Top consist of all finite 7\-spaces and the subspace
Xo = {0} U {\/n | n = 1, 2 , . . . } of reals (that is, a convergent sequence). Then the
functor my is the well-known sequential modification. It is also well-known and easy
to verify that

(i) if ^ 2 y then m<#X — X for any metrizable X, and hence m<# satisfies (a)
in Theorem 3.3,

(ii) if ^ is closed under continuous images then m^ Y is a closed subspace of
m<#X whenever Y is a closed subspace of X, and hence m̂ > satisfies (b) in
Theorem 3.3.

CLAIM 3.5. Theorem 3.3 can be applied when

^ = y , that is, when m<$ is the sequential modification, or
*€ consists of all compact spaces, that is, when m<# = CG is the compactly
generated modification, or
"tf consists of all spaces X with cardX < y for some infinite cardinal y, that
is, m<# is the coreflection onto the full subcategory of all spaces with tightness
< y, or
*€ consists of all compact spaces of cardinality < y.
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Indeed, for these four types of modifications the class if contains y , and is closed
under the formation of continuous images. Thus, by Observation 3.4, the hypotheses
(a) and (b) of Theorem 3.3 are satisfied. Given an infinite cardinal y, in all cases the
space Xo = (A, u) can be chosen so that card A > y, all points of Xo except o e A
are isolated, and o has a local open basis

{[o] U (A \ D) | D c A and cardD < y}.

Thus, by Theorem 3.3, these four types of topological modification are comprehensive.
The somewhat involved proof of Theorem 3.3 will be presented in Sections 4

and 5. Here we prove only two easy claims about lower modifications needed in
these sections. Since these claims generally do not hold for upper modifications, the
hypotheses of Theorem 3.8 below are more restrictive than those of Theorem 3.3.

Being a coreflection, any lower modification m satisfies

x X2) = m(mXi x mX2),

and hence the claim below is immediate.

CLAIM 3.6. Ifm satisfies (a) of Theorem 3.3, and ifX is a space for which mX is
metrizable, then, for every integer n > 1,

m(X") = (mXy.

For the next lemma, we need to introduce some notation. Suppose that Q is a
metric on P with diam(P, Q) = 1 and such that Q(C, C1) = 1 whenever c, d e C c P
are distinct, we then say that Q is l-discrete on C. For any topology w on C, we
use the symbol Q * w to denote the topology on P determined by the following two
requirements:

(i) for any x e P \ C, the system of all (Q * u>)-neighborhoods of x and the
system of all its ^-neighborhoods coincide,

(ii) for any x e C, the system

{ UQ,B I U is a u;-open neighborhood of x and e > 0},

where Ue,e = (y e P \ Q(y, U) < s], forms a local open basis of x in
(P,Q*W).

LEMMA 3.7. Let m be a lower modification satisfying (a) and (b) of Theorem 3.3.
Let Q be a metric on P which is l-discrete on C C P. Let w be a topology on C such
that (C, mw) is metrizable. Then

m(g *w) = e* mw.
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PROOF. Since mw < w and mw is metrizable, the topology t = Q * mw is also
metrizable, and hence mt = t. Clearly t < Q*W. Since tx — m(g * w) is the coarsest
topology with mt^ = t\ that is finer than Q * w, it follows that Q *mw = t < U =
m(g * w).

To prove the reverse inequality t\ < t, we show that for any M c P, every A: from
the t\-closure txM of M belongs also to the f-closure tM of M. This is clear for any
x € P \ C. So let x e C and suppose that x e txM \ tM. Since * £ fM, there exist
an mw -neighborhood O oix and an e > 0 such that OCi£ HM = 0. We may suppose
that e < 1. Since C is closed in (P, g * u>) and because Q is 1-discrete on C, we have
?! f C = m((£> *w)\C)= mw. Thus 0 is also a neighborhood of x in (C, fi f C).
For every c € C set Kc = {z G P I e(z, c) < e/2}. Then R = (^c | c e C) is
closed in (P, g * u>). Since S = {z e P | Q(Z, C) > e/3} is also closed in (P, Q * w),
and because Q * w is metrizable on S, the three topologies Q * w, t\ and t coincide
on 5, so we may assume that M c R. The map / : (R, (Q * w) \ R) -*• (C, w)
given by /~ ' ( c ) = Kc for every c e C is obviously continuous, and hence it is
also continuous as a map from m((g * w) \ R) = (m(Q * w)) \ R = t\ \ R to
mw = m((e * w) \ C) = {m{Q * w)) \ C = tx \ C. Whence f (x) e (f, \ Q(f (M)
follows from x € t\M. But x — f (x) e C has the (t{ \ C)-neighborhood O for
which Oe,e n M = 0 and, because M c. R, this is possible only when/ (M) C C \ O ,
a contradiction. •

Now we formulate a sufficient condition for comprehensiveness of an upper modi-
fication.

