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such as ours, where there is no deception of participants and no sensitive topics or

materials are presented to participants.
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Abstract

Cultural Consensus Theory (CCT) leverages shared knowledge between individuals to

optimally aggregate answers to questions for which the underlying truth is unknown.

Existing CCT models have predominantly focused on unidimensional point truths using

dichotomous, polytomous, or continuous response formats. However, certain domains

such as risk assessment or interpretation of verbal quantifiers may require a consensus

focused on intervals, capturing a range of relevant values. We introduce the Interval

Consensus Model (ICM), a novel extension of CCT designed to estimate consensus

intervals from continuous bounded interval responses. We use a Bayesian hierarchical

modeling approach to estimate latent consensus intervals. In a simulation study, we show

that, under the conditions studied, the ICM performs better than using simple means

and medians of the responses. We then apply the model to empirical judgments of verbal

quantifiers.

Keywords: Continuous bounded responses, cultural consensus theory, interval

responses, Bayesian modeling
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1 Introduction

In psychological research, it is common practice to pose questions to respondents

for which the correct answer is not known. This may be a forecast of the occurrence of

some future event, for example “that same-sex marriage will be federally recognized by

the end of Obama’s term (2017)” (Anders et al., 2014), where the correct answer can in

principle be known or will reveal itself eventually. Correct answers are also unavailable in

scenarios where the correct answer can change based on the context or the particular

group of respondents. For example, one might be interested in judgments of affective

valence regarding stimulus words like “accident” (Bradley & Lang, 1999) or in judgments

of probabilities assigned to verbal quantifiers like “seldom” or “likely.” Such judgments

can often be ambiguous and may systematically vary between groups or individuals, or

even within a single individual, depending on the context in which the particular word is

used (Karelitz & Budescu, 2004). In such scenarios, it is often of interest to estimate the

shared consensus of a certain group by aggregating the given responses.

Cultural consensus theory (CCT) was developed to solve this problem (Batchelder

& Romney, 1988; Romney et al., 1986). It is based on the assumption that respondents

belong to the same group or subpopulation and share common knowledge about a

particular knowledge domain, which is termed the cultural consensus. However,

respondents may not all have the same level of expertise or background knowledge, and

thus, the quality of answers may vary among different respondents. The theory further

assumes that weighting responses by expertise will improve the overall accuracy of the

aggregated judgments. CCT builds on these assumptions to estimate the cultural

consensus by (a) aggregating all responses and (b) weighting each response by the inferred

expertise of the respective respondent. To estimate the expertise of the respondents along

with the cultural consensus, it is necessary to collect responses to multiple items in the

same knowledge domain for each respondent. This can typically be done in a design in

which respondents and items are fully crossed, but also in a non-fully crossed design. The

consistency of a respondent’s answers across multiple items, relative to the answer

patterns of other respondents, is then used to estimate their expertise in the respective

https://doi.org/10.1017/psy.2025.10058 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.10058


INTERVAL CONSENSUS MODEL 4

domain. Additionally, the discernibility of each item’s cultural consensus is estimated

across respondents and incorporated into the estimation of the cultural consensus.

Different consensus models for various combinations of response formats and

modalities of the latent consensus have been proposed. The initial consensus model, the

general Condorcet model (Batchelder & Romney, 1988), used dichotomous responses to

estimate binary consensus values, for instance, for answers on a true-false general

knowledge test. Following this, several model extensions have been proposed. The latent

truth model (Batchelder & Anders, 2012) also accommodates dichotomous responses, but

assumes that the latent consensus values of interest are continuous and lie between zero

and one. For instance, respondents were asked for dichotomous judgments indicating

whether a disease is contagious (Batchelder & Anders, 2012). While judgments about the

perceived contagiousness of a disease can be assessed in a dichotomous response format,

true contagiousness is more accurately represented in terms of probability, that is, by a

continuous value between zero and one. The latent consensus values thus have a

probabilistic meaning, while the observable responses are discrete, binary values of either

zero or one. The continuous response model (Anders et al., 2014) extends this model to

the case where responses are no longer dichotomous, but rather given on a continuous

bounded response scale between zero and one. The model assumes that consensus values

are continuous in a latent, unbounded space and are mapped onto the bounded response

scale by a logit link function. One application of this model concerns the forecasting of

probabilities of future events, such as a large tsunami hitting the coast of a particular

country (Anders et al., 2014). Anders et al. (2014) also incorporated a method for

estimating multiple cultural consensuses for qualitatively different groups by combining

CCT with latent class analysis. Another extension of the latent truth model, the latent

truth rater model (Anders & Batchelder, 2015), maps continuous latent consensus values

to categorical responses. An example application could be ratings of the grammatical

acceptability of English phrases on a seven-point scale (Anders & Batchelder, 2015).

All models described above are uni-dimensional, as only a single attribute is rated

for each item. However, consensus models can also be applied to multidimensional
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ratings. Mayer and Heck (2023) proposed a model for two-dimensional estimates of

geographical locations on maps, where respondents had to estimate the location of cities

such as London. In this case, both responses and latent consensus values refer to

longitude and latitude and are thus continuous, two-dimensional vectors. In this specific

example, the model assumes unbounded coordinates while actual locations are bounded

due to geographic constraints such as oceans.

All of the above models assume a single (uni- or two-dimensional) point as the

latent, unknown consensus for each item. However, in some domains, a point consensus is

too constraining and a range or interval of values may be more appropriate to represent a

group’s consensus. One example is the judgment of risks, for example, in cyber-security

(Ellerby et al., 2020). When organizations want to determine the attack risk regarding

their cyber-physical systems, one way to do this is to have experts estimate these risks for

specific system components. The overall estimated risk for a component depends on both

the variability of judgments among experts, as well as the subjective uncertainty within

each expert. While the uncertainty between experts can already be inferred from point

judgments, an interval response format provides the opportunity to also incorporate the

within-expert uncertainty of a particular risk judgment. In this case, an interval

judgment can be conceptualized as an interval of risk estimates ranging from the

best-case scenario to the worst-case scenario, that is, a lower and an upper bound of the

attack risk of a particular system component. Since every value in such an interval is

already a probability, the interval is a range of plausible risks. The consensus on plausible

risks shared by experts can be of interest to stakeholders, and therefore, plausible risks

should be assessed (Ellerby et al., 2020).

Another example concerns verbal quantifiers like “difficult” (Navarro et al., 2016)

or “likely” (Karelitz & Budescu, 2004), which might be used to indicate how frequently or

with which probability particular events such as extreme heat waves are happening

(Harris et al., 2017). The use of such quantifiers is ambiguous, since there is no clear-cut

convention in terms of numerical probabilities that should be assigned to particular

quantifiers (except for words like “always” or “never”). An interval consensus could
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Figure 1

Dual Range Slider (DRS)

56%23%

Note. Screenshot of the noUiSlider JavaScript range slider (Gersen, 2024) used in the

empirical study (see Section 4). The scale ranges from 0% to 100%.

represent a range of permissible probabilities that a particular word stands for in its

pragmatic use.

Interval response formats such as the dual range slider (DRS) shown in Figure 1

may be a suitable solution for these types of applications. Two sliders allow respondents

to judge the lower and the upper bound of a range of values. Ellerby et al. (2022) found

that respondents could adequately indicate the variability of different stimuli with an

interval response format. In a multi-trait multi-method study, Kloft et al. (2024) found

good test-retest reliability of personality scores concerning interval location (reflecting

differences in traits between individuals) and interval width (reflecting variability of

states within an individual). However, the factor scores for interval widths did not show

discriminant validity for the two personality scales used (Extraversion and

Conscientiousness). This finding was replicated in another study by Kloft and Heck

(2024) in which the DRS response format was applied to different task domains such as

personality adjectives, forecasting of votes, estimation of visual stimuli, estimation of

health risks, and judgments of verbal quantifiers. The authors analyzed participants’

interval-width responses in an exploratory factor analysis. Replicating previous results,

the discriminant validity of interval widths was low for the two personality scales, as

indicated by a common factor for the respective items. However, interval-width responses

for the other tasks roughly followed a simple structure with the items of each task loading

on a separate factor, suggesting that respondents are sensitive to the requirements of a

particular task. Overall, these findings indicate that interval responses are suitable for

estimation tasks in which some objectively quantifiable probability or frequency has to be
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rated. Although various methods for the aggregation of interval ratings have been

proposed (Gaba et al., 2017; Lyon et al., 2015; Park & Budescu, 2015), a consensus

model, which infers the latent expertise of participants, has not yet been developed for

this type of response format. As a remedy, the present article aims to develop a

consensus model that can be used to estimate weighted consensus intervals based on

ratings collected via continuous bounded interval response formats like the DRS.

