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such as ours, where there is no deception of participants and no sensitive topics or

materials are presented to participants.

https://doi.org/10.1017/psy.2025.10058 Published online by Cambridge University Press


https://doi.org/10.1017/psy.2025.10058

INTERVAL CONSENSUS MODEL 4

Abstract

Cultural Consensus Theory (CCT) leverages shared knowledge between individuals to
optimally aggregate answers to questions for which the underlying truth is unknown.
Existing CCT models have predominantly focused on unidimensional point truths using
dichotomous, polytomous, or continuous response formats. However, certain domains
such as risk assessment or interpretation of verbal quantifiers may require a consensus
focused on intervals, capturing a range of relevant values. We introduce the Interval
Consensus Model (ICM), a novel extension of CCT designed to estimate consensus
intervals from continuous bounded interval responses. We use a Bayesian hierarchical
modeling approach to estimate latent consensus intervals. In a simulation study, we show
that, under the conditions studied, the ICM performs better than using simple means
and medians of the responses. We then apply the model to empirical judgments of verbal
quantifiers.

Keywords: Continuous bounded responses, cultural consensus theory, interval

responses, Bayesian modeling
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1 Introduction

In psychological research, it is common practice to pose questions to respondents
for which the correct answer is not known. This may be a forecast of the occurrence of
some future event, for example “that same-sex marriage will be federally recognized by
the end of Obama’s term (2017)” (Anders et al., 2014), where the correct answer can in
principle be known or will reveal itself eventually. Correct answers are also unavailable in
scenarios where the correct answer can change based on the context or the particular
group of respondents. For example, one might be interested in judgments of affective
valence regarding stimulus words like “accident” (Bradley & Lang, 1999) or in judgments
of probabilities assigned to verbal quantifiers like “seldom” or “likely.” Such judgments
can often be ambiguous and may systematically vary between groups or individuals, or
even within a single individual, depending on the context in which the particular word is
used (Karelitz & Budescu, 2004). In such scenarios, it is often of interest to estimate the
shared consensus of a certain group by aggregating the given responses.

Cultural consensus theory (CCT) was developed to solve this problem (Batchelder
& Romney, 1988; Romney et al., 1986). It is based on the assumption that respondents
belong to the same group or subpopulation and share common knowledge about a
particular knowledge domain, which is termed the cultural consensus. However,
respondents may not all have the same level of expertise or background knowledge, and
thus, the quality of answers may vary among different respondents. The theory further
assumes that weighting responses by expertise will improve the overall accuracy of the
aggregated judgments. CCT builds on these assumptions to estimate the cultural
consensus by (a) aggregating all responses and (b) weighting each response by the inferred
expertise of the respective respondent. To estimate the expertise of the respondents along
with the cultural consensus, it is necessary to collect responses to multiple items in the
same knowledge domain for each respondent. This can typically be done in a design in
which respondents and items are fully crossed, but also in a non-fully crossed design. The
consistency of a respondent’s answers across multiple items, relative to the answer

patterns of other respondents, is then used to estimate their expertise in the respective

https://doi.org/10.1017/psy.2025.10058 Published online by Cambridge University Press


https://doi.org/10.1017/psy.2025.10058

INTERVAL CONSENSUS MODEL 4

domain. Additionally, the discernibility of each item’s cultural consensus is estimated
across respondents and incorporated into the estimation of the cultural consensus.

Different consensus models for various combinations of response formats and
modalities of the latent consensus have been proposed. The initial consensus model, the
general Condorcet model (Batchelder & Romney, 1988), used dichotomous responses to
estimate binary consensus values, for instance, for answers on a true-false general
knowledge test. Following this, several model extensions have been proposed. The latent
truth model (Batchelder & Anders, 2012) also accommodates dichotomous responses, but
assumes that the latent consensus values of interest are continuous and lie between zero
and one. For instance, respondents were asked for dichotomous judgments indicating
whether a disease is contagious (Batchelder & Anders, 2012). While judgments about the
perceived contagiousness of a disease can be assessed in a dichotomous response format,
true contagiousness is more accurately represented in terms of probability, that is, by a
continuous value between zero and one. The latent consensus values thus have a
probabilistic meaning, while the observable responses are discrete, binary values of either
zero or one. The continuous response model (Anders et al., 2014) extends this model to
the case where responses are no longer dichotomous, but rather given on a continuous
bounded response scale between zero and one. The model assumes that consensus values
are continuous in a latent, unbounded space and are mapped onto the bounded response
scale by a logit link function. One application of this model concerns the forecasting of
probabilities of future events, such as a large tsunami hitting the coast of a particular
country (Anders et al., 2014). Anders et al. (2014) also incorporated a method for
estimating multiple cultural consensuses for qualitatively different groups by combining
CCT with latent class analysis. Another extension of the latent truth model, the latent
truth rater model (Anders & Batchelder, 2015), maps continuous latent consensus values
to categorical responses. An example application could be ratings of the grammatical
acceptability of English phrases on a seven-point scale (Anders & Batchelder, 2015).

All models described above are uni-dimensional, as only a single attribute is rated

for each item. However, consensus models can also be applied to multidimensional
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ratings. Mayer and Heck (2023) proposed a model for two-dimensional estimates of
geographical locations on maps, where respondents had to estimate the location of cities
such as London. In this case, both responses and latent consensus values refer to
longitude and latitude and are thus continuous, two-dimensional vectors. In this specific
example, the model assumes unbounded coordinates while actual locations are bounded
due to geographic constraints such as oceans.

All of the above models assume a single (uni- or two-dimensional) point as the
latent, unknown consensus for each item. However, in some domains, a point consensus is
too constraining and a range or interval of values may be more appropriate to represent a
group’s consensus. One example is the judgment of risks, for example, in cyber-security
(Ellerby et al., 2020). When organizations want to determine the attack risk regarding
their cyber-physical systems, one way to do this is to have experts estimate these risks for
specific system components. The overall estimated risk for a component depends on both
the variability of judgments among experts, as well as the subjective uncertainty within
each expert. While the uncertainty between experts can already be inferred from point
judgments, an interval response format provides the opportunity to also incorporate the
within-expert uncertainty of a particular risk judgment. In this case, an interval
judgment can be conceptualized as an interval of risk estimates ranging from the
best-case scenario to the worst-case scenario, that is, a lower and an upper bound of the
attack risk of a particular system component. Since every value in such an interval is
already a probability, the interval is a range of plausible risks. The consensus on plausible
risks shared by experts can be of interest to stakeholders, and therefore, plausible risks
should be assessed (Ellerby et al., 2020).

Another example concerns verbal quantifiers like “difficult” (Navarro et al., 2016)
or “likely” (Karelitz & Budescu, 2004), which might be used to indicate how frequently or
with which probability particular events such as extreme heat waves are happening
(Harris et al., 2017). The use of such quantifiers is ambiguous, since there is no clear-cut
convention in terms of numerical probabilities that should be assigned to particular

quantifiers (except for words like “always” or “never”). An interval consensus could
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Figure 1
Dual Range Slider (DRS)

23% 56%
C>—7>
Note. Screenshot of the noUiSlider JavaScript range slider (Gersen, 2024) used in the

empirical study (see Section 4). The scale ranges from 0% to 100%.

represent a range of permissible probabilities that a particular word stands for in its
pragmatic use.