THEOREM 3.8. An upper modification m : Top —> Top is comprehensive when-
ever

(a) mX = X for any metrizable space X,
(b) if Y is a closed C*-embedded subspace ofX then mY is a closed C*-embedded

subspace ofmX, and
(c) there exist a full subcategory J<T of Top and a space X o £ J f such that

(cl) Jf is closed under finite products and the domain restriction Jt —> Top
ofm preserves them,

(c2) X o e X is a Hausdorff totally disconnected space for which mX0 ^ Xo

and mXo is metrizable, and
(c3) JT contains all metrizable spaces, and also all spaces (P, Q * u) such

that Q is a 1-discrete metric on C c P and (C,u) G Jf.

Theorem 3.8 applies to the most important upper modification in Top, the com-
pletely regular modification CR (which is given by the requirement that the sets open
in CRX are exactly the cozero sets in a space X). The fact that CR satisfies (a) and
(b) is well-known. To see that CR satisfies also (c), we let JXf be determined by all
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Hausdorff spaces X in which the closure of every neighborhood of any point contains
its cozero neighborhood (see [8], where such spaces are said to have the R-property).
Define a space Xo on the set Q n [0,1] of all rationals in the closed interval [0,1]
whose Euclidean topology is changed at 0 e Xo so that the system

n To, i ) \ T | n = 1, 2 , . . . J , where T = U | k = 1, 2 , . . . J

is its local open basis there. An easy proof that J(f and Xo indeed satisfy (c) can be
found in [8].

COROLLARY 3.9. The completely regular modification CR : Top —*• Top is com-
prehensive.

4. The basic construction

Let (A, u) be a totally disconnected Hausdorff space, let E = U^lo ^
type such that

card So > 2Ko + card A + card(E \ Eo),

and let ft C E \ (Eo U E0 be given. In this section, we construct a space X — (P, t)
satisfying the conditions (i)-(iii) below.

(i) X determines a representation of the algebraic theory & = .^"(E, ft) in Top,
that is,

where a denotes the base object of 3f.

Since Eo is infinite, the algebraic theory ST is well-pointed. According to Section 0,
this implies that the hom-functor &(a°, - ) : 2? ->• Set is faithful.

(ii) (A, u) is a closed subspace of X.

Since the space X depends on (A, u), E and Q., we write

This space will also be such that if m : Top —>• Top is either a lower modification
satisfying (a), (b), (c) in Theorem 3.3 or an upper modification satisfying (a), (b), (c)
in Theorem 3.8 and if (A, mu) is metrizable, then

(iii) m(((A, u), (E, ft))) = {(A, mu), (E, ft)).
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Since X = (P, r) has to determine a representation of & = .^(E, fi) in Top,
necessarily P = S(a°, a), see Section 0. We use the fact, recalled already in
Section 1, that &(a°, a) is the underlying set of the initial E-algebra, that is, of the
free E-algebra over the empty set of generators. We shall also need its operations,
and hence we denote

the initial E-algebra. Its underlying set P is bijective to the set U*to ^*0) described
in Section 1. Since we need to express points of P as values of operations

pa : P*"* -)• P wither e E,

we use the following notation. For a e Eo, the nullary operation pa : P° —>• P is, as
usual, identified with its value. Hence pa e P for every a e Eo, and we denote

Go = [Pa I a € Eo}.

It is clear that Go is bijective to the set MQ0) = Eo from Section 1.
If a e En and n > 1, then pa : P" —>• P is a one-to-one map. Let Ba = pa(P")

denote its image. It is well-known that

Ba n Go = 0 for all a e E \ Eo,

Ba n Ba, = 0 for all a, a' e E \ Eo with a / a'.

The inductive formula of Section 1 then takes on the following form. If we set

BaA = pa{G%°), Bx = ( J {*„,, | a e E \ Eo},

Gk — Gk-i U Bk (and this set is bijective to M(
t
0)),

jy / s~*i&T(J \ /"~*3I0 \ n I [ n I —̂ \ ^ \ X^ 1

£>o,k+\ = PoVlJir \ "jt-J* Bk+\ = I J \Oak+\ \O fc 2-i \ 2-io\ ,

then P = | J ^ 0 Gk. Furthermore Ba = [J™=1 Bak and

oo

( J [Ba | a g E \ Eo} = ( J Bt = P \ Go.