We focus on the case where the latent consensus is an interval itself. As discussed

by Batchelder and Anders (2012) for uni-dimensional, dichotomous responses, different

kinds of latent consensuses can be mapped onto the same response format used to collect

observable ratings. In the case of dichotomous responses, the latent consensus can either

be binary, that is, true or false, or continuous, that is, a probability between zero and one

of being true or false. Similarly, in the case of collecting interval responses with the DRS

response format on a scale from zero to one, the latent consensus can be a single point in

[0, 1] such as the consensus probability of an event happening. However, the latent

consensus can also be a consensus interval in [0, 1] if a range of values is permissible. For

instance, in the example of verbal quantifiers, the word “often” could be associated with

a consensus interval of [.60, .80]. Which type of latent consensus is more appropriate

depends on the substantive application and the psychological constructs of interest (see

also Kloft & Heck, 2024, for a discussion of relevant domains and psychological

constructs). Regarding models with a point consensus, interval responses are assumed to

reflect respondents’ uncertainty around their best guess for the unknown value.

Regarding models with a latent interval-valued consensus, interval responses are assumed

to represent participants’ judgments of the plausibility of a range of values (e.g., the

consensus range of appropriate probabilities in the example of verbal quantifiers). Also,

in the example of judgments of risks, the plausible range of a particular risk might be of

interest. If we aim at inferring experts’ consensus on the range of plausible risks for a

particular event, the desired consensus is an interval.

To facilitate the estimation of consensus intervals, we developed the Interval

Consensus Model (ICM), which combines and extends three previous contributions to the
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literature. The core of the model is the uni-dimensional consensus model by Anders et al.

(2014), which uses a logit-normal distribution to model continuous bounded responses in

(0, 1). We extend this model to two dimensions via a bivariate normal distribution, as

previously implemented for unbounded responses by Mayer and Heck (2023). Moreover,

we use the isometric log-ratio (ILR) transformation function (Smithson & Broomell, 2024)

as an appropriate link function that connects the bivariate-normal model to the observed,

bounded interval responses.

We explain the mathematical details of the ICM along with a Bayesian estimation

method in Section 2 and present a simulation study for the computational evaluation of

the model in Section 3. Next, we apply the model in a reanalysis of judgments of verbal

quantifiers collected by Kloft and Heck (2024) in Section 4. Lastly, we discuss

implications, limitations, and directions for future research in Section 5.

We have implemented the methods presented in this article in the R-package

intervalpsych (Kloft & Siepe, 2025). It features functions for data transformation,

model fitting and visualization, as well as the dataset containing judgments of verbal

quantifiers.

2 Theory

2.1 The Interval Consensus Model

In this section, we will introduce the notation for the data and the parameters.

Appendix A provides an overview of these definitions, along with short explanations. We

assume that interval responses are measured on a response scale from 0 to 1 so that the

lower and upper interval bounds are given as 0 ≤ XL ≤ XU ≤ 1. We first transform the

data into a more generalizable compositional form, namely, a simplex with three

components that sum to one:

X =
XL, XU − XL, 1 − XU

⊤

. (1)

Since any of the three components in X can be zero, we add a padding constant c to all

components to ensure that we can later apply a log-ratio transformation. After adding

https://doi.org/10.1017/psy.2025.10058 Published online by Cambridge University Press
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the constant, the compositional form is restored by dividing each element of the vector by

the sum of all its elements.

Y = 1
1 + 3c

(X + c 1) with c = 0.01, (2)

where 1 is a vector of three ones. Other methods have been proposed to remove

zero-components, some of which have properties that are more optimal for compositional

analysis, like the preservation of the original ratios of non-zero components for a

particular interval response (Martín-Fernández et al., 2003). However, the rescaling

method used here has the advantage of preserving the original ratios of non-zero

components across all responses, which is important for estimating consensus values

across items and participants. The rescaling essentially creates a hypothetical response

scale for which the extreme values determining the scale’s minimum and maximum

cannot occur in the data. The particular choice of c = 0.01 is arbitrary. We conducted a

sensitivity analysis (see the supplementary materials in the OSF repository), which

indicated that this value is a sensible choice. The results in our empirical example (see

Section 4) did not change substantially when choosing slightly different values. If none of

the components is zero for all responses, we can skip this step in the analysis.

Next, we need to convert interval responses into a format better suited for our

modeling framework, which assumes a bivariate normal distribution. For this purpose, we

apply a specific version of the isometric log-ratio (ILR) transformation function to Y .

This link function is tailored to the compositional form of interval responses (Smithson &

Broomell, 2024):

Z =
[
Z loc, Zwid

]⊤
=
√1

2 log
(

Y1

Y3

)
,

√
2
3 log

(
Y2√
Y1Y3

)⊤

. (3)

The transformation yields a vector Z ∈ R2 with two elements, Z loc and Zwid, which

correspond to the unbounded interval location and width, respectively. The unbounded

interval location Z loc compares the size of the left component Y1, defined by the left

response scale limit and the lower bound of the response interval, against the size of the

right component Y3, defined by the upper bound of the response interval and the right

response scale limit. The unbounded interval width Zwid compares the middle component
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Y2, that is, the observed interval width, to the geometric mean of the left and the right

component
√

Y1Y3.

The geometric mean in the denominator is used to scale the interval width relative

to the interval location in the unbounded space. Therefore, a response interval of a

particular width will be transformed into an unbounded interval of a greater width if the

interval location is closer to the lower or upper limit of the response scale, compared to

being near its center. For example, the response interval [.80, .90] has a mean of the

interval bounds of .85 and a width of .10 on the bounded scale, which corresponds to a

transformed location of Z loc = 1.47 and a transformed width of Zwid = −0.85. Placing an

interval with the same observed width near the center of the bounded scale – for example,

the interval [.40, .50] with a mean of interval bounds of .45 – will yield a considerably

smaller transformed width Zwid = −1.23 (Z loc = −0.16). This scaling of the transformed,

unbounded width, conditional on the interval’s proximity to the response scale limits,

accounts for the boundedness of the response scale. To illustrate this, consider a

respondent who wants to move the interval location toward one of the response scale

limits. Eventually, one of the interval bounds will touch the corresponding response scale

limit and it becomes necessary to lower the interval width to move the interval location

even closer to the respective response scale limit. The transformation counteracts this

effect of the bounded response scale. This is a pragmatic solution that does not

necessarily reflect a hypothesized true mapping of a latent response to an observed one.

Rather, it is just an assumption similar to the S-shaped item response curves in classical

item response models.

Figure 2 illustrates the isometric log-ratio transformation for five response

intervals. Panel A shows raw response intervals, Panel B represents these intervals in the

ternary space, and Panel C illustrates their location in the unbounded, transformed space.

Interval 3 divides the response scale into a composition of three equally sized components

(Panel A) and corresponds to the origin of the transformed, unbounded space (Panel C).