Interval response formats such as the dual range slider (DRS) shown in Figure 1
may be a suitable solution for these types of applications. Two sliders allow respondents
to judge the lower and the upper bound of a range of values. Ellerby et al. (2022) found
that respondents could adequately indicate the variability of different stimuli with an
interval response format. In a multi-trait multi-method study, Kloft et al. (2024) found
good test-retest reliability of personality scores concerning interval location (reflecting
differences in traits between individuals) and interval width (reflecting variability of
states within an individual). However, the factor scores for interval widths did not show
discriminant validity for the two personality scales used (Extraversion and
Conscientiousness). This finding was replicated in another study by Kloft and Heck
(2024) in which the DRS response format was applied to different task domains such as
personality adjectives, forecasting of votes, estimation of visual stimuli, estimation of
health risks, and judgments of verbal quantifiers. The authors analyzed participants’
interval-width responses in an exploratory factor analysis. Replicating previous results,
the discriminant validity of interval widths was low for the two personality scales, as
indicated by a common factor for the respective items. However, interval-width responses
for the other tasks roughly followed a simple structure with the items of each task loading
on a separate factor, suggesting that respondents are sensitive to the requirements of a
particular task. Overall, these findings indicate that interval responses are suitable for

estimation tasks in which some objectively quantifiable probability or frequency has to be
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rated. Although various methods for the aggregation of interval ratings have been
proposed (Gaba et al., 2017; Lyon et al., 2015; Park & Budescu, 2015), a consensus
model, which infers the latent expertise of participants, has not yet been developed for
this type of response format. As a remedy, the present article aims to develop a
consensus model that can be used to estimate weighted consensus intervals based on
ratings collected via continuous bounded interval response formats like the DRS.

We focus on the case where the latent consensus is an interval itself. As discussed
by Batchelder and Anders (2012) for uni-dimensional, dichotomous responses, different
kinds of latent consensuses can be mapped onto the same response format used to collect
observable ratings. In the case of dichotomous responses, the latent consensus can either
be binary, that is, true or false, or continuous, that is, a probability between zero and one
of being true or false. Similarly, in the case of collecting interval responses with the DRS
response format on a scale from zero to one, the latent consensus can be a single point in
[0, 1] such as the consensus probability of an event happening. However, the latent
consensus can also be a consensus interval in [0, 1] if a range of values is permissible. For
instance, in the example of verbal quantifiers, the word “often” could be associated with
a consensus interval of [.60,.80]. Which type of latent consensus is more appropriate
depends on the substantive application and the psychological constructs of interest (see
also Kloft & Heck, 2024, for a discussion of relevant domains and psychological
constructs). Regarding models with a point consensus, interval responses are assumed to
reflect respondents’ uncertainty around their best guess for the unknown value.
Regarding models with a latent interval-valued consensus, interval responses are assumed
to represent participants’ judgments of the plausibility of a range of values (e.g., the
consensus range of appropriate probabilities in the example of verbal quantifiers). Also,
in the example of judgments of risks, the plausible range of a particular risk might be of
interest. If we aim at inferring experts’ consensus on the range of plausible risks for a
particular event, the desired consensus is an interval.

To facilitate the estimation of consensus intervals, we developed the Interval

Consensus Model (ICM), which combines and extends three previous contributions to the
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literature. The core of the model is the uni-dimensional consensus model by Anders et al.
(2014), which uses a logit-normal distribution to model continuous bounded responses in
(0,1). We extend this model to two dimensions via a bivariate normal distribution, as
previously implemented for unbounded responses by Mayer and Heck (2023). Moreover,
we use the isometric log-ratio (ILR) transformation function (Smithson & Broomell, 2024)
as an appropriate link function that connects the bivariate-normal model to the observed,
bounded interval responses.

We explain the mathematical details of the ICM along with a Bayesian estimation
method in Section 2 and present a simulation study for the computational evaluation of
the model in Section 3. Next, we apply the model in a reanalysis of judgments of verbal
quantifiers collected by Kloft and Heck (2024) in Section 4. Lastly, we discuss
implications, limitations, and directions for future research in Section 5.

We have implemented the methods presented in this article in the R-package
intervalpsych (Kloft & Siepe, 2025). It features functions for data transformation,
model fitting and visualization, as well as the dataset containing judgments of verbal

quantifiers.

2 Theory
2.1 The Interval Consensus Model

In this section, we will introduce the notation for the data and the parameters.
Appendix A provides an overview of these definitions, along with short explanations. We
assume that interval responses are measured on a response scale from 0 to 1 so that the
lower and upper interval bounds are given as 0 < X* < XY < 1. We first transform the
data into a more generalizable compositional form, namely, a simplex with three

components that sum to one:

.
X =|x\ xV_Xxt 1-XxY| . (1)

Since any of the three components in X can be zero, we add a padding constant ¢ to all

components to ensure that we can later apply a log-ratio transformation. After adding
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the constant, the compositional form is restored by dividing each element of the vector by

the sum of all its elements.

Y =

T30 (X +¢1) with e¢=0.01, (2)

where 1 is a vector of three ones. Other methods have been proposed to remove
zero-components, some of which have properties that are more optimal for compositional
analysis, like the preservation of the original ratios of non-zero components for a
particular interval response (Martin-Ferndndez et al., 2003). However, the rescaling
method used here has the advantage of preserving the original ratios of non-zero
components across all responses, which is important for estimating consensus values
across items and participants. The rescaling essentially creates a hypothetical response
scale for which the extreme values determining the scale’s minimum and maximum
cannot occur in the data. The particular choice of ¢ = 0.01 is arbitrary. We conducted a
sensitivity analysis (see the supplementary materials in the OSF repository), which
indicated that this value is a sensible choice. The results in our empirical example (see
Section 4) did not change substantially when choosing slightly different values. If none of
the components is zero for all responses, we can skip this step in the analysis.

Next, we need to convert interval responses into a format better suited for our
modeling framework, which assumes a bivariate normal distribution. For this purpose, we
apply a specific version of the isometric log-ratio (ILR) transformation function to Y.
This link function is tailored to the compositional form of interval responses (Smithson &

Broomell, 2024):

o loc widT_ 1 le 2 Yé
e = o) o

The transformation yields a vector Z € R? with two elements, Z'¢ and Z", which

T

(3)

correspond to the unbounded interval location and width, respectively. The unbounded
interval location Z'¢ compares the size of the left component Y;, defined by the left
response scale limit and the lower bound of the response interval, against the size of the
right component Y3, defined by the upper bound of the response interval and the right

response scale limit. The unbounded interval width Z“* compares the middle component
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Y5, that is, the observed interval width, to the geometric mean of the left and the right
component /Y7 Y.

The geometric mean in the denominator is used to scale the interval width relative
to the interval location in the unbounded space. Therefore, a response interval of a
particular width will be transformed into an unbounded interval of a greater width if the
interval location is closer to the lower or upper limit of the response scale, compared to
being near its center. For example, the response interval [.80,.90] has a mean of the
interval bounds of .85 and a width of .10 on the bounded scale, which corresponds to a
transformed location of Z!° = 1.47 and a transformed width of Z*#¢ = —(.85. Placing an
interval with the same observed width near the center of the bounded scale — for example,
the interval [.40,.50] with a mean of interval bounds of .45 — will yield a considerably
smaller transformed width Z%* = —1.23 (Z'°¢ = —0.16). This scaling of the transformed,
unbounded width, conditional on the interval’s proximity to the response scale limits,
accounts for the boundedness of the response scale. To illustrate this, consider a
respondent who wants to move the interval location toward one of the response scale
limits. Eventually, one of the interval bounds will touch the corresponding response scale
limit and it becomes necessary to lower the interval width to move the interval location
even closer to the respective response scale limit. The transformation counteracts this
effect of the bounded response scale. This is a pragmatic solution that does not
necessarily reflect a hypothesized true mapping of a latent response to an observed one.
Rather, it is just an assumption similar to the S-shaped item response curves in classical
item response models.