Finally, we denote B = P \ Go.
Since each space X constructed on the set P shall contain a given space (A, u), we

continue by selecting a subset

A C Go with card A < card(G0 \ A).
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For another construction, we also select a one-to-one sequence ao, aua2, • •. in G0\A,
and let D stand for the set of its elements. With the set B = P \ Go, we finally denote

C = AU BUD.

The basic construction will depend not only on the given (A, u) and (E, Q), but
also on a certain metric Q on P which is 1-discrete on C (see Lemma 3.7). The metric
Q will be that from Claim 4.7 below, and will remain fixed throughout the remainder
of the paper.

Let (P, Q) be a metric space whose metric Q is 1-discrete on the set C = A U B U D.
For an integer n > 1, let Q" denote the metric on P" given by

Q"(X, y ) = max{Q(Xj ,yj)\j e n}

for all x = (x0,... , xn_x) and y = ( y 0 , . . . , yn_i). Denote a(n) = (ao, • • • , an-i)>
where {ao,... ,an_,} C D.

Next we produce a metric /z on P" inducing a topology that differs from that
induced by Q" in a closely specified way. First, for any x e P" \ {ain)} we define

CLAIM 4.1. The function kn defined by kn(x) = k'tt(x) • k'^x) for all x € P"\{a<n)}
and by A.n(a

(n)) = 0 has these properties:

(1) kn is continuous on (P", Q") \ [ain)},
(2) 0 < kn(x) < 1/2 for all x € P",
(3) A.n(jc) = 0 whenever Q"(X, a(n)) > 1/2, or Xj = aj for some j e n, or xt — Xj

for some distinct i, j 6 n,
(4) ifM = [x € P" \ {aM} | Q(xit ad = Q(XJ , aj) for all i,j e n), then

lim kn{x) = - .

PROOF. The property (1) is obvious. For (2), we recall that diam(P, Q) = 1, and
hence 0 < k'n{x) < 1 and, obviously, 0 < k'fe) < 1/2 for all x € P" \ {aM}. To
prove (3), we first note that k'n(x) = 0 when x, = ay for some j 6 n, and k^(x) = 0
for all x e P" with e"(x,a(n)) > 1/2. If x, = xj for some distinct J , ; G «, then
1 = o(ah aj) < e(a,-, JC,-) + Q{aj,Xj) < 2Q"(X, a(n)), and hence k'^(x) = 0. Finally,
foranyx e M wehaveA.J,(x) = 1, and (4) follows because lim;t_,aw k'^x) = 1/2. •

Now we are in a position to define a new metric \x on P" by

/*(*, y) = min{l, C"(JC, y) + \kn(x) - kn(y)\}.
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If x = (x0,... , *n- i) and y = ( y 0 , . . . , yn_i) are such that x, = y( = at for some
i G n then /u,(;t, y) = Qn(x, y). Whence for every i e n we have

(where 7r/n) : P" —»• P denotes the i-th projection). Furthermore, the g" -neighbor-
hoods and the /x-neighborhoods of any x e P"\ {a<n)} are equivalent in the sense that
each Q" -neighborhood of JC contains a /^-neighborhood of x and vice versa. This is no
longer true for the point aM: no /x-neighborhood

with 0 < s < 1/2 contains any Q"-neighborhood of a(n) because Ke n M = 0.
Indeed, any y e K£C\ M would satisfy //,(y, a w ) = g"(y, a(n)) + Xn(y) and kn(y) =
1/2 - Qn(y, a(n)), which is impossible. On the other hand, it is clear that each gn-
neighborhood of a(n) contains a /^-neighborhood of a(n). For a future use, we denote

We also observe that, for any i e n, if restricted to the set (7T,'"')"1 {a,}, the /x-neighbor-

hoods and the Q"-neighborhoods of a(n) coincide.

Depending on the above data, and in the notation developed so far, we now use

transfinite induction to define increasing chains of topologies

Mo < Mi < M2 < • • • on C, and fo < h < t2 < • • • on P

as follows.

CONSTRUCTION 4.2. Let M0 denote the topology on C which coincides with u on
A, is discrete on the complement B U D of A in C, and such that A is clopen ( =
closed-and-open) in (C, u0).