Regarding the location dimension (x-axis), the origin in the unbounded space in Panel C

maps to the center of the bounded response scale in Panel B. Hence, unbounded location
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Figure 2

Illustration of the Multivariate Logit Transformation

Note. The five observed response intervals are: Interval 1 = [.05, .20], Interval 2

= [.10, .90], Interval 3 =
[

1
3 , 2

3

]
, Interval 4 = [.50, .80], Interval 5 = [.90, .95].

values of zero correspond to response intervals that are centered on the response scale,

containing an equal amount of support for values to the left and the right of the scale’s

center (e.g., the same proportion of negative and positive values on a bipolar scale). In

contrast, the origin of the width dimension (y-axis) in the unbounded space does not

have such a clear, substantive interpretation. For example, the origin corresponds to a

width of one-third when the interval is placed on the center of the response scale. As the

interval’s location moves away from the scale’s center, the value zero will correspond to

different widths on the bounded response scale. Therefore, the width dimension has

slightly different properties than the location dimension, which we will consider below in

the parameterization of our model. Interval 2 is also placed on the center of the bounded

response scale, but it is much wider, which places it in the center of the x-axis and at the

upper quarter of the y-axis of Panel 2B and C. The other three intervals illustrate how

shifts to the left (Interval 1) or to the right (Intervals 4 and 5) on the bounded response

scale result in transformed values left and right from the center of the x-axis in the

unbounded space. As these intervals are relatively small, they have negative values on the

y-axis in the unbounded space.

https://doi.org/10.1017/psy.2025.10058 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2025.10058


INTERVAL CONSENSUS MODEL 12

The specific form of the isometric log-ratio transformation that we use here is one

of many log-ratio functions described in the compositional analysis literature (Greenacre

et al., 2021). In some of these applications, the data have a certain natural meaning (e.g.,

when studying compositions of chemicals), which is not the case for interval responses.

Therefore, not all approaches proposed for compositional data analysis are directly

applicable in our case. We need a transformation that yields two conceptually

independent and interpretable dimensions, corresponding to the location and the width of

response intervals. We know of two log-ratios (described by Smithson and Broomell,

2024) that satisfy these requirements and can thus be applied to interval responses. The

first option, the isometric log-ratio, was presented above. The second option is an

amalgamation log-ratio (Greenacre et al., 2021). We tested both log-ratios against each

other in a preliminary simulation study (see Section 3) and finally chose the isometric

log-ratio as it performed better. Contrary to the amalgamation approach, the isometric

log-ratio takes the extremity of the interval location into account when determining the

transformed interval width, as described above. This is favorable especially in applications

with a bipolar response scale featuring a neutral point at the center of the scale, such as a

scale ranging from negative to positive values. This may also be a probability scale

ranging from 0 to 1. Here, 0.5 is the neutral point of complete uncertainty, while 0 and 1

indicate complete certainty about an event not happening or happening, respectively.

Using the isometric log-ratio transformation as a link function, we can extend the

model by Anders et al. (2014) to the two-dimensional case, similar to the model for

geographical judgments by Mayer and Heck (2023). We decided to rely on a logit link

because it provides more flexibility than the alternative approach of assuming a Dirichlet

distribution for the compositional data (see Kloft et al., 2023, for an IRT model using the

latter approach). Whereas the Dirichlet approach offers only one common variance

parameter for both dimensions, the bivariate logit-normal distribution allows us to

assume separate variance parameters for the location and the width dimensions in the

unbounded space.

Next, we consider the bivariate, logit-transformed response Zij of respondent
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i = 1, . . . , I (number of respondents) to item j = 1, . . . , J (number of items). We assume

the following data-generating mechanism for Zij: Respondent i makes a latent appraisal,

[Aloc
ij , Awid

ij ]⊤ ∈ R2, for the item j based on the latent cultural consensus interval,

[T loc
j , T wid

j ]⊤ ∈ R2. This latent appraisal contains some error, which depends on the

proficiency of the person, [Eloc
i , Ewid

i ]⊤ ∈ R2
+, and on the discernibility of the latent

consensus for the particular item, [λloc
j , λwid

j ]⊤ ∈ R2
+. Departing from previously

developed CCT models (e.g., Anders et al., 2014), we inverted these parameters. Hence,

higher values of proficiency and discernibility lead to higher precision of the latent

appraisal, and thus, to observed response intervals that are closer to the latent consensus

interval. Moreover, we assume an item-specific correlation ωj between the errors on the

two dimensions (Mayer & Heck, 2023). Assuming a bivariate normal distribution of

errors, the appraisal is centered on the latent cultural consensus with an added

disturbance governed by person and item characteristics:Aloc
ij

Awid
ij

 ∼ N
(T loc

j

T wid
j

 , ΣA
ij

)
with ΣA

ij = diag(σA
ij) Ωj diag(σA

ij),

σA
ij =


1

Eloc
i λloc

j

1
Ewid

i λwid
j

 , Ωj =

 1 ωj

ωj 1

 .

(4)

The latent appraisal is further influenced by the respondent’s scaling bias,

aloc
i ∈ R2

+, and shifting biases, [bloc
i , bwid

i ]⊤ ∈ R2, which yields the final response:

Zij =
[
Aloc

ij aloc
i + bloc

i , Awid
ij + bwid

i

]⊤
. (5)

The two shifting biases are directional response biases and add a constant to each

dimension of the latent appraisal – or, more technically, to the expected location and

width. This corresponds to a respondent’s tendency to systematically under- or

overestimate all locations or all widths of the consensus intervals. The scaling bias

corresponds to an extremity response bias, which pushes all observed responses of a

person away from zero if aloc
i > 1 or pulls them towards zero if aloc

i < 1. For the bounded

response scale, this means that interval locations are either pushed away from or pulled

towards its center. As explained above, the origin of the width dimension, T wid
j = 0, is not
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a substantively meaningful anchor, as it depends on the location of a particular interval.

It would not be meaningful to let the interval width scale around such an ambiguous,

arbitrary value of zero. We thus specify a scaling bias only for the location dimension.

Since the appraisal of the interval location Aloc
ij consists of the consensus location

plus an error, the scaling bias does not only influence the expected interval location, but

also the residual variance, that is, the precision of the latent appraisal. In the full model,

it is therefore necessary to ensure that the scaling bias parameter is included not only in

the mean but also in the variance of the normal distribution:

Zij ∼ N (µij, Σij),

µij =
[
T loc

j aloc
i + bloc

i , T wid
j + bwid

i

]⊤
,

Σij = diag(σij) Ωj diag(σij),

σij =


aloc

i

Eloc
i λloc

j

1
Ewid

i λwid
j

 , Ωj =

 1 ωj

ωj 1

 .

(6)

The model can easily be modified by omitting bias parameters that are not relevant for

certain applications (see also Section 4.1). Our own workflow involves first fitting the full

model and then examining the parameter estimates for any problems. For example, if all

respondents have a similar estimate for the location shift bias, bloc
i , we remove this

parameter from the model.

Figure 3 shows the isolated influence of each person parameter when all remaining

parameters are held constant (see the Figure note for more details on the simulation of

the shown response patterns). For a person with a low proficiency concerning interval

locations (Eloc
i = 0.5), Panel 3C shows that response intervals move away from the latent

consensus interval unsystematically due to increased error variance. Similarly, for a

person with a low proficiency concerning interval widths (Ewid
i = 0.5), Panel 3E shows

that the widths of response intervals become less similar to the widths of the latent

consensus intervals. Inducing a large scaling bias (ai = 1.5) for interval locations shifts

response intervals away from the center of the scale (Panel 3D). A positive shifting bias

(bloc
i = 2) for locations, shown in Panel 3B, moves all response intervals to the right.

Similarly, for a positive shifting bias concerning interval widths (bwid
i = 2), Panel 3F
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Figure 3

Illustration of How Changing the Person Parameters in the Interval Consensus Model

Influences the Predicted Responses

Note. The scatter plots in the left-hand subpanels show simulated responses of one respondent to

100 randomly drawn items on the unbounded, bivariate scale. The right-hand subpanels show the

corresponding responses (black intervals) for ten selected items on the bounded response scale. The

consensus intervals, which are identical across all plots, are shown as gray, shaded bars in the background of

the response intervals. We first simulated consensus intervals with T loc
j ∼ N (0, 1.5) and T wid

j ∼ N (−1, 1).