Figure 2 illustrates the isometric log-ratio transformation for five response
intervals. Panel A shows raw response intervals, Panel B represents these intervals in the
ternary space, and Panel C illustrates their location in the unbounded, transformed space.
Interval 3 divides the response scale into a composition of three equally sized components
(Panel A) and corresponds to the origin of the transformed, unbounded space (Panel C).
Regarding the location dimension (x-axis), the origin in the unbounded space in Panel C

maps to the center of the bounded response scale in Panel B. Hence, unbounded location
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Figure 2

Lllustration of the Multivariate Logit Transformation

A) Intervals B) Ternary C) Bivariate Normal
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Note. The five observed response intervals are: Interval 1 = [.05,.20], Interval 2

= [.10,.90], Interval 3 = [1, 2], Interval 4 = [.50, 80], Interval 5 = [.90,.95].

values of zero correspond to response intervals that are centered on the response scale,
containing an equal amount of support for values to the left and the right of the scale’s
center (e.g., the same proportion of negative and positive values on a bipolar scale). In
contrast, the origin of the width dimension (y-axis) in the unbounded space does not
have such a clear, substantive interpretation. For example, the origin corresponds to a
width of one-third when the interval is placed on the center of the response scale. As the
interval’s location moves away from the scale’s center, the value zero will correspond to
different widths on the bounded response scale. Therefore, the width dimension has
slightly different properties than the location dimension, which we will consider below in
the parameterization of our model. Interval 2 is also placed on the center of the bounded
response scale, but it is much wider, which places it in the center of the x-axis and at the
upper quarter of the y-axis of Panel 2B and C. The other three intervals illustrate how
shifts to the left (Interval 1) or to the right (Intervals 4 and 5) on the bounded response
scale result in transformed values left and right from the center of the x-axis in the
unbounded space. As these intervals are relatively small, they have negative values on the

y-axis in the unbounded space.
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The specific form of the isometric log-ratio transformation that we use here is one
of many log-ratio functions described in the compositional analysis literature (Greenacre
et al., 2021). In some of these applications, the data have a certain natural meaning (e.g.,
when studying compositions of chemicals), which is not the case for interval responses.
Therefore, not all approaches proposed for compositional data analysis are directly
applicable in our case. We need a transformation that yields two conceptually
independent and interpretable dimensions, corresponding to the location and the width of
response intervals. We know of two log-ratios (described by Smithson and Broomell,
2024) that satisfy these requirements and can thus be applied to interval responses. The
first option, the isometric log-ratio, was presented above. The second option is an
amalgamation log-ratio (Greenacre et al., 2021). We tested both log-ratios against each
other in a preliminary simulation study (see Section 3) and finally chose the isometric
log-ratio as it performed better. Contrary to the amalgamation approach, the isometric
log-ratio takes the extremity of the interval location into account when determining the
transformed interval width, as described above. This is favorable especially in applications
with a bipolar response scale featuring a neutral point at the center of the scale, such as a
scale ranging from negative to positive values. This may also be a probability scale
ranging from 0 to 1. Here, 0.5 is the neutral point of complete uncertainty, while 0 and 1
indicate complete certainty about an event not happening or happening, respectively.

Using the isometric log-ratio transformation as a link function, we can extend the
model by Anders et al. (2014) to the two-dimensional case, similar to the model for
geographical judgments by Mayer and Heck (2023). We decided to rely on a logit link
because it provides more flexibility than the alternative approach of assuming a Dirichlet
distribution for the compositional data (see Kloft et al., 2023, for an IRT model using the
latter approach). Whereas the Dirichlet approach offers only one common variance
parameter for both dimensions, the bivariate logit-normal distribution allows us to
assume separate variance parameters for the location and the width dimensions in the
unbounded space.

Next, we consider the bivariate, logit-transformed response Z;; of respondent
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i=1,...,I (number of respondents) to item j =1,...,J (number of items). We assume
the following data-generating mechanism for Z;;: Respondent ¢ makes a latent appraisal,
[Aloe, Awid]T e R?, for the item j based on the latent cultural consensus interval,

[T;oc, T;»‘”'d]T € R2. This latent appraisal contains some error, which depends on the
proficiency of the person, [El¢, BT R?, and on the discernibility of the latent
consensus for the particular item, [)\é-"c, )\;’”d]T € Ri. Departing from previously
developed CCT models (e.g., Anders et al., 2014), we inverted these parameters. Hence,
higher values of proficiency and discernibility lead to higher precision of the latent
appraisal, and thus, to observed response intervals that are closer to the latent consensus
interval. Moreover, we assume an item-specific correlation w; between the errors on the
two dimensions (Mayer & Heck, 2023). Assuming a bivariate normal distribution of

errors, the appraisal is centered on the latent cultural consensus with an added

disturbance governed by person and item characteristics:

A{QC T@oc
1) 7 A . A . A ) A
Awid - N( Twid ’ 2@']’) with Eij = dlag(”ij) Q; dlag<aij)7
i j
[ (4)
ol = R Q- 1w
W wj 1

The latent appraisal is further influenced by the respondent’s scaling bias,

al*c € R?, and shifting biases, [bl°¢, 5] T € R?, which yields the final response:
o Aloc loc loc Awid wid T
Zij = [ i a0 AT+ b ] . (5)

The two shifting biases are directional response biases and add a constant to each
dimension of the latent appraisal — or, more technically, to the expected location and
width. This corresponds to a respondent’s tendency to systematically under- or
overestimate all locations or all widths of the consensus intervals. The scaling bias
corresponds to an extremity response bias, which pushes all observed responses of a
person away from zero if a!®® > 1 or pulls them towards zero if a!*® < 1. For the bounded
response scale, this means that interval locations are either pushed away from or pulled

towards its center. As explained above, the origin of the width dimension, T;"id =0, is not
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a substantively meaningful anchor, as it depends on the location of a particular interval.
It would not be meaningful to let the interval width scale around such an ambiguous,
arbitrary value of zero. We thus specify a scaling bias only for the location dimension.

Since the appraisal of the interval location A,ZL-;?C consists of the consensus location
plus an error, the scaling bias does not only influence the expected interval location, but
also the residual variance, that is, the precision of the latent appraisal. In the full model,
it is therefore necessary to ensure that the scaling bias parameter is included not only in
the mean but also in the variance of the normal distribution:

Zij ~ N (pij, Zij),

iy = [Talee 4 b, T )

3,; = diag(oy;) Q; diag(o;), (6)
alioc
Elocloc 1w
Oij = ! . J , Q=

The model can easily be modified by omitting bias parameters that are not relevant for
certain applications (see also Section 4.1). Our own workflow involves first fitting the full
model and then examining the parameter estimates for any problems. For example, if all
respondents have a similar estimate for the location shift bias, ¢, we remove this
parameter from the model.

Figure 3 shows the isolated influence of each person parameter when all remaining
parameters are held constant (see the Figure note for more details on the simulation of
the shown response patterns). For a person with a low proficiency concerning interval
locations (E!¢ = 0.5), Panel 3C shows that response intervals move away from the latent
consensus interval unsystematically due to increased error variance. Similarly, for a
person with a low proficiency concerning interval widths (E¥ = 0.5), Panel 3E shows
that the widths of response intervals become less similar to the widths of the latent
consensus intervals. Inducing a large scaling bias (a; = 1.5) for interval locations shifts
response intervals away from the center of the scale (Panel 3D). A positive shifting bias
(ble¢ = 2) for locations, shown in Panel 3B, moves all response intervals to the right.

Similarly, for a positive shifting bias concerning interval widths (b%*¢ = 2), Panel 3F
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Figure 3
Lllustration of How Changing the Person Parameters in the Interval Consensus Model

Influences the Predicted Responses
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Note. The scatter plots in the left-hand subpanels show simulated responses of one respondent to
100 randomly drawn items on the unbounded, bivariate scale. The right-hand subpanels show the
corresponding responses (black intervals) for ten selected items on the bounded response scale. The
consensus intervals, which are identical across all plots, are shown as gray, shaded bars in the background of
the response intervals. We first simulated consensus intervals with Tjoc ~ N(0,1.5) and T]?”d ~N(-1,1).
Next, we simulated the response intervals in Panel A by setting respondent proficiency as well as item
discernibility to 1 and assuming no response biases. In the remaining panels, we adopted the hypothetical
responses from Panel A while manipulating different person parameters (e.g., shifting and scaling biases)
to illustrate their effect on response behavior. We lowered the respondent’s proficiencies by factor %
(Panels C and E), increased the shifting bias by adding a constant of 2 (Panels B and F), and increased

the scaling bias by factor 1.5 (Panel D).
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shows that all response intervals are greatly expanded in width.