Set to = Q * u0.
Suppose that (P , tfi) and (C, u0) have already been defined for all ft < a.
For a = 0 + 1, we let ua be the topology on C whose restriction ua \ A coincides

with the original topology u on A, it is discrete on D, and the sets A, D and all the
sets Ba with a € E \ Eo are clopen in (C, ua) ; finally, for each a e En with n > 1,
the restriction ua \ Ba is that topology for which

the bijection pa : P" -> Bff is a homeomorphism of

(P, fy)" onto (Bff, «a f BCT) whenever a e En \ SI,

(P", z^,ff) onto (Ba , M« \ Bo) whenever a € En n fi,
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where zp,a is that topology for which ^((n) is a local open basis of a(n), while a local
open basis of any x e P" \ {ain)} is the system of all its open ^-neighbourhoods.

These requirements determine « a onC = AUDUB uniquely. We set ta — Q*ua.
For a limit ordinal a, we define ua = sup{w^ | /} < a} - that is, we let ua be the

finest topology which is coarser than every up with /8 < a, and then set ta = Q * ua

again.

It is readily seen that these topologies form increasing chains u0 < u\ < • • • and
to < h < • • • . The claim below is immediate.

CLAIM 4.3. There exists an ordinal a0 such that uY = uao and tY = tao for every

Y > «o- We set t = tao.

The manner in which X = (P, t) was constructed implies that C is closed in (P, t),
and that D with the discrete topology d and (A, u) are clopen subspaces of (C, t \ C).
Furthermore, the set Ba c C is clopen in (C, t \ C) and pa is a homeomorphism of
(P, 0"° onto (Ba, t \ Ba) for every a e E \ (Eo U J2); for a e £2, the map pa is
a homeomorphism of (Par<T, z,,) onto (5,,, r \ Ba) where Za < tma, and the reason
why Za ^ ^ar" is that in Za the system ^( a r ( T ) replaces the txa-neighborhood system
of a^a) e D*°.

The claim below is an easy generalization of [8, Lemma II.6].

LEMMA 4.4. For any k>0, the set Gk is open in X - (P, 0 and tk\Gk = t \ Gk.
Moreover, every x € Gk has a neighborhood in Gk whose t-closure is still contained
in Gk.

PROOF. TO prove the first claim, we first note that Go is open in X, evidently. On
Go \ C, the topology t is induced by the metric Q, while {A, u) and (D, d) are clopen
subspaces of (C, t \ C). Since A U D = Go D C, the restriction of t0 = Q * u to
Go coincides with t \ Go. This proves the first claim for k = 0, and the remainder
follows by an induction on k.

Now we turn to the second claim, beginning with Go. Since Go is open, we have
Q(X, B) = s > Ofor every x e Go. Clearly, the closure U of U = {z \ Q(X, Z) < e/2}
is contained in Go and hence the second claim holds for k = 0. Proceeding by
induction in k, we now assume that x € G*+] \ Gk — {j{Bak+i \ a e £ \ Eo).
Since the latter union is disjoint, there is a unique r 6 E \ So for which x e
BtiM = pT(G^z \ G£_r,). Write n = ar r and denote (x0,..., xn-i) = p~\x). Then
xt € Gk. with kt < k for all / € n, and hence the induction hypothesis provides t-
neighbourhoods Uf o{xt such that Ui c Gk. for all i e «. But then U = Uo x • • • x {/„_!
is a neighborhood of p^OO in X" = (Pn, f ) such that V c GJ. If T ^ n, then
pT is a homeomorphism of X" onto the clopen subset BT of X, and the image pT{U)
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is a closed neighborhood of x contained in pT(G"k) c G/t+i. It follows that any
V = (pr(U))e,e w i m 0 < e < 1/2 is a neighborhood of* in X = (P, t) for which
V ^ Gk+i. If r e ft, we proceed analogously whenever p~*(x) ^ ain). For al"\
we work with the metric \x described earlier, and find an open ^-neighborhood of a(n)

contained in Uo x ••• x Un-\. Then pa sends its closure to a closed neighborhood of
x in BT as well, and we then proceed as in the previous case. D

COROLLARY4.5. Since P = \J{Gk \ k = 0 , 1 , . . . } and t = sup{4 | k =
0, 1,. . .}, the transfinite induction defining t is, in fact, countable.

LEMMA 4.6. X = (P, t) is a Hausdorff space.

PROOF. Let x, y e P be distinct. We need to separate these elements by disjoint
f-neighborhoods. Since (A, u) is a Hausdorff space and Q is 1-discrete on C, such
neighborhoods exist when x, y e Go. Proceeding by induction, we now suppose that
the conclusion holds in all Gt with I < k. Several cases need to be discussed. We
select the case when x, y e Gk+X \ Gk; the other cases are simpler.