Next, we simulated the response intervals in Panel A by setting respondent proficiency as well as item

discernibility to 1 and assuming no response biases. In the remaining panels, we adopted the hypothetical

responses from Panel A while manipulating different person parameters (e.g., shifting and scaling biases)

to illustrate their effect on response behavior. We lowered the respondent’s proficiencies by factor 1
6

(Panels C and E), increased the shifting bias by adding a constant of 2 (Panels B and F), and increased

the scaling bias by factor 1.5 (Panel D).
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shows that all response intervals are greatly expanded in width.

It is difficult to interpret the estimate for the latent consensus interval,

[T loc
j , T wid

j ]⊤, on the transformed, unbounded scale. To facilitate a substantively

meaningful interpretation of this estimate, we convert the unbounded interval back to the

original, bounded response scale. First, we transform the two-dimensional logit values to

the compositional format via the inverse of the isometric log-ratio function, and second,

we undo the padding initially applied in Equation 2:

T∗
j = (1 + 3c)

exp
(√

2 T loc
j

)
Σ ,

exp
(√

3
2 T wid

j + T loc
j√

2

)
Σ ,

1
Σ

⊤

− c 1,

with Σ = exp
(√

2 T loc
j

)
+ exp

√3
2 T wid

j +
T loc

j√
2

+ 1,

(7)

where, again, c = .01 and 1 is the vector of ones. If no padding was applied before fitting

the model, we set c = 0. Third, we compute the actual interval boundaries on the

bounded scale from 0 to 1:

[
T ∗L

j , T ∗U
j

]⊤
=
[
T ∗

j1, T ∗
j1 + T ∗

j2

]
, (8)

with T ∗
j1 being the first and T ∗

j2 the second component of the simplex T∗
j . The interval

formed by [T ∗L
j , T ∗U

j ]⊤ is the estimated consensus for the specific item, which we are

ultimately interested in.

2.2 Bayesian Estimation

We estimate the model in a Bayesian hierarchical modeling framework (Kruschke

& Vanpaemel, 2015). An illustration of the prior distributions can be found in the

supplementary materials in the OSF repository and an example comparison of prior and

posterior distributions is displayed in Section 4. The main parameters we are interested

in are the latent consensus location and width, [T loc
j , T wid

j ]⊤. The priors for these

parameters will partly serve to identify the model. To facilitate the specification of these

priors, we first specify them on the bounded scale. Then, we transform the values back to

the unbounded scale via the isometric log-ratio function to use them in the model. With

this approach, there is no need to define priors on the transformed scale, that is, normal
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distributions, that align with our assumptions about the implied priors on the bounded

scale. From a practical standpoint, we also experienced sampling to be more stable with

priors on the bounded instead of the unbounded scale. For the other parameters, which

are more flexible due to their hyperpriors, we specify the priors directly on the

unbounded scale.

First, based on common applications of interval responses (e.g., in Ellerby et al.,

2022; Kloft & Heck, 2024), we assume that consensus intervals with a very large width

spanning the entire response scale are highly unlikely. Wide intervals are also not relevant

or meaningful in most scenarios, as they would not provide any additional information.

Typically, we would exclude items for which we anticipate this to be the case. Therefore,

we assign a weakly informative prior to the widths of consensus intervals on the bounded

scale:

T
wid(0,1)
j ∼ Beta(1.2, 3). (9)

This prior has an expected value of .29 and a mode of .09 and therefore reflects our

beliefs about the marginal width of true intervals more adequately than a uniform prior.

However, interval responses of full width (ranging from zero to one) are still possible and

not ruled out by our prior choice. Instead, we merely assume that the latent consensus

interval itself is unlikely to span the entire response scale. Researchers who want an

uninformative uniform prior on the consensus of the interval width may change the prior

to T
wid(0,1)
j ∼ Beta(1, 1).

Second, conditional on a particular width of a consensus interval, we do not

assume that particular locations of the consensus interval are more likely than others.

This assumption makes the prior choice more generalizable across different use cases

(more informative alternatives are mentioned below). Therefore, we assign an

uninformative prior to an auxiliary, multiplicative parameter sj, which is subsequently

used to compute the actual interval bounds on the bounded scale:

sj ∼ Beta(1, 1),

T L
j = sj(1 − T

wid(0,1)
j ),

T U
j = sj(1 − T

wid(0,1)
j ) + T

wid(0,1)
j .

(10)
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This means that, for a given interval width, we take what is left of the response scale

and multiply it by sj, which results in the lower bound for this particular interval. To

arrive at the upper bound, we add the interval width to the lower bound. In the location

dimension, we could also choose alternative priors that would be more informative. If

theory or prior knowledge suggests that locations in the center of the response scale are

more probable, we might choose sj ∼ Beta(2, 2). If we think that locations to the extreme

ends of the response scale are more probable, we might choose sj ∼ Beta(0.5, 0.5). Such

prior knowledge may be informed, for example, by the selected items. For judgments of

verbal quantifiers, for example, when only selecting low-probability words like “seldom”

or “unlikely,” we can incorporate prior knowledge by giving more weight to consensus

locations on the left side of the response scale, for example, sj ∼ Beta(1.2, 3).

Third, we transform the consensus interval from the bounded simplex to the

unbounded bivariate scale via the isometric log-ratio function in Equation (3):

Tj = [T loc
j , T wid

j ]⊤ = ILR
[T L

j , T
wid(0,1)
j , 1 − T U

j

]⊤
. (11)

Alternatively, we could have also applied an uninformative prior directly on the simplex

via a Dirichlet distribution (an implementation of this prior can also be found in the OSF

repository):

ILR−1(Tj) ∼ Dirichlet(1, 1, 1). (12)

The person proficiency parameters, [Eloc
i , Ewid

i ]⊤, have weakly informative priors

on both the means and the variances (see Table 1, column 1). The priors are specified on

the log-scale to ensure positive values. We are also interested in the relationship between

a respondent’s proficiency in the location dimension and their proficiency in the width

dimension, and therefore assign a bivariate normal prior with correlation parameter ρE

instead of two independent normal priors. Similarly, we assign the same priors to the

item discernibilities, [λloc
j , λwid

j ]⊤ (Table 1, column 2). The only difference is that we fix

the mean vector µλ to zero to render the person proficiency parameters identifiable

(Anders et al., 2014).

For the remaining person parameters, namely, the scaling and the shifting biases,

we also assign weakly informative priors. In doing so, we impose certain restrictions on
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Table 1

Default Prior Distributions for the Interval Consensus Model

Person proficiency Ei Item discernibility λj

[log(Eloc
i ), log(Ewid

i )]⊤ ∼ N (µE, ΣE)

µE ∼ N (0, 1)

ΣE = diag(σE) ΩE diag(σE)

ΩE = ΩELΩT
EL=

 1

ρE 1


ΩEL ∼ LKJ-Cholesky(2)

log(σE) ∼ N (log[0.5], 0.5)

[log(λloc
j ), log(λwid

j )]⊤ ∼ N (µλ, Σλ)

µλ = 0

Σλ = diag(σλ) Ωλ diag(σλ)

Ωλ = ΩλLΩT
λL=

 1

ρλ 1


ΩλL ∼ LKJ-Cholesky(2)

log(σλ) ∼ N (log[0.5], 0.5)

the means for reasons of identifiability (Anders et al., 2014):

log(aloc
i ) ∼ N (0, σaloc),

bloc
i ∼ N (0, σbloc),

bwid
i ∼ N (0, σbwid),

log(σaloc) ∼ N (log[0.5], 0.5),

log(σbloc), log(σbwid) i.i.d.∼ N (log[0.5], 1).

(13)

The mean vector of the shifting bias parameters, [bloc
i , bwid

i ]⊤, is fixed to zero to make the

model identifiable with respect to the estimated mean of the latent consensus locations

and widths. Analogously, the mean vector of the scaling bias parameters, aloc
i , is fixed to

one to render the model identifiable regarding the estimated mean of the proficiency

parameters, [Eloc
i , Ewid

i ]⊤.