It is difficult to interpret the estimate for the latent consensus interval,
[T}OC, T;‘”“ﬂT7 on the transformed, unbounded scale. To facilitate a substantively
meaningful interpretation of this estimate, we convert the unbounded interval back to the
original, bounded response scale. First, we transform the two-dimensional logit values to
the compositional format via the inverse of the isometric log-ratio function, and second,
we undo the padding initially applied in Equation 2:

. Tloc
exp (\/5 T}“) exp <\/§ T34+ 75 > 1
2 ’ X )

3 ] T{oc

where, again, ¢ = .01 and 1 is the vector of ones. If no padding was applied before fitting

T} = (1+3¢)

the model, we set ¢ = 0. Third, we compute the actual interval boundaries on the

bounded scale from 0 to 1:
-
T = (T T T, ®)

with 77, being the first and 77, the second component of the simplex T7. The interval
formed by [T7", TrV]" is the estimated consensus for the specific item, which we are

ultimately interested in.

2.2 Bayesian Estimation

We estimate the model in a Bayesian hierarchical modeling framework (Kruschke
& Vanpaemel, 2015). An illustration of the prior distributions can be found in the
supplementary materials in the OSF repository and an example comparison of prior and
posterior distributions is displayed in Section 4. The main parameters we are interested
in are the latent consensus location and width, [T}°¢, T;**|". The priors for these
parameters will partly serve to identify the model. To facilitate the specification of these
priors, we first specify them on the bounded scale. Then, we transform the values back to
the unbounded scale via the isometric log-ratio function to use them in the model. With

this approach, there is no need to define priors on the transformed scale, that is, normal
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distributions, that align with our assumptions about the implied priors on the bounded
scale. From a practical standpoint, we also experienced sampling to be more stable with
priors on the bounded instead of the unbounded scale. For the other parameters, which
are more flexible due to their hyperpriors, we specify the priors directly on the
unbounded scale.

First, based on common applications of interval responses (e.g., in Ellerby et al.,
2022; Kloft & Heck, 2024), we assume that consensus intervals with a very large width
spanning the entire response scale are highly unlikely. Wide intervals are also not relevant
or meaningful in most scenarios, as they would not provide any additional information.
Typically, we would exclude items for which we anticipate this to be the case. Therefore,
we assign a weakly informative prior to the widths of consensus intervals on the bounded

scale:

TV Beta(1.2, 3). (9)

J
This prior has an expected value of .29 and a mode of .09 and therefore reflects our
beliefs about the marginal width of true intervals more adequately than a uniform prior.
However, interval responses of full width (ranging from zero to one) are still possible and
not ruled out by our prior choice. Instead, we merely assume that the latent consensus
interval itself is unlikely to span the entire response scale. Researchers who want an
uninformative uniform prior on the consensus of the interval width may change the prior
to T;-”Uid(o’l) ~ Beta(1,1).

Second, conditional on a particular width of a consensus interval, we do not
assume that particular locations of the consensus interval are more likely than others.
This assumption makes the prior choice more generalizable across different use cases
(more informative alternatives are mentioned below). Therefore, we assign an
uninformative prior to an auxiliary, multiplicative parameter s;, which is subsequently

used to compute the actual interval bounds on the bounded scale:
s; ~ Beta(1,1),

(10)

Y

TE = s;(1 — T;uid(o,l))

TV — s;(1 — T;ﬂid(O,l)) I T;ﬂid(o,l).
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This means that, for a given interval width, we take what is left of the response scale
and multiply it by s;, which results in the lower bound for this particular interval. To
arrive at the upper bound, we add the interval width to the lower bound. In the location
dimension, we could also choose alternative priors that would be more informative. If
theory or prior knowledge suggests that locations in the center of the response scale are
more probable, we might choose s; ~ Beta(2,2). If we think that locations to the extreme
ends of the response scale are more probable, we might choose s; ~ Beta(0.5,0.5). Such
prior knowledge may be informed, for example, by the selected items. For judgments of
verbal quantifiers, for example, when only selecting low-probability words like “seldom”
or “unlikely,” we can incorporate prior knowledge by giving more weight to consensus
locations on the left side of the response scale, for example, s; ~ Beta(1.2,3).

Third, we transform the consensus interval from the bounded simplex to the

unbounded bivariate scale via the isometric log-ratio function in Equation (3):
T
T, = (1 T ILR([TJ% 7, 11| ) "

Alternatively, we could have also applied an uninformative prior directly on the simplex
via a Dirichlet distribution (an implementation of this prior can also be found in the OSF
repository):
ILR™'(T;) ~ Dirichlet(1,1,1). (12)

The person proficiency parameters, [E¢, E¥|T have weakly informative priors
on both the means and the variances (see Table 1, column 1). The priors are specified on
the log-scale to ensure positive values. We are also interested in the relationship between
a respondent’s proficiency in the location dimension and their proficiency in the width
dimension, and therefore assign a bivariate normal prior with correlation parameter pg
instead of two independent normal priors. Similarly, we assign the same priors to the
item discernibilities, [\, AY*]T (Table 1, column 2). The only difference is that we fix
the mean vector u) to zero to render the person proficiency parameters identifiable
(Anders et al., 2014).

For the remaining person parameters, namely, the scaling and the shifting biases,

we also assign weakly informative priors. In doing so, we impose certain restrictions on
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Table 1

Default Prior Distributions for the Interval Consensus Model

Person proficiency E; Item discernibility A;

log(E;*), log(E{"™)]" ~ N (pe,Bg)  [log(A7),log(A}™)]" ~ N (pr, 2)

NENN(Ovl) puy=20
Yg = diag(og) Qg diag(og) 3\ = diag(oy) 2, diag(o)
T 1 T 1
Qp = QELQEL: Q, = QALQ)\L:
pe 1 pa 1
Qg ~ LKJ-Cholesky(2) Q,r ~ LKJ-Cholesky(2)
log(o ) ~ N (log[0.5],0.5) log(ay) ~ N (log[0.5],0.5)

the means for reasons of identifiability (Anders et al., 2014):

log(al*®) ~ N(0, o gioc),
blo¢ ~ N(0, Oyec ),
b2~ N(0, oypwic), (13)

log (o 4t0c) ~ N (log[0.5],0.5),

10g(ooc ), 1og(opuia) = N (log[0.5],1).
I

The mean vector of the shifting bias parameters, [bl¢, bw

[ )

, is fixed to zero to make the
model identifiable with respect to the estimated mean of the latent consensus locations
and widths. Analogously, the mean vector of the scaling bias parameters, al°¢, is fixed to
one to render the model identifiable regarding the estimated mean of the proficiency
parameters, [El¢, EYid]T,

Finally, we assign weakly informative priors to the residual correlation between

interval location and width via a scaled beta distribution:

UJj‘i‘l

~ Beta(2,2). (14)
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3 Simulation Study

The simulation study was preregistered at the Open Science Framework
(https://osf.io/nd5wg) using the ADEMP preregistration template by Siepe et al. (2023)
to specify the Aims, Data-generating mechanisms, Estimands, Methods, and Performance
measures. After running the simulation with the pre-registered settings, we found that
some conditions resulted in many problematic model fits with divergent transitions of the
sampler. We therefore decided to re-work the parameterization and priors of the model
for more stable model estimation, and subsequently re-ran the simulation. We indicate
deviations from the preregistered settings where applicable. We further provide a list of
all deviations and their justification as well as all results of the original simulation study
in the supplementary materials in the OSF repository. The main results did not change,
as both the best-performing model per condition and the overall trends of the
performance measures remained the same. The simulation study was carried out in the
programming environment R Version 4.5.0 (R Core Team, 2023) on a Linux machine with
an Ubuntu 22.04.5 LTS distribution. We provide a Dockerfile to facilitate full
reproducibility of our main results. We used the following R packages in their most
recent versions at the time of running the simulation: SimDesign (Chalmers & Adkins,
2020) for setting up and conducting the simulation study, cmdstanr (Gabry et al., 2023)
as the R interface to Stan (Stan Development Team, 2023), and the posterior (Biirkner
et al., 2023) and bayesplot packages (Gabry & Mahr, 2024) for handling and visualizing
MCMC output. The specific package version numbers and additional packages used for
data wrangling and minor tasks are provided in the supplementary materials in the OSF

repository.