Under this assumption, there are uniquely determined a, x € E \ So for which
x e Ba,t+1 andy e Br,t+i. If cr ^ r then (Bo<k+l)e,l/3 and (BXiM)eA/3 are respective
disjoint f-neighborhoods of these elements. When a = r, we denote n — arcr,
(x0,..., *„_,) = p~\x) and (y 0 , . . . , yn-i) = p;\y). Then *,-, y, € Gk for all
i e n, and Xj ^ yj for some j e n. By the induction hypothesis, there exist disjoint
neighborhoods Uj of Xj and Vj of y}. Set U = pa{nJ-l{Uj)) and V = pa{n^{Vj)).
Then U, V are disjoint neighborhoods of x, y in (Ba, t \ Ba) and, consequently, Ue,\p
and V î/3 are disjoint neighborhoods of x and y in (P, t) = X. •

PROPOSITION 4.7. / / (P , t) = ((A, M), (E, ft)) and a modification m : Top -+ Top

w e/f/zer a lower modification satisfying (a), (b) in 3.3 or an upper modification satisfy-
ing (a), (b),(c) in 3.Sand if (A, mu) is metrizable, then(P,mt) — ((A,mu), (E.ft)).

PROOF. Let

uo < ui < u2 < • • • and t0 < h < t2 < • • •

be the respective chains of topologies on C and on P obtained in the construction of
(P,t), that is, those beginning with the topology u on A, and let

uo < ii\ < u2 < • • • and i0 < ?i < i2 < • • •

be the corresponding chains of topologies on C and on P obtained by the same
construction employing the same metric Q on P, but beginning with the topology mu
on A. By Lemma 4.4, it suffices to prove that iik = muk for all integers k > 0.
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This can be shown by an easy induction in k: for a lower modification it follows
from Claim 3.6 and Lemma 3.7, and for an upper modification from (a), (b), (c) in
Theorem 3.8. •

To prove that (P, i) = ((A, u), (£ , Q)) determines a representation of
in Top, we need certain specific properties of the metric Q on P. The proof follows, in
part, the reasoning used in [6] to deal with metric spaces. Here, however, the insertion
of a space (A, u) into the space (P, t) determining the representation of ^ ( E , Q.)
need not conserve metrizability, and this is why a separate proof is necessary. To
proceed, we need to recall some notions and facts presented elsewhere.
(a) In [9], a topological space X = (P, t) was called C-semirigid (for a set C c P)
i f / (P ) != C for any continuous self map / : X -> X other than a constant or the
identity. It is clear that any C-semirigid space X with P\C ^ 0 must be connected. If
X is a C-semirigid space with card(P \ C) > 3 and Xk its fc-th power, then/ (Pk) c C
for any continuous map / : Xk —*• X other than a constant or a projection, see [9].
(b) In [8], a metric Q on P was called extremally C-semirigid (for a set C C P) if

(1) diam(P, Q) = 1, and Q(X, v) = 1 whenever x, y e Care distinct,
(2) (P, Q * w) is C-semirigid for any Hausdorff topology w on P.

(c) In [9], it was shown that an extremally C-semirigid metric Q does exist on a set
P ^> C whenever card(P \ C) = card C > 2**°. Consequently, such a metric Q
exists for the underlying set P of the initial £ -algebra and for the earlier chosen set
C = A U D U B C P .

We may thus assume

CLAIM 4.8. The metric Q used in Construction 4.2 is extremally C-semirigid.

Since (P, /) = {(A, u), (E, £2)) is Hausdorff, by Lemma 4.6, the space (C, t \ C)
is also Hausdorff. Therefore

CLAIM 4.9. The space (P, /) is C-semirigid.

This fact will be essential in the arguments that follow.
To prove that X = (P, t) determines a representation of &n = ^"(E, Q) in Top,

we have to prove that, for every integer m > 1, the set ^(Xm, X) of all continuous
maps of the m-th power Xm of X into X is bijective to the set &a{am, a). Having
recalled from Section 1 that &n(am, a) = \J™=0 Tt

(m), we now analogously define a
set L(m) of maps Pm -> P.