Finally, we assign weakly informative priors to the residual correlation between

interval location and width via a scaled beta distribution:

ωj + 1
2 ∼ Beta(2, 2). (14)
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3 Simulation Study

The simulation study was preregistered at the Open Science Framework

(https://osf.io/nd5wg) using the ADEMP preregistration template by Siepe et al. (2023)

to specify the Aims, Data-generating mechanisms, Estimands, Methods, and Performance

measures. After running the simulation with the pre-registered settings, we found that

some conditions resulted in many problematic model fits with divergent transitions of the

sampler. We therefore decided to re-work the parameterization and priors of the model

for more stable model estimation, and subsequently re-ran the simulation. We indicate

deviations from the preregistered settings where applicable. We further provide a list of

all deviations and their justification as well as all results of the original simulation study

in the supplementary materials in the OSF repository. The main results did not change,

as both the best-performing model per condition and the overall trends of the

performance measures remained the same. The simulation study was carried out in the

programming environment R Version 4.5.0 (R Core Team, 2023) on a Linux machine with

an Ubuntu 22.04.5 LTS distribution. We provide a Dockerfile to facilitate full

reproducibility of our main results. We used the following R packages in their most

recent versions at the time of running the simulation: SimDesign (Chalmers & Adkins,

2020) for setting up and conducting the simulation study, cmdstanr (Gabry et al., 2023)

as the R interface to Stan (Stan Development Team, 2023), and the posterior (Bürkner

et al., 2023) and bayesplot packages (Gabry & Mahr, 2024) for handling and visualizing

MCMC output. The specific package version numbers and additional packages used for

data wrangling and minor tasks are provided in the supplementary materials in the OSF

repository.

3.1 Aims

The simulation study aimed to explore the estimation performance of the interval

consensus model (ICM) concerning bias and mean-squared error of parameter estimates

in realistic scenarios of use. The main target estimates were the latent consensus interval

location and width, [T loc
j , T wid

j ]⊤. We also tracked the performance of the other
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parameters, except for the hyperparameters. We compared the model estimates of the

latent consensus intervals for each item against simple means and medians (only means in

the pre-registration) of the logit-transformed responses as a simple competitor model (i.e.,

wisdom of crowds; Surowiecki, 2004). Given that the data were generated from our

model, we expected the model estimates to perform better than simple means and

medians. If that was not the case, the added complexity of our model may not be worth

the effort compared to relying on simpler descriptive aggregation strategies. We further

expected that larger numbers of respondents would lead to better performance of item

parameters, and, vice versa, that larger numbers of items would lead to better

performance of person parameters.

In addition to the main simulation study, we conducted a preliminary simulation

study to test the isometric log-ratio function against an alternative amalgamation

log-ratio transformation, which is based on a stick-breaking procedure (see Smithson &

Broomell, 2024). We were interested in checking the robustness of the two link functions

regarding model misspecification. We generated data with one fixed combination of 200

respondents and 30 items and only varied the link function used to simulate the data,

resulting in two conditions. Each model was fitted to the data using the data-generating

link function as well as the non-data-generating link function. We report the full results of

this preliminary simulation study in the supplementary materials in the OSF repository.

3.2 Data Generation

We randomly generated data from the model described in Section 2.1. We varied

the following factors in a fully factorial manner:

• Number of respondents: {10, 50, 100, 200},

• Number of items: {5, 10, 20, 40}.

This yielded 16 conditions. The numbers of respondents and items were selected to cover

a range of practically relevant applications. There may be scenarios with only a few items

and few expert raters, for instance, when a company has ten expert employees judging
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the risk of a security breach for five software components. In other scenarios, large

numbers of raters and items might be available, for instance, in a forecasting challenge.

In all conditions, the true, data-generating parameters were randomly drawn for

each repetition. We used the model described in Section 2.1 as the data-generating

mechanism for each interval response Zij of respondent i to item j on the unbounded

scale. To obtain manifest interval responses in the bounded simplex space, we first

transformed the unbounded interval response Zij using the inverse isometric log-ratio

function (Smithson & Broomell, 2024). In the model estimation step, the data were then

transformed back to the unbounded space using the isometric log-ratio function

(Equation 7 with c = 0, see also Smithson & Broomell, 2024). This back-and-forth

transformation is a redundant step for fitting the model in our main simulation study,

where the same transformation was used for data generation and model estimation.

However, for our preliminary simulation study investigating the performance of different

link functions, this is a crucial step required to cross-fit a model version with one link

function to the data generated with the respective other link function.

Table 2 lists all hyperparameter values used for generating person- and

item-specific model parameters. The preregistration protocol contains a detailed

justification of these values (see also the corresponding script in the supplementary

materials in the OSF repository). Overall, we aimed to generate plausible distributions of

manifest response intervals. We derived the hyperparameters from theoretical response

intervals representing typical or extreme responses. For the true mean of consensus

interval location and width, we used the values resulting from the logit-transformed

interval [.40, .60]. For the standard deviation of the true consensus interval location, we

used the interval [.98, .99] transformed to the bivariate space. We declared the resulting

unbounded value as the point that is four standard deviations away from the unbounded

mean location, that is, an extreme value in the unbounded space. We further calculated

the standard deviation for the unbounded true consensus location by dividing the

difference between this extreme value and the mean of the true consensus location by

four. Analogously, for the standard deviation of the true consensus width, we used the
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Table 2

Values of the Hyperparameters Used for Data Generation

Interpretation Parameter Distribution / Constant

Items

Consensus location T loc
j N (0, 0.81)

Consensus width T wid
j N (−0.57, 0.65)

Location discernibility − log(λloc
j ) N (0, 0.3)

Width discernibility − log(λwid
j ) N (0, 0.3)

Residual correlation ωj 0

Respondents

Location proficiency − log(Eloc
i ) N (log[0.81], 0.3)

Width proficiency − log(Ewid
i ) N (log[0.65], 0.3)

Location scaling bias log(aloc
i ) N (0, 0.3)

Location shifting bias bloc
i N (0, 0.27)

Width shifting bias bwid
i N (0, 0.22)

Note. For the parameters Ej and λj we defined the distributions on the negative log scale

to facilitate an interpretation in terms of the variance instead of the precision.

interval [.495, .505]. We simulated the true consensus location and width parameters from

normal distributions since all parameters were defined on the unbounded scale. The

hyperparameters for the bias parameters were then chosen to yield plausible distributions

of the simulated response intervals.

Due to the large computational demand of our simulation study, we determined

the number of repetitions as follows: We aimed for a Monte Carlo standard error (MCSE)

of ≤ .05 for our primary performance measure (the absolute bias for the latent consensus

interval location and width) in all conditions. We deemed 500 (pre-registration: 1, 000)

repetitions computationally reasonable. After 500 repetitions, we checked the MCSEs in

all conditions. If they had not met the above criterion, we would have incrementally

added repetitions in steps of 250 until they did. The MCSEs in all conditions had met
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the criterion after 500 repetitions, with the largest MCSE of the absolute bias being 0.005

in one condition.

Further details can be found in the preregistration and in the supplementary

materials in the OSF repository, where we illustrate the distributions of parameters and

responses as well as the recovery of one set of data-generating parameters.

3.3 Method

We estimated the same model for all generated data sets in a Bayesian framework

using Stan (Stan Development Team, 2023) in R (R Core Team, 2023) via rstan (Stan

Development Team, 2024). For the Bayesian estimation, we used the priors described in

Section 2.2, which we did not preregister. The only deviation from the model described

above was that we used independent univariate prior distributions instead of a

multivariate prior for [Eloc
i , Ewid

i ]⊤ and [λloc
j , λwid

j ]⊤, meaning that we did not estimate the

correlations ρE and ρλ in the simulation. For each repetition, we ran four chains of Stan’s

Hamiltonian Monte Carlo sampler (Betancourt, 2018) with 500 warm-up samples not

used for analyses and 500 (preregistration: 1, 000) samples for the computation of

parameter estimates, which yielded 2, 000 samples per parameter. Given the results for

the convergence diagnostics shown below, we deemed this number sufficient. The

adapt_delta parameter was set to 0.999 for conditions with a number of total simulated

responses ≤ 2, 000, and to 0.9 for the conditions with a greater number (preregistration:

0.9 for all conditions). We changed this setting because in our earlier simulations we had

encountered issues with divergent transitions in conditions with low numbers of responses.