3.1 Aims

The simulation study aimed to explore the estimation performance of the interval
consensus model (ICM) concerning bias and mean-squared error of parameter estimates
in realistic scenarios of use. The main target estimates were the latent consensus interval

location and width, [77°¢, ;"] ". We also tracked the performance of the other
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parameters, except for the hyperparameters. We compared the model estimates of the
latent consensus intervals for each item against simple means and medians (only means in
the pre-registration) of the logit-transformed responses as a simple competitor model (i.e.,
wisdom of crowds; Surowiecki, 2004). Given that the data were generated from our
model, we expected the model estimates to perform better than simple means and
medians. If that was not the case, the added complexity of our model may not be worth
the effort compared to relying on simpler descriptive aggregation strategies. We further
expected that larger numbers of respondents would lead to better performance of item
parameters, and, vice versa, that larger numbers of items would lead to better
performance of person parameters.

In addition to the main simulation study, we conducted a preliminary simulation
study to test the isometric log-ratio function against an alternative amalgamation
log-ratio transformation, which is based on a stick-breaking procedure (see Smithson &
Broomell, 2024). We were interested in checking the robustness of the two link functions
regarding model misspecification. We generated data with one fixed combination of 200
respondents and 30 items and only varied the link function used to simulate the data,
resulting in two conditions. Each model was fitted to the data using the data-generating
link function as well as the non-data-generating link function. We report the full results of

this preliminary simulation study in the supplementary materials in the OSF repository.

3.2 Data Generation

We randomly generated data from the model described in Section 2.1. We varied

the following factors in a fully factorial manner:
o Number of respondents: {10, 50, 100,200},
o Number of items: {5, 10,20, 40}.

This yielded 16 conditions. The numbers of respondents and items were selected to cover
a range of practically relevant applications. There may be scenarios with only a few items

and few expert raters, for instance, when a company has ten expert employees judging
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the risk of a security breach for five software components. In other scenarios, large
numbers of raters and items might be available, for instance, in a forecasting challenge.

In all conditions, the true, data-generating parameters were randomly drawn for
each repetition. We used the model described in Section 2.1 as the data-generating
mechanism for each interval response Z;; of respondent ¢ to item j on the unbounded
scale. To obtain manifest interval responses in the bounded simplex space, we first
transformed the unbounded interval response Z;; using the inverse isometric log-ratio
function (Smithson & Broomell, 2024). In the model estimation step, the data were then
transformed back to the unbounded space using the isometric log-ratio function
(Equation 7 with ¢ = 0, see also Smithson & Broomell, 2024). This back-and-forth
transformation is a redundant step for fitting the model in our main simulation study,
where the same transformation was used for data generation and model estimation.
However, for our preliminary simulation study investigating the performance of different
link functions, this is a crucial step required to cross-fit a model version with one link
function to the data generated with the respective other link function.

Table 2 lists all hyperparameter values used for generating person- and
item-specific model parameters. The preregistration protocol contains a detailed
justification of these values (see also the corresponding script in the supplementary
materials in the OSF repository). Overall, we aimed to generate plausible distributions of
manifest response intervals. We derived the hyperparameters from theoretical response
intervals representing typical or extreme responses. For the true mean of consensus
interval location and width, we used the values resulting from the logit-transformed
interval [.40,.60]. For the standard deviation of the true consensus interval location, we
used the interval [.98,.99] transformed to the bivariate space. We declared the resulting
unbounded value as the point that is four standard deviations away from the unbounded
mean location, that is, an extreme value in the unbounded space. We further calculated
the standard deviation for the unbounded true consensus location by dividing the
difference between this extreme value and the mean of the true consensus location by

four. Analogously, for the standard deviation of the true consensus width, we used the
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Table 2

Values of the Hyperparameters Used for Data Generation

Interpretation Parameter Distribution / Constant
Items

Consensus location T} N(0,0.81)
Consensus width Ty N (—0.57,0.65)
Location discernibility — log (M) N(0,0.3)
Width discernibility —log(A¥) N(0,0.3)
Residual correlation wj 0
Respondents

Location proficiency — log(El°) N (log[0.81],0.3)
Width proficiency — log(EX) N (log[0.65],0.3)
Location scaling bias log(alee) N(0,0.3)
Location shifting bias bloe N(0,0.27)
Width shifting bias prid N(0,0.22)

Note. For the parameters E; and \; we defined the distributions on the negative log scale

to facilitate an interpretation in terms of the variance instead of the precision.

interval [.495, .505]. We simulated the true consensus location and width parameters from
normal distributions since all parameters were defined on the unbounded scale. The
hyperparameters for the bias parameters were then chosen to yield plausible distributions
of the simulated response intervals.

Due to the large computational demand of our simulation study, we determined
the number of repetitions as follows: We aimed for a Monte Carlo standard error (MCSE)
of < .05 for our primary performance measure (the absolute bias for the latent consensus
interval location and width) in all conditions. We deemed 500 (pre-registration: 1,000)
repetitions computationally reasonable. After 500 repetitions, we checked the MCSEs in
all conditions. If they had not met the above criterion, we would have incrementally

added repetitions in steps of 250 until they did. The MCSEs in all conditions had met
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the criterion after 500 repetitions, with the largest MCSE of the absolute bias being 0.005
in one condition.

Further details can be found in the preregistration and in the supplementary
materials in the OSF repository, where we illustrate the distributions of parameters and

responses as well as the recovery of one set of data-generating parameters.

3.3 Method

We estimated the same model for all generated data sets in a Bayesian framework
using Stan (Stan Development Team, 2023) in R (R Core Team, 2023) via rstan (Stan
Development Team, 2024). For the Bayesian estimation, we used the priors described in
Section 2.2, which we did not preregister. The only deviation from the model described
above was that we used independent univariate prior distributions instead of a
multivariate prior for [E, EX]T and [Al°°, \*]T ‘meaning that we did not estimate the
correlations pg and p, in the simulation. For each repetition, we ran four chains of Stan’s
Hamiltonian Monte Carlo sampler (Betancourt, 2018) with 500 warm-up samples not
used for analyses and 500 (preregistration: 1,000) samples for the computation of
parameter estimates, which yielded 2, 000 samples per parameter. Given the results for
the convergence diagnostics shown below, we deemed this number sufficient. The
adapt_delta parameter was set to 0.999 for conditions with a number of total simulated
responses < 2,000, and to 0.9 for the conditions with a greater number (preregistration:
0.9 for all conditions). We changed this setting because in our earlier simulations we had
encountered issues with divergent transitions in conditions with low numbers of responses.
The range of the initial values of the sampling algorithm for the unbounded parameters

was set to [—0.1,0.1].

