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Land-based sources of dissolved inorganic nitrogen (DIN) impact the health and
resilience of the Australian Great Barrier Reef, and so quantification of the sources
is important to inform prioritisation of investments aimed at improving reef health
[3, 6, 7]. To increase certainty in the land use decisions informed by the estimates,
ongoing improvement to methods used to quantify DIN from ungauged catchments
is needed [2, 4]. Catchment scale water quality models are the primary tools used
to quantify the influence of landscapes towards receiving waters and are effective
for communication of the influences of landscape management [3, 5]. Design and
development of those models rely on extensive observed water quality data for
development and calibration, however, the collection of the data is both expensive
and not possible in all areas [12]. While machine learning can offer new approaches,
particularly for nonlinear relationships between the water quality and its drivers, its
application to DIN in ungauged