The range of the initial values of the sampling algorithm for the unbounded parameters

was set to [−0.1, 0.1].

3.4 Performance Measures

Our primary performance measure was the absolute bias of both the latent,

unbounded consensus interval location and the width jointly, [T loc
j , T wid

j ]⊤, which we
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defined as follows:

ÂbsBias =

N∑
n=1

J∑
j=1

0.5
(∣∣∣∣T̂ loc

nj − T loc
nj

∣∣∣∣+ ∣∣∣∣T̂ wid
nj − T wid

nj

∣∣∣∣
)

N × J
,

(15)

where J is the number of items in a specific condition and N is the number of repetitions

of the simulation. We computed the mean of the (absolute) bias of location and width

jointly because we expected that there could be a compensatory effect concerning the

accuracy of estimates. We also computed the absolute bias for both dimensions

separately for illustration purposes below (see the supplementary materials in the OSF

repository for a plot of the joint biases).

We additionally calculated the mean squared error (MSE) for the bivariate vector

[T loc
j , T wid

j ]⊤ of the latent, unbounded consensus intervals:

M̂SE =

N∑
n=1

J∑
j=1

0.5
((

T̂ loc
nj − T loc

nj

)2
+
(

T̂ wid
nj − T wid

nj

)2
)

N × J
.

(16)

We also calculated the MSE for the location and width individually.

As a measure of parameter recovery, we also computed the average Pearson

correlation between the estimated and the true values of the parameters:

ρ̂ = 1
N

N∑
n=1

∑K
k=1(θ̂nk − ¯̂

θn)(θnk − θ̄n)√∑K
k=1(θ̂nk − ¯̂

θn)2∑K
k=1(θnk − θ̄n)2

, (17)

where θ̂i and θi represent the estimated and true values respectively, ¯̂
θ and θ̄ are their

respective means, and K represents either the number of items or number of persons,

depending on the type of parameter.

We estimated the MCSE of these performance measures via bootstrapping. We

further tallied the number of non-converged simulation repetitions.

3.5 Results

3.5.1 Preliminary Study: Link Functions

Our preliminary simulation that compared two alternative link functions showed

the superiority of the isometric log-ratio transformation over the amalgamation log-ratio
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transformation. Especially in the case of cross-fitting the model to the data generated by

the respective other link function, the isometric log-ratio transformation was more robust

to this specific type of model misspecification.

3.5.2 Main Study: Recovery of Latent Consensus Intervals

All repetitions of the simulation study finished without error. The average R̂

across all repetitions and conditions was 1.002. In 13 of 16 simulation conditions, we

observed no divergent transitions. In the “worst” condition with ten respondents and five

items, 1.2% of all models contained at least one divergent transition. The models with

divergent transitions in this condition contained on average 26.7 divergent transitions.

Overall, these results imply good convergence in almost all repetitions. This indicates

that the model can even be estimated in edge cases with a low number of items and

respondents, where the performance benefit compared to the aggregation via simple

means or medians is particularly large. Additional results on convergence metrics are

available in the supplementary materials in the OSF repository.

We visualized the absolute bias of the latent interval location and width in

Figure 4. The true consensus locations had a higher standard deviation (0.81) compared

to the true consensus widths (0.65). Therefore, we divided the absolute bias by the true

standard deviations of the respective parameters for ease of interpretation in the figure.

The unstandardized performance measures are available in the supplementary materials

in the OSF repository. In all simulation conditions, the ICM has a lower absolute bias

averaged over location and width parameters than the simple means and medians. As

expected, there is a notable effect of the number of respondents, with a considerably

lower bias for higher sample sizes. Increasing the number of respondents from 10 to 50

roughly corresponds to halving the absolute bias for all conditions. The size of the

performance difference between the ICM and the simple means and medians remains

fairly similar for sample sizes from 50 to 200. Interestingly, the medians performed better

than the means for the location dimension, but not for the width dimension. A larger

number of items slightly improves the performance of the ICM regarding the recovery of

consensus intervals, but this effect is weaker than the effect of the number of respondents.
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Figure 4

Absolute Bias of Consensus Interval Location and Width.

Note. This figure shows the standardized absolute bias (y-axis) of the consensus interval

location (upper row) and width (lower row) for different numbers of items (columns) and

respondents (x-axis). The standardized absolute bias was obtained by dividing the

condition-wise absolute bias by the true standard deviation of the location or width.

Error bars indicate ±1 MCSE. Some MCSEs are so small that the upper and lower error

bars are indiscernible.
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The standardized absolute bias is very similar for the location and width dimensions,

which means that both dimensions can be estimated similarly well. We chose to plot both

dimensions separately here to illustrate this point. The combined absolute bias, which we

defined above in Equation 15, shows a virtually identical pattern of results. Even in the

condition with the lowest number of items and respondents (5 items, 10 respondents), the

smallest correlation between the estimated consensus locations and the true parameter

values is still ρ̂ = .92 (MCSE = .006). This estimate is the same for the consensus widths.

In conclusion, the model may be used for the aggregation of interval judgments, even in

small samples.

In the supplementary materials in the OSF repository, we present additional

simulation results for all model parameters. These show that the MSE follows a

qualitatively very similar pattern to the results of the absolute bias. For all conditions,

the ICM had a better performance concerning the MSE than the simple means and

medians. Further, in simulation repetitions with a higher bias of the location, the bias of

the width tended to be higher as well. Thus, we did not observe evidence for

compensatory behavior, where an accurate estimation of one dimension would be

associated with a poorer estimation of the respective other dimension.

3.5.3 Recovery of Other Model Parameters

Although the main focus of the model is estimating the consensus intervals, the

person and/or item parameters may also be of interest in some cases. We visualized the

correlation between the true, data-generating parameters and the corresponding model

estimates for all parameters in Figure 4. If the focus is on the proficiency parameters for

the respondents, it is advisable to collect data for more than 20 items. The correlation

between estimated and true parameters for the location proficiency, for example, was

ρ̂ = .71 (MCSE = .012) with 10 respondents and 20 items, and ρ̂ = .80 (MCSE = .006)

with 10 respondents and 40 items. Recovery of the other parameters was generally better

than for respondents’ location proficiency, so 20 items should provide a useful lower

bound in such cases. If higher reliability is needed, 40 items would be more appropriate.
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Figure 5

Correlation Between True and Estimated Parameters

Note. This figure shows the correlations (y-axis) between the true, data-generating

parameters and the corresponding model estimates for all parameters (rows) for different

numbers of items (columns) and respondents (x-axis). Error bars indicate ±1 MCSE.

Some MCSEs are so small that the upper and lower error bars are indiscernible.
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On the other hand, researchers who are primarily interested in the item

parameters can achieve good recovery with 50 respondents, even when using only 5 items.

For example, the correlation between estimates and true parameters for the location

discernibility was ρ̂ = .89 (MCSE = .007). Recovery might still be acceptable with less

than 50 respondents. However, the next smallest condition in our simulation had 10

respondents, where a correlation of ρ̂ = .70 (MCSE = .009) was achieved with 10 items.

If the recovery performance for such small sample sizes is of interest, the analysis scripts

available in the supplementary materials in the OSF repository allow readers to adapt

and re-run our simulation study for other scenarios.

3.5.4 Summary

The results of our simulation study indicate that the ICM performed better than

simple means and medians in all conditions we studied. The absolute difference between

both approaches became smaller with a larger number of respondents. The number of

items did not have a strong influence on the results regarding the consensus intervals.