3.4 Performance Measures

Our primary performance measure was the absolute bias of both the latent,

unbounded consensus interval location and the width jointly, [77°¢, T;*“] T, which we
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defined as follows:

N J
rloc loc Pwid wid
> Ty —Tog | | Tng" — Ty

n=1j

o —

AbsBias =

0.5<
1

where J is the number of items in a specific condition and N is the number of repetitions

) -

N x J ’

of the simulation. We computed the mean of the (absolute) bias of location and width
jointly because we expected that there could be a compensatory effect concerning the
accuracy of estimates. We also computed the absolute bias for both dimensions
separately for illustration purposes below (see the supplementary materials in the OSF
repository for a plot of the joint biases).

We additionally calculated the mean squared error (MSE) for the bivariate vector

[Tjo¢, T;*¥] T of the latent, unbounded consensus intervals:

N 2 2
> 005 <(T,§;.c - 1)+ (Tt - 1) ) 1)
N x J '
We also calculated the MSE for the location and width individually.
As a measure of parameter recovery, we also computed the average Pearson

correlation between the estimated and the true values of the parameters:

P 1 i\f: A1 (O - 0) (Bt — 0,) 7 (17)
N n=1 \/Zszl (énk - én)Q Zszl (enk - e_n)2
where ; and represent the estimated and true values respectively, 5 and 6 are their
respective means, and K represents either the number of items or number of persons,
depending on the type of parameter.
We estimated the MCSE of these performance measures via bootstrapping. We

further tallied the number of non-converged simulation repetitions.

3.5 Results
3.5.1 Preliminary Study: Link Functions

Our preliminary simulation that compared two alternative link functions showed

the superiority of the isometric log-ratio transformation over the amalgamation log-ratio
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transformation. Especially in the case of cross-fitting the model to the data generated by
the respective other link function, the isometric log-ratio transformation was more robust

to this specific type of model misspecification.

3.5.2 Main Study: Recovery of Latent Consensus Intervals

All repetitions of the simulation study finished without error. The average R
across all repetitions and conditions was 1.002. In 13 of 16 simulation conditions, we
observed no divergent transitions. In the “worst” condition with ten respondents and five
items, 1.2% of all models contained at least one divergent transition. The models with
divergent transitions in this condition contained on average 26.7 divergent transitions.
Overall, these results imply good convergence in almost all repetitions. This indicates
that the model can even be estimated in edge cases with a low number of items and
respondents, where the performance benefit compared to the aggregation via simple
means or medians is particularly large. Additional results on convergence metrics are
available in the supplementary materials in the OSF repository.

We visualized the absolute bias of the latent interval location and width in
Figure 4. The true consensus locations had a higher standard deviation (0.81) compared
to the true consensus widths (0.65). Therefore, we divided the absolute bias by the true
standard deviations of the respective parameters for ease of interpretation in the figure.
The unstandardized performance measures are available in the supplementary materials
in the OSF repository. In all simulation conditions, the ICM has a lower absolute bias
averaged over location and width parameters than the simple means and medians. As
expected, there is a notable effect of the number of respondents, with a considerably
lower bias for higher sample sizes. Increasing the number of respondents from 10 to 50
roughly corresponds to halving the absolute bias for all conditions. The size of the
performance difference between the ICM and the simple means and medians remains
fairly similar for sample sizes from 50 to 200. Interestingly, the medians performed better
than the means for the location dimension, but not for the width dimension. A larger
number of items slightly improves the performance of the ICM regarding the recovery of

consensus intervals, but this effect is weaker than the effect of the number of respondents.
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Figure 4

Absolute Bias of Consensus Interval Location and Width.

0.3

0.2

0.1

0.0

0.3

0.2

Standardized Absolute Bias

0.1

0.0

5 Items

0.3

0.2

0.1

10 Items

10 50 100 200

0.0

0.3

0.2

0.1

10 50 100 200

10 50 100 200

0.0

10 50 100 200

e |[TM ¢ Simple Means ¢ Simple Medians
20 ltems 40 Items
: 3 E 3
03|, 0.3] o
0.2 0.2
L L 2
o ° hd °
0.1 o e 0.1 TR
005750 100200 %% 0 50 700 200
0.3 = 0.3 «*
L J L J
0.2 0.2
\d @
A4 ° A d °
0.1 o 0.1 o
0.0 0.0

10 50 100 200

Number of Respondents

10 50 100 200

27

uonesoT

UIPIM

Note. This figure shows the standardized absolute bias (y-axis) of the consensus interval

location (upper row) and width (lower row) for different numbers of items (columns) and

respondents (x-axis). The standardized absolute bias was obtained by dividing the

condition-wise absolute bias by the true standard deviation of the location or width.

Error bars indicate £1 MCSE. Some MCSEs are so small that the upper and lower error

bars are indiscernible.
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The standardized absolute bias is very similar for the location and width dimensions,
which means that both dimensions can be estimated similarly well. We chose to plot both
dimensions separately here to illustrate this point. The combined absolute bias, which we
defined above in Equation 15, shows a virtually identical pattern of results. Even in the
condition with the lowest number of items and respondents (5 items, 10 respondents), the
smallest correlation between the estimated consensus locations and the true parameter
values is still p = .92 (MCSE = .006). This estimate is the same for the consensus widths.
In conclusion, the model may be used for the aggregation of interval judgments, even in
small samples.

In the supplementary materials in the OSF repository, we present additional
simulation results for all model parameters. These show that the MSE follows a
qualitatively very similar pattern to the results of the absolute bias. For all conditions,
the ICM had a better performance concerning the MSE than the simple means and
medians. Further, in simulation repetitions with a higher bias of the location, the bias of
the width tended to be higher as well. Thus, we did not observe evidence for
compensatory behavior, where an accurate estimation of one dimension would be

associated with a poorer estimation of the respective other dimension.

3.5.3 Recovery of Other Model Parameters

Although the main focus of the model is estimating the consensus intervals, the
person and/or item parameters may also be of interest in some cases. We visualized the
correlation between the true, data-generating parameters and the corresponding model
estimates for all parameters in Figure 4. If the focus is on the proficiency parameters for
the respondents, it is advisable to collect data for more than 20 items. The correlation
between estimated and true parameters for the location proficiency, for example, was
p = .71 (MCSE = .012) with 10 respondents and 20 items, and p = .80 (MCSE = .006)
with 10 respondents and 40 items. Recovery of the other parameters was generally better
than for respondents’ location proficiency, so 20 items should provide a useful lower

bound in such cases. If higher reliability is needed, 40 items would be more appropriate.
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Figure 5

Correlation Between True and Estimated Parameters
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Some MCSEs are so small that the upper and lower error bars are indiscernible.

https://doi.org/10.1017/psy.2025.10058 Published online by Cambridge University Press


https://doi.org/10.1017/psy.2025.10058

INTERVAL CONSENSUS MODEL 30

On the other hand, researchers who are primarily interested in the item
parameters can achieve good recovery with 50 respondents, even when using only 5 items.
For example, the correlation between estimates and true parameters for the location
discernibility was p = .89 (MCSE = .007). Recovery might still be acceptable with less
than 50 respondents. However, the next smallest condition in our simulation had 10
respondents, where a correlation of p = .70 (MCSE = .009) was achieved with 10 items.
If the recovery performance for such small sample sizes is of interest, the analysis scripts
available in the supplementary materials in the OSF repository allow readers to adapt

and re-run our simulation study for other scenarios.

3.5.4 Summary

The results of our simulation study indicate that the ICM performed better than
simple means and medians in all conditions we studied. The absolute difference between
both approaches became smaller with a larger number of respondents. The number of
items did not have a strong influence on the results regarding the consensus intervals.
This is not surprising because our performance measures are aggregated across the item
parameters. However, the small increases in performance can be explained by the
increased precision of person parameter estimates in conditions with larger numbers of
items, which in turn helps to estimate the item parameters more precisely. As we
standardized the absolute bias, the results can be interpreted as fractions of the true
standard deviation, indicating a satisfactory performance of the ICM.