Let 7tjm) : Pm -> P denote the i-th projection for each i € m, let ys
(m) : Pm ^ P

denote the constant map with the value g € P and, for any n-tuple of maps / ; :
Pm - • P, let/ox • • • x/n_, : Pm -+ P" denote the map sending each p e Pm to
(fo(p),...Jn-dp)).
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DEFINITION 4.10. We set

L<m) = [4m\ . . . , n^} U (yf> | g e Go},

L<m) = Lo
m) U ( J { p < r o ( / o X - - - x / a r ( r _ 1 ) | / , € C f o r a l l /

^ ° </ox • • • xfar.-i) I / , € Lo
m) for all i 6 ara

and either/, = / , for some i, j € aia with i ^ _/

or/ , = Ygm) for some l e a r u and g € Go},

L&', = L<m) U ( J {/?„ o (fox • • • :</„„_,) | / , G L<"° for all / e ara

and fj & L^i for some j € ar o} for any it > 1.

It is clear that L(m) = \J™=0 L^m) is bijective to 7<m) of Section 1 for every m. A
suitable bijection X : L(m) ->• T(m) is given by

X(^,(m)) = n\m), k(y™) = o • T(m) for all a e Eo,

o (/ox • • • >;/„„_!)) = o(kf0,..., A/ara-i) for all other o\

and hence it suffices to show that Z/m) coincides with the set ^{X1", X) of all contin-
uous maps Xm —*• X.

First we show that <tf(Xm, X) c L(m>. We recall that P = U~o
 G< a n d ' f o r ^Y

/ € ^{Xm, X), we let r(/") denote the least integer i for which/ (Pm) n G, ^ 0, and
then show that/ e L(m) inductively in the 'rank' r(f) of/.

Let r(f) — 0, that is, le t / (Pm) n Go ̂  0, and assume that/ is not a projection.
Since X is C-semirigid, / must be a constant or / (Pm) c C. Thus, since P \ C —
Go \ (A U D), any / with / (/"") \ C ^ 0 is a constant whose value belongs to
Go \ (A U D), and hence / G Lo

m). In the remaining case of / (Pm) c C, the image
/ (Pm) must be connected (because X is C-semirigid and hence connected, and so
are the spaces Xm and / (Xm)), and it must intersect the totally disconnected clopen
subspace ADD — Go n C of C. But this is possible only when / is a constant whose
value belongs toAUD. Therefore/ e L^) for any/ e tf(Xm, X) with r(f) = 0.

Continuing the induction, we let r(f) > 0. Then/(Pm) c B. Since f (Pm) is
connected and because the set B is a disjoint union of the clopen sets Ba = paiP*")
with CT € E \ Eo, there must be a unique a € E \ Eo such that / (/"") c pa(P"").
For every _/ e arcr, the map fj = nfta) o p~l of is continuous (the map p~l is
always continuous, regardless of whether a belongs to £2 or not, see the observation
just following Claim 4.3), and satisfies r(fj) < r(f). Hence / , e L("} for some
fy < rif) by the induction hypothesis. But then/ = pao(f0x ••• x/ara-i) e L($y

Therefore <«f (Xm, X) c L(m).
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To prove the reverse inclusion L(m) c ^(X"1, X), here and also in Section 5 we
need these subsets of Pm:

PmU, c] = {(*(,,..., *m_i) € Pm | xt = c} for all c e P and i € m,

P " [ U ] = {(*o,.. . ,*«-i)€ Pm | JCJ.=*,•} far all 1,7 e m w i t h i ^ . / ,

P"U B] = {(*o,.. •, JC1-1) e Pm I JC, e fi} for all i e m.

We call these sets and all their subsets small. Let us recall that pa is homeomorphism
of X*a onto (Ba, t \ Ba) for every a e E \ (Eo U £2). If a e £2, then/?,, considered
as a map of X"™ onto (Ba, t \ Ba) is not continuous because it is the composite

where / is carried by the identity map and g is a homeomorphism satisfying g(x) =
PCT(A;) for all JC 6 P 8 " , and/ is not continuous at the point a(arCT> = (ao,. . . , aar.-i)-
On the other hand, the restriction of pa to any small set is continuous. In fact, the
continuity of pa is violated only at a(arCT>, and hence pa is continuous on the sets
P[i, B], P[i,j], and P[i, c] with c ^ at. The continuity of pa on all P[i, a,-] with
1 € ara follows from the construction of the neighborhood systems ^ ( a r f f ) .

We show that every member of L(m) = (X , , ! , 0 " belongs to ^(Xm, X), by an
induction on it. The claim is evident for each / 6 Lgm) because LQ"0 consists of
projections and constants only. If/ G L\m), then/ = pa o (fox • • • x/arff_i), where
each / , is either a projection or a constant, so that g — / o x • • • x.fva-\ is continuous.
If CT £ £2, then /v : X™" -> X is continuous, and hence/ = pa og is also continuous.
If o e fi, then either/; = fj for some distinct i,j 6 arcr, and hence the image Img
of g is contained in Par<7[/,y], or else / ; is a constant for some i e ara, and hence
Im g is another small set. Since the restriction of pa to any small set is continuous,
/ = pa o g must be continuous as well.