This is not surprising because our performance measures are aggregated across the item

parameters. However, the small increases in performance can be explained by the

increased precision of person parameter estimates in conditions with larger numbers of

items, which in turn helps to estimate the item parameters more precisely. As we

standardized the absolute bias, the results can be interpreted as fractions of the true

standard deviation, indicating a satisfactory performance of the ICM.

4 Empirical Example: Verbal Quantifiers

To demonstrate the application of the interval consensus model (ICM), we

reanalyze judgments on verbal quantifiers collected by Kloft and Heck (2024). We use the

already cleaned data (accessible from https://osf.io/7azbr). The sample consists of 209

respondents (female: 145, male: 62, diverse: 2), mainly psychology students, with a mean

age of 25.5 years (SD = 8.5).

Participants provided judgments for 16 verbal quantifiers such as “seldom” or
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“often” using the dual range slider response format (see Figure 1). For each verbal

quantifier, respondents had to assign an interval of probabilities ranging from 0% to 100%

according to the probability that an event described in this way would occur. The full

analysis is available in the supplementary materials in the OSF repository.

4.1 Model Modification and Estimation

Not all parameters described in Section 2 yielded useful estimates in an initial fit

of the full model. Specifically, the estimates for the respondents’ response bias

parameters bloc
i (i.e., systematic shifts in the location dimension) did not differ

meaningfully between individuals, as indicated by a variance close to zero. We therefore

simplified the model by excluding these parameters.

We estimated the model using the same software as in the simulation study but on

a Windows machine. Information on the computational environment is provided in the

session info at the end of the analysis script, rendered as an HTML report in the

supplementary materials in the OSF repository. For Bayesian inference, we used the

priors described in Section 2.2. We ran four chains of Stan’s Hamiltonian Monte Carlo

sampler (Betancourt, 2018) with 500 warm-up samples, which were not used for analyses,

and 1, 000 samples for the computation of parameter estimates. This yielded 4, 000

samples per parameter. The adapt_delta parameter was set to 0.8 and the range of the

initial values of the sampling algorithm for the unbounded parameters was set to

[−0.1, 0.1]. Convergence was assessed via the R̂ statistic (Vehtari et al., 2021), which was

below 1.011 for all parameters. We provide posterior predictive checks in the online

supplementary materials in the OSF repository.

4.2 Model Results

Figure 6 presents five examples of estimated consensus intervals (black horizontal

intervals) that each resemble the cultural consensus of the sampled respondents, jointly

with a simple median of logit-transformed interval responses (gray horizontal bars) and

pointwise cumulative frequencies of the empirical interval responses (black density lines).
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Figure 6

Estimated Consensus Intervals for Verbal Quantifiers

Note. Black horizontal interval: Consensus interval estimated by the interval consensus

model. Gray horizontal bar: Typical interval based on the median location and median

width of the observed, logit-transformed response intervals.

The “fifty-fifty chance” item (top) was one of the control items in the study, for

which respondents were expected to answer with narrow intervals placed in the center of

the response scale. The estimated consensus interval is centered on the correct reference

value of 50% and very narrow, reflecting the high precision of the verbal statement

“fifty-fifty chance.” A substantial proportion of response intervals are wider, as indicated

by the density. However, the consensus is still that a “fifty-fifty chance” is a probability

very close to 50%. Also, the simple median interval in this case gives a similar estimate of

the consensus. The two other control items were “never” (middle left) and “always”

(middle right). Figure 6 shows that their consensus intervals were close to the extreme

ends of the response scale, as expected for these words. In contrast, the intervals based on
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the medians are strongly influenced by a skewness of response intervals towards the center

of the scale. Overall, the three control items demonstrate that the ICM provided more

meaningful estimates of the interval consensus than simple aggregation via the median.

The item “potentially” (bottom right) provides an example of a typical pattern

found for most of the verbal quantifiers. The simple median interval was more strongly

influenced by the concavely shaped longer tail of the distribution of response intervals,

while the consensus interval estimated by the model was more representative of the

convexly skewed shorter tail. This trend also appeared for the item “hardly” (bottom

left). The model-based estimate of the consensus interval was more representative of the

empirical distribution, while the simple median interval was shifted towards the center of

the scale, demonstrating a stronger influence of the inwardly skewed outliers of the

empirical responses. Overall, the model estimates provided a better representation of

where the bulk of response intervals were located.

Figure 7 displays posterior draws of the consensus intervals for a selection of

verbal quantifier items, jointly with the prior density of the model (a plot of all verbal

quantifiers can be found in the supplementary materials in the OSF repository). The plot

includes the three control items “never,” “fifty-fifty chance,” and “always” at the bottom,

reflecting a shared consensus that the meaning of these quantifiers in terms of

probabilities is clear (i.e., the width on the y-axis is estimated to be very small). The

other quantifiers have larger widths, indicating a consensus that using these words comes

with more ambiguity. While the posterior distributions for most control items are

relatively peaked and precise, more vague quantifiers such as “potentially” also show

higher estimation uncertainty. The model allows us to distinguish two types of

uncertainty: First, the increased width, as shown by large values on the y-axis, of the

item “potentially” indicates a latent consensus that the item has a wider range of

plausible meanings. Second, the wider posterior distribution, as shown by the

distribution of posterior samples, indicates that the estimation certainty for this inference

is lower than that for the remaining items. Furthermore, the prior density in the

background of Figure 7 also illustrates that our weakly informative prior was an
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Figure 7

Prior and Posterior Distributions for the Cultural Consensus Intervals

Note. Orange points: 1, 000 posterior draws for each verbal quantifier. Purple to yellow

density in the background: prior density estimated from 1,000,000 samples and

standardized to a maximum density of 1. The prior on the marginal distribution of

interval widths is Beta(1.2, 3). The prior on the marginal distribution of interval

locations, conditional on the interval width, is Beta(1, 1).
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Figure 8

Empirical Interval Responses and Estimated Proficiencies for the Item “Fifty-Fifty

Chance”

Note. Black horizontal bars: Empirical response intervals. Blue dots: Estimated

proficiencies, computed per person as the mean of the standardized posterior medians for

the location and the width proficiency, transformed to normal quantiles.

appropriate choice for this application, as most posterior distributions are located in

areas of relatively high prior probability.

The estimated correlation of respondents’ proficiencies for the location and the

width dimension (see also Table 1, column 1) was ρ̂E = .63 (95% HDI [.51, .73]).

Substantively, this means that respondents who answered highly consistent with respect

to interval locations were also highly consistent regarding interval widths, that is, when

judging the variability in how the quantifiers are being used.

Figure 8 provides insights into how the estimated proficiencies relate to empirical

interval responses. The empirical responses of all participants to the verbal quantifier
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“fifty-fifty chance” (black intervals) are shown jointly with the corresponding individual

proficiency estimates (blue points). For illustration, the two-dimensional proficiency

estimates are collapsed within each individual by taking the mean of the location and the

width parameter. Respondents are ordered by their proficiencies from high (top) to low

(bottom). The respondents with the highest proficiencies (upper half of the y-axis) mostly

provided relatively narrow intervals located at the center of the response scale. In the

lower half of the y-axis, respondents provided much wider response intervals, some of

which were necessarily located at the center of the scale due to their large width. Those

respondents with the lowest proficiency at the bottom of the y-axis mostly failed to place

the interval at the center of the response scale. This shows that the proficiency estimates

may be useful for diagnosing non-effortful responding. The model also enables us to

automatically downweight the responses of unreliable respondents. This is achieved by

the person proficiency parameters, which assign higher error variances to respondents

providing inconsistent response patterns (see Section 2.1). Consequently, we do not have

to exclude respondents from the data based on possibly arbitrary filtering criteria.

Regarding item parameters, the discernibilities of consensus locations and widths

(see also Table 1, Column 2) were correlated negatively with ρ̂λ = −.47 (95% HDI

[−.77, −.06]). This correlation should be considered with caution since it is driven by the

control items (“never,” “always,” “fifty-fifty chance”). These had especially high location

discernibility estimates, above the mean, and especially low width discernibility estimates.