4 Empirical Example: Verbal Quantifiers

To demonstrate the application of the interval consensus model (ICM), we
reanalyze judgments on verbal quantifiers collected by Kloft and Heck (2024). We use the
already cleaned data (accessible from https://osf.io/7azbr). The sample consists of 209
respondents (female: 145, male: 62, diverse: 2), mainly psychology students, with a mean
age of 25.5 years (SD = 8.5).

Participants provided judgments for 16 verbal quantifiers such as “seldom” or
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“often” using the dual range slider response format (see Figure 1). For each verbal
quantifier, respondents had to assign an interval of probabilities ranging from 0% to 100%
according to the probability that an event described in this way would occur. The full

analysis is available in the supplementary materials in the OSF repository.

4.1 Model Modification and Estimation

Not all parameters described in Section 2 yielded useful estimates in an initial fit
of the full model. Specifically, the estimates for the respondents’ response bias
parameters b (i.e., systematic shifts in the location dimension) did not differ
meaningfully between individuals, as indicated by a variance close to zero. We therefore
simplified the model by excluding these parameters.

We estimated the model using the same software as in the simulation study but on
a Windows machine. Information on the computational environment is provided in the
session info at the end of the analysis script, rendered as an HTML report in the
supplementary materials in the OSF repository. For Bayesian inference, we used the
priors described in Section 2.2. We ran four chains of Stan’s Hamiltonian Monte Carlo
sampler (Betancourt, 2018) with 500 warm-up samples, which were not used for analyses,
and 1,000 samples for the computation of parameter estimates. This yielded 4,000
samples per parameter. The adapt_delta parameter was set to 0.8 and the range of the
initial values of the sampling algorithm for the unbounded parameters was set to
[—0.1,0.1]. Convergence was assessed via the R statistic (Vehtari et al., 2021), which was
below 1.011 for all parameters. We provide posterior predictive checks in the online

supplementary materials in the OSF repository.

4.2 Model Results

Figure 6 presents five examples of estimated consensus intervals (black horizontal
intervals) that each resemble the cultural consensus of the sampled respondents, jointly
with a simple median of logit-transformed interval responses (gray horizontal bars) and

pointwise cumulative frequencies of the empirical interval responses (black density lines).
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Figure 6

Estimated Consensus Intervals for Verbal Quantifiers
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Note. Black horizontal interval: Consensus interval estimated by the interval consensus
model. Gray horizontal bar: Typical interval based on the median location and median

width of the observed, logit-transformed response intervals.

The “fifty-fifty chance” item (top) was one of the control items in the study, for
which respondents were expected to answer with narrow intervals placed in the center of
the response scale. The estimated consensus interval is centered on the correct reference
value of 50% and very narrow, reflecting the high precision of the verbal statement
“fifty-fifty chance.” A substantial proportion of response intervals are wider, as indicated
by the density. However, the consensus is still that a “fifty-fifty chance” is a probability
very close to 50%. Also, the simple median interval in this case gives a similar estimate of
the consensus. The two other control items were “never” (middle left) and “always”
(middle right). Figure 6 shows that their consensus intervals were close to the extreme

ends of the response scale, as expected for these words. In contrast, the intervals based on
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the medians are strongly influenced by a skewness of response intervals towards the center
of the scale. Overall, the three control items demonstrate that the ICM provided more
meaningful estimates of the interval consensus than simple aggregation via the median.

The item “potentially” (bottom right) provides an example of a typical pattern
found for most of the verbal quantifiers. The simple median interval was more strongly
influenced by the concavely shaped longer tail of the distribution of response intervals,
while the consensus interval estimated by the model was more representative of the
convexly skewed shorter tail. This trend also appeared for the item “hardly” (bottom
left). The model-based estimate of the consensus interval was more representative of the
empirical distribution, while the simple median interval was shifted towards the center of
the scale, demonstrating a stronger influence of the inwardly skewed outliers of the
empirical responses. Overall, the model estimates provided a better representation of
where the bulk of response intervals were located.

Figure 7 displays posterior draws of the consensus intervals for a selection of
verbal quantifier items, jointly with the prior density of the model (a plot of all verbal
quantifiers can be found in the supplementary materials in the OSF repository). The plot
includes the three control items “never,” “fifty-fifty chance,” and “always” at the bottom,
reflecting a shared consensus that the meaning of these quantifiers in terms of
probabilities is clear (i.e., the width on the y-axis is estimated to be very small). The
other quantifiers have larger widths, indicating a consensus that using these words comes
with more ambiguity. While the posterior distributions for most control items are
relatively peaked and precise, more vague quantifiers such as “potentially” also show
higher estimation uncertainty. The model allows us to distinguish two types of
uncertainty: First, the increased width, as shown by large values on the y-axis, of the
item “potentially” indicates a latent consensus that the item has a wider range of
plausible meanings. Second, the wider posterior distribution, as shown by the
distribution of posterior samples, indicates that the estimation certainty for this inference
is lower than that for the remaining items. Furthermore, the prior density in the

background of Figure 7 also illustrates that our weakly informative prior was an
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Figure 7

Prior and Posterior Distributions for the Cultural Consensus Intervals
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Note. Orange points: 1,000 posterior draws for each verbal quantifier. Purple to yellow
density in the background: prior density estimated from 1,000,000 samples and
standardized to a maximum density of 1. The prior on the marginal distribution of
interval widths is Beta(1.2,3). The prior on the marginal distribution of interval

locations, conditional on the interval width, is Beta(1, 1).
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Figure 8

Empirical Interval Responses and Estimated Proficiencies for the Item “Fifty-Fifty
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Note. Black horizontal bars: Empirical response intervals. Blue dots: Estimated
proficiencies, computed per person as the mean of the standardized posterior medians for

the location and the width proficiency, transformed to normal quantiles.

appropriate choice for this application, as most posterior distributions are located in
areas of relatively high prior probability.

The estimated correlation of respondents’ proficiencies for the location and the
width dimension (see also Table 1, column 1) was pg = .63 (95% HDI [.51,.73]).
Substantively, this means that respondents who answered highly consistent with respect
to interval locations were also highly consistent regarding interval widths, that is, when
judging the variability in how the quantifiers are being used.

Figure 8 provides insights into how the estimated proficiencies relate to empirical

interval responses. The empirical responses of all participants to the verbal quantifier
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“fifty-fifty chance” (black intervals) are shown jointly with the corresponding individual
proficiency estimates (blue points). For illustration, the two-dimensional proficiency
estimates are collapsed within each individual by taking the mean of the location and the
width parameter. Respondents are ordered by their proficiencies from high (top) to low
(bottom). The respondents with the highest proficiencies (upper half of the y-axis) mostly
provided relatively narrow intervals located at the center of the response scale. In the
lower half of the y-axis, respondents provided much wider response intervals, some of
which were necessarily located at the center of the scale due to their large width. Those
respondents with the lowest proficiency at the bottom of the y-axis mostly failed to place
the interval at the center of the response scale. This shows that the proficiency estimates
may be useful for diagnosing non-effortful responding. The model also enables us to
automatically downweight the responses of unreliable respondents. This is achieved by
the person proficiency parameters, which assign higher error variances to respondents
providing inconsistent response patterns (see Section 2.1). Consequently, we do not have
to exclude respondents from the data based on possibly arbitrary filtering criteria.
Regarding item parameters, the discernibilities of consensus locations and widths
(see also Table 1, Column 2) were correlated negatively with g, = —.47 (95% HDI
[—.77,—.06]). This correlation should be considered with caution since it is driven by the

2

control items (“never,” “always,” “fifty-fifty chance”). These had especially high location
discernibility estimates, above the mean, and especially low width discernibility estimates.
At the same time, all other items’ location discernibility estimates were below the mean,
and their width discernibility estimates were above the mean. We initially selected these
verbal quantifiers as control items because they have a clear implication regarding the
probability assigned to them, that is, “never” = 0%, “always” = 100%, and “fifty-fifty
chance” = 50%. The high location discernibility indicates that respondents overall
interpreted these quantifiers in the assumed way.