If k > 1 and/ e L[m
+\ \ L,f\ then/ =Pao(f0x--- xfna.i) where all/, e L[m).

Thus each/, is continuous by the induction hypothesis and so is g = / o x • • • x/^^. i
and, for some j e ar a, the map fj does nor belong to L ^ . Whence /,- has the form
fj =pa,o(f^x-xf^ra,_l),sothatlmg c ?""[ / , fi]. But then Im ̂  is a small set,
and we conclude that/ = pff o g is continuous again. Therefore L(m) c "̂(X™, X).

5. The comprehensivity of topological modifications

In this section, we complete proofs of Theorems 3.3 and 3.8. In Section 4, we
constructed a space X = (P, t) = ((A, u), (E, Q)) that determines a representation
of the algebraic theory ^"(E, £2) in Top, and such that (P, mf) = ((A, mu), (E, £2))
for a lower modification m satisfying the requirements of Theorem 3.3, or for an upper
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modification m satisfying the requirements ofTheorem 3.8 (and such that (A,mu) is
metrizable). Furthermore, for any ft' satisfying

ft c ft' c E \ ( S 0 U S i ) ,

we shall also construct a topology r on the set P such that

(a) (P, r) determines a representation of ^ ( E , ft') in Top, and
(/J) r is between f and mt.

The latter fact then implies that mx = mt, so that the space (P,mz) then deter-
mines a representation of ^"(S, ft) (this is because (P, m?) determines it). This will
complete all proofs. We employ the notation and the general method of Section 4.
The initial space (A, u), however, is the space Xo from Theorem 3.3(c) or 3.8(c), that
is, one for which

u ^ mu and (A, mu) is metrizable.

A detailed proof is given for the case of a lower modification m, and outlined for an
upper modification in the conclusion of the paper.

While constructing the space X = (P, t) = ((A, w), (E, ft)) in Section 4, we used
the chains of topologies

M0 < «i < «2 < • • • on C = A U D U B and

to < h < h < • • • on P

with ta = Q * ua for every a.
In the construction of ((A,mu), (£ , ft)), the corresponding chains of topologies

are denoted

«o < "i < «2 < • • • on C = A U D U B and

to <h <t2 < • • • on P .

We have ua = mua and ta = mfa for all a and mX = (P, mt) = ((A, mu), (E, ft)),
by Proposition 4.7.

Depending on the given ft' with ft c ft' c E\(E 0 UE!) ,we now intend to define
chains of topologies

w0 < Wi < w2 < • • • on C = A U D U B and

To < fi < T2 < • • • on P

(in which ra = Q*wa will hold again) such that mua < wa < ua and mta < ra < ta

for every a. The resulting topology x will be the xa whose index a is large enough
for all chains to become stationary. As in Corollary 4.5, this will occur for a = u>.

https://doi.org/10.1017/S1446788700039343 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039343


[29] Representations of algebraic theories 283

The construction of wa will be similar to that of ua. We 'destroy' the continuity of
the maps pa with a e Q' \ Q at an additional point by means of the system jV(3Xa)

defined as follows.
Since u ^ mu, there exists a point o € A and its mw-neighborhood O which is

not its u-neighborhood. For every integer n > 1, let S(n) denote the set of all n-tuples
s = (so,..., sn-i) of elements of A \ O such that s, ^ Sj for any two distinct i,j e n.
Since o belongs to the H-closure of A \ O and (A, M) is an infinite Hausdorff space,
the set S(n) is infinite.

Let $/ denote the system of all «-open neighbourhoods of o in (A, u). For every
U e <% and e > 0 set

Ut = {z € P | Q{Z, U) < e).

Then [Uc \ U e &, e > 0} is a local open basis of o in (P, t) = {(A, u), (E, fi)),
see Construction 4.2. Since o e A c Go, the n-tuple oM = (o,... , o) is in GJJ and

; U € W, s > 0}

is its local open basis in (P , t)n. Define

^ w = {f/; \ 5(n) 11/ e ^ , e > o}.

Observe that for small sets P"[i, j], P"[i, B], P"[i, o] (for the definition of small
sets, see Section 4), we have

u*t n Pn[i,j] = (f/; \ 5<n)) n P"[i,j]

un
e n pnu, o] = (f/; \ 5W) n P"[J, O]

( / ; nP" [ i ,B]=0 f o r £ < l .