At the same time, all other items’ location discernibility estimates were below the mean,

and their width discernibility estimates were above the mean. We initially selected these

verbal quantifiers as control items because they have a clear implication regarding the

probability assigned to them, that is, “never” = 0%, “always” = 100%, and “fifty-fifty

chance” = 50%. The high location discernibility indicates that respondents overall

interpreted these quantifiers in the assumed way.

To check whether the negative correlation between location and width

discernibilities was just due to the control items’ influence, we re-fitted the model,

excluding the three control items. As expected, the correlation was no longer negative
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and even changed to a large positive value with ρ̂λ = .80 (95% HDI [.43, .98]). This

means that items with an easy-to-detect consensus location also tended to have a

consensus width that was easier to detect. At the same time, the correlation for

respondents’ location and width proficiencies was reduced to ρ̂E = .50 (95% HDI

[.34, .64]). Since respondents who participated seriously were likely able to set a

reasonably accurate location and width for the control items, these items might have

artificially inflated the correlation between person proficiencies. Therefore, the lower

correlation provides a more conservative, and arguably more appropriate, estimate. In

conclusion, our empirical example shows that item parameters, such as discernibility, can

facilitate manipulation checks or may be used to exclude poorly performing items.

5 Discussion

We proposed the Interval Consensus Model (ICM) as a means of estimating the

shared consensus of a group of individuals regarding continuous, bounded intervals. In a

simulation study, the consensus model outperformed the descriptive approach of simply

averaging the response intervals or taking the median. We also showed that the model

can be estimated with as little data as five items and ten respondents. We further

illustrated the application of the proposed model to empirical data in the case of interval

judgments for verbal quantifiers such as “rarely” or “frequently.” The model-based

analysis led to valid conclusions for control items such as “always” and allowed us to

detect and downweight the responses of unreliable respondents.

The results of a preliminary simulation study showed that our choice of the

isometric log-ratio transformation over the amalgamation log-ratio transformation was

justified, as the former was more robust to model misspecification (i.e., when using a

different transformation for model fitting than for data-generation). The ICM showed

good convergence and a better performance in terms of absolute bias and MSE than

aggregation via simple means and medians. Even in the “hardest” conditions with small

numbers of respondents and items, divergent transitions occurred only in a small

proportion of models. If such divergences occur in empirical research, one may need to
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specify more informative prior distributions. The possibility of defining prior

distributions is a strength of the Bayesian approach, which allows for incorporating

expectations and knowledge about the consensus intervals, thereby facilitating robust

estimation even in small datasets (Krypotos et al., 2017). However, not all parameters

may be necessary, nor can they always be estimated with sufficient precision in every use

case. Issues may emerge due to low variance between respondents, as in our empirical

example, or due to noisy data. Under such circumstances, auxiliary parameters for

person biases may be removed as needed. Moreover, even if the proficiency parameters

cannot be estimated precisely, the model reduces to estimating an unweighted mean

consensus interval for each item.

In our empirical example, estimated consensus intervals were centered on the

factually true value in the case of “fifty-fifty chance,” and on the mode of the distribution

in the case of the item “hardly.” Compared to computing simple means or medians, the

model-estimated consensuses appeared to be more robust against extreme responses from

individuals with low proficiency. The model can therefore be used to obtain higher-quality

estimates of a latent consensus interval. While simple trim-and-average heuristics (Gaba

et al., 2017; Lyon et al., 2015; Park & Budescu, 2015) could be useful in this regard, our

model-based approach offers the advantage of providing estimates for the proficiency of

respondents and the discernibility of items. These estimates may be used for diagnostic

purposes, as illustrated by the analysis of control items in the empirical example. Further,

the ICM could be extended to an explanatory model, for example, by incorporating

latent regressions for the item or person parameters (for an example of how this might be

implemented, see Heck et al., 2018). This might be relevant for researchers investigating

potential predictors of the respondents’ proficiency or the discernibility of items.

We confined ourselves to studying a specific version of a consensus model for

interval responses, but there are several possibilities for extensions of this model, which

we did not cover in the present article. We chose the isometric log-ratio as the link

function for our model and investigated one alternative link function (Smithson &

Broomell, 2024). However, there might be other appropriate link functions that we are
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not aware of. Further research might focus on developing alternative link functions to

find an optimal match between different link functions and certain types of applications

of the interval response format (Ellerby et al., 2022; Kloft & Heck, 2024), or explore

model versions that do not require a link function at all (e.g., by relying on the Dirichlet

distribution; Kloft et al., 2023).

The model assumes a single, shared consensus interval for each item. However, in

some applications, it is plausible to assume more than one latent consensus for different

unknown groups, in other words, latent classes of respondents (see Anders et al., 2014).

We also did not cover the case where the latent consensus is a single point, for example a

specific risk probability, while responses are collected with an interval format, for example

by judging the range of plausible probabilities, as in forecasting (Gaba et al., 2017;

Peeters & Wolk, 2017). This case warrants the development of a new model which

estimates this point consensus based on interval responses. Such a model requires further

assumptions about where the best guess of a respondent is located within an observed

response interval. Alternatively, one may fit the ICM proposed in the present work to

derive a consensus interval for the point truth and then judge forecasting performance

based on the coverage of the target value. However, the model will not provide a single

best guess within the estimated consensus interval. The estimated consensus intervals

differ conceptually from confidence intervals for point estimates in a classical consensus

model because they reflect the subjective (meta-)uncertainty within respondents rather

than the estimation uncertainty between respondents.

Regardless of the specific model being used, when researchers are interested in a

latent underlying point quantity but still ask participants to provide interval responses, it

is important to provide clear instructions about the meaning of the interval bounds. For

example, the interval bounds could represent the lower and upper bounds of plausible

values or, alternatively, a symmetric interval of uncertainty around the best guess (Kloft

& Heck, 2024). A simpler alternative solution might be to provide participants with three

response values: one for their best guess, and two for the lower and upper bounds of the

interval. In this case, the ICM and the isometric log-ratio function can be extended to a
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third dimension, representing the asymmetry of the best guess relative to the

encompassing interval bounds. The development of such extended models is beyond the

scope of our article and provides promising avenues for future research.
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Appendix

Abbreviations and Parameter Interpretations

• CCT: Cultural Consensus Theory

• ICM: Interval Consensus Model

• DRS: Dual Range Slider

• ILR: Isometric Log-Ratio function

• MCMC / HMC: Markov Chain Monte Carlo / Hamiltonian Monte Carlo

• HDI: Highest Density Interval (for a given posterior distribution; Bayesian)

• R̂: Statistic for the diagnosis of MCMC convergence

• MCSE: Monte Carlo Standard Error

• MSE: Mean Squared Error

• OSF: Open Science Framework

• ADEMP: Aims Data-generating mechanisms Estimands Methods Performance

measures

• Data Definitions:

– XL, XU : Lower and upper bound of interval response

– X =
[
XL, XU − XL, 1 − XU

]⊤
: Interval response in its simplex

representation / compositional format

– Y : Interval response in its simplex representation after adding a padding

constant to replace zero-components

– Z =
[
Z loc, Zwid

]⊤
: Logit-transformed interval response on the unbounded

scale

• Model Parameters of the Interval Consensus Model:

– Aloc
ij , Awid

ij : Respondent’s latent appraisal of interval location and width

– aloc
i : Person scaling bias for the interval location
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– bloc
i , bwid

i : Person shifting bias for the interval location and width

– Eloc
i , Ewid

i : Person proficiency to detect the consensus interval location and

width

– T loc
j , T wid

j : Latent consensus interval location and width on the unbounded

scale

– T ∗L
j , T ∗U

j : Latent consensus interval lower and upper boundary on the

bounded response scale with reversed zero-handling transformation

– λloc
j , λwid

j : Item discernibility for the consensus interval location and width

– ωj: Residual correlation between location and width dimension
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