To check whether the negative correlation between location and width

discernibilities was just due to the control items’ influence, we re-fitted the model,

excluding the three control items. As expected, the correlation was no longer negative
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and even changed to a large positive value with p, = .80 (95% HDI [.43,.98]). This
means that items with an easy-to-detect consensus location also tended to have a
consensus width that was easier to detect. At the same time, the correlation for
respondents’ location and width proficiencies was reduced to prp = .50 (95% HDI
[.34,.64]). Since respondents who participated seriously were likely able to set a
reasonably accurate location and width for the control items, these items might have
artificially inflated the correlation between person proficiencies. Therefore, the lower
correlation provides a more conservative, and arguably more appropriate, estimate. In
conclusion, our empirical example shows that item parameters, such as discernibility, can

facilitate manipulation checks or may be used to exclude poorly performing items.

5 Discussion

We proposed the Interval Consensus Model (ICM) as a means of estimating the
shared consensus of a group of individuals regarding continuous, bounded intervals. In a
simulation study, the consensus model outperformed the descriptive approach of simply
averaging the response intervals or taking the median. We also showed that the model
can be estimated with as little data as five items and ten respondents. We further
illustrated the application of the proposed model to empirical data in the case of interval
judgments for verbal quantifiers such as “rarely” or “frequently.” The model-based
analysis led to valid conclusions for control items such as “always” and allowed us to
detect and downweight the responses of unreliable respondents.

The results of a preliminary simulation study showed that our choice of the
isometric log-ratio transformation over the amalgamation log-ratio transformation was
justified, as the former was more robust to model misspecification (i.e., when using a
different transformation for model fitting than for data-generation). The ICM showed
good convergence and a better performance in terms of absolute bias and MSE than
aggregation via simple means and medians. Even in the “hardest” conditions with small
numbers of respondents and items, divergent transitions occurred only in a small

proportion of models. If such divergences occur in empirical research, one may need to
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specify more informative prior distributions. The possibility of defining prior
distributions is a strength of the Bayesian approach, which allows for incorporating
expectations and knowledge about the consensus intervals, thereby facilitating robust
estimation even in small datasets (Krypotos et al., 2017). However, not all parameters
may be necessary, nor can they always be estimated with sufficient precision in every use
case. Issues may emerge due to low variance between respondents, as in our empirical
example, or due to noisy data. Under such circumstances, auxiliary parameters for
person biases may be removed as needed. Moreover, even if the proficiency parameters
cannot be estimated precisely, the model reduces to estimating an unweighted mean
consensus interval for each item.

In our empirical example, estimated consensus intervals were centered on the
factually true value in the case of “fifty-fifty chance,” and on the mode of the distribution
in the case of the item “hardly.” Compared to computing simple means or medians, the
model-estimated consensuses appeared to be more robust against extreme responses from
individuals with low proficiency. The model can therefore be used to obtain higher-quality
estimates of a latent consensus interval. While simple trim-and-average heuristics (Gaba
et al., 2017; Lyon et al., 2015; Park & Budescu, 2015) could be useful in this regard, our
model-based approach offers the advantage of providing estimates for the proficiency of
respondents and the discernibility of items. These estimates may be used for diagnostic
purposes, as illustrated by the analysis of control items in the empirical example. Further,
the ICM could be extended to an explanatory model, for example, by incorporating
latent regressions for the item or person parameters (for an example of how this might be
implemented, see Heck et al., 2018). This might be relevant for researchers investigating
potential predictors of the respondents’ proficiency or the discernibility of items.

We confined ourselves to studying a specific version of a consensus model for
interval responses, but there are several possibilities for extensions of this model, which
we did not cover in the present article. We chose the isometric log-ratio as the link
function for our model and investigated one alternative link function (Smithson &

Broomell, 2024). However, there might be other appropriate link functions that we are
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not aware of. Further research might focus on developing alternative link functions to
find an optimal match between different link functions and certain types of applications
of the interval response format (Ellerby et al., 2022; Kloft & Heck, 2024), or explore
model versions that do not require a link function at all (e.g., by relying on the Dirichlet
distribution; Kloft et al., 2023).

The model assumes a single, shared consensus interval for each item. However, in
some applications, it is plausible to assume more than one latent consensus for different
unknown groups, in other words, latent classes of respondents (see Anders et al., 2014).
We also did not cover the case where the latent consensus is a single point, for example a
specific risk probability, while responses are collected with an interval format, for example
by judging the range of plausible probabilities, as in forecasting (Gaba et al., 2017,
Peeters & Wolk, 2017). This case warrants the development of a new model which
estimates this point consensus based on interval responses. Such a model requires further
assumptions about where the best guess of a respondent is located within an observed
response interval. Alternatively, one may fit the ICM proposed in the present work to
derive a consensus interval for the point truth and then judge forecasting performance
based on the coverage of the target value. However, the model will not provide a single
best guess within the estimated consensus interval. The estimated consensus intervals
differ conceptually from confidence intervals for point estimates in a classical consensus
model because they reflect the subjective (meta-)uncertainty within respondents rather
than the estimation uncertainty between respondents.

Regardless of the specific model being used, when researchers are interested in a
latent underlying point quantity but still ask participants to provide interval responses, it
is important to provide clear instructions about the meaning of the interval bounds. For
example, the interval bounds could represent the lower and upper bounds of plausible
values or, alternatively, a symmetric interval of uncertainty around the best guess (Kloft
& Heck, 2024). A simpler alternative solution might be to provide participants with three
response values: one for their best guess, and two for the lower and upper bounds of the

interval. In this case, the ICM and the isometric log-ratio function can be extended to a
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third dimension, representing the asymmetry of the best guess relative to the
encompassing interval bounds. The development of such extended models is beyond the

scope of our article and provides promising avenues for future research.
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Appendix
Abbreviations and Parameter Interpretations

o CCT: Cultural Consensus Theory

o ICM: Interval Consensus Model

e DRS: Dual Range Slider

o ILR: Isometric Log-Ratio function

« MCMC / HMC: Markov Chain Monte Carlo / Hamiltonian Monte Carlo

« HDI: Highest Density Interval (for a given posterior distribution; Bayesian)
« R: Statistic for the diagnosis of MCMC convergence

o MCSE: Monte Carlo Standard Error

o MSE: Mean Squared Error

e OSF': Open Science Framework

o« ADEMP: Aims Data-generating mechanisms Estimands Methods Performance

measures

e Data Definitions:

— X!, XY: Lower and upper bound of interval response

.
- X = [XL, XU - Xt 1-— XU} . Interval response in its simplex

representation / compositional format

— Y Interval response in its simplex representation after adding a padding

constant to replace zero-components

AT
- Z = [Zloc, Z“”d} . Logit-transformed interval response on the unbounded
scale
o Model Parameters of the Interval Consensus Model:
- Aﬁ?c, A;‘]’-id: Respondent’s latent appraisal of interval location and width

— al°¢: Person scaling bias for the interval location
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— blee, bid: Person shifting bias for the interval location and width

— B¢, B Person proficiency to detect the consensus interval location and

width

— T}OC, TJ?”id: Latent consensus interval location and width on the unbounded

scale

— TjL, T]-*U: Latent consensus interval lower and upper boundary on the

bounded response scale with reversed zero-handling transformation
- )\éoc, )\}“id: Item discernibility for the consensus interval location and width

— wj: Residual correlation between location and width dimension
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