Next we define the chains of topologies

wo < wi < w2 < • • • on C = A U D U B and

To < ^i < t2 < • • • on P

as follows. With the topologies ua and ta as in Construction 4.2, we set

w0 = uoi and z0 = Q * w0 = t0.

Suppose that wY and TY have already been defined for all y <a.
For a = fi + 1, we let wa be the topology on C which coincides with u on

A, is discrete on D, and the subspaces (A, wa \ A), (D, wa \ D) and all spaces
(Ba, wa \ Ba) with a e £ \ Eo are clopen in (C,wa), and uio f Ba is defined so
that

https://doi.org/10.1017/S1446788700039343 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700039343


284 J. Sichler and V. Trnkova [30]

(A) pa is a homeomorphism of (P3"7, xfa) onto (Ba, wa \ Ba) for any a e

E \ ( E 0 U £ 2 ' ) ,
(B) pa is a homeomorphism of (ParCT,^(T)onto(BCT, wa \ BCT)foranya e £2'\J2,

and yp ,a is the topology in which ^V{aT<7) is a local open basis of the point o<ar<7),
while for all x € P31" \ {o(arcr)} the y^-neighborhoods of JC are precisely all
its ^"-neighborhoods,

(C) pa is a homeomorphism of (P™", z.p,a) onto (Ba, wa \ Ba) for any a € £2,
and zp,a is the topology in which ^{3UJ) is a local open basis of the point a(arff)

just as in 4.2, while for all x e P3*" \ {a<ar<7)} the z^-neighborhoods of x are
precisely all its x^a-neighborhoods.

These conditions define the topology wa uniquely, and we set ra = Q *wa.
If a is a limit ordinal, we set wa — supfiu^ | p < a} and za = Q * wa.
Clearly, ta < xa < ta for all a; since ?„ = mta,we get ta = mxa, by Proposition 4.7.
Let x — xa for a large enough to have xa = ra+) = • • •, ta = ta+i — • • • and

ta = t a + \ = • • • .

Denote Y = (P, r). Then mY = (P,mz) = (P,mt) = ((A, mu), (E, Q)).
Whence mY determines a representation of ^"(E, £2) in Top as in Section 4.

Now it remains to show that Y determines a representation of ^"(E, Q') in Top.
In other words, it remains to show that ^{Y"1, Y) is the set (L(m))' of maps Pm -*• P
where (L(m))' is defined just as L(m) was in 4.9, except that £2' now replaces £2 of 4.9.
The proof that

•*?(*"", Y) = (L(m))'

is similar to the proof that ^ ( X m , X) = L(m). For both spaces, the principal question
is whether or not pa is continuous when regarded as a map from the (ara)-th power
of the space into it. For the space X, the map pa : X°*a —*• X is continuous when
a e E \ (£2 U Eo), and discontinuous at a(ar<7) when a € £2. For the space Y, the
map pa : Y31" ->• K is continuous when a € E \ (Q' U Eo), and discontinuous when
a e £2' because it is discontinuous at o(artT) when a e £2' \ £2 and at a(arCT) when cr 6 £2.
In all cases, the inverse p~l maps Ba continuously onto Pxa and the restriction of pa

to small sets is continuous. Hence the proof that ^ ( F " , Y) = (L(m))' uses the same
arguments as those presented in Section 4.

Now we turn to the case of upper modifications.
In a proof of Theorem 3.8, the roles of u and mu are interchanged. We define two

chains of topologies

w0 < w{ < w2 < • • • on C = A U D U B and

To < Xi < x2 < • • • on P

< xa < mta.again, but now ta < xa
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If Xo = (A, M) is the space for which (A,mu) is metrizable and u ^ WIM, we find a

point o € A and its u-neighborhood O which is not its mu-neighborhood. Now, we let

fy be the system of all mu-open neighborhoods of o in (A, mu) and, for every U e t/

and £ > 0, we define Ue = {z € P \ Q(Z, U) < £} again. Then {Ue\ U €&, e > 0}

is a local open basis of o in (P, mt) = ((A, mu), (E, J2)>. As in the case of lower

modifications, we let 5(n) be the set of all n-tuples s — (sQ,..., sn_x) of elements of

A \ O such that s{ / Sj for some distinct i,j e n, and set

^y(n) = {[/; \ 5(n) | U € ^ , £ > 0}.

This time, however, we subtract 5(n) in chains ua and ta, that is, we set

w0 = iio and r0 = Q *w0 = t0.

The remainder of the construction and the subsequent arguments are analogous to

those used for lower modifications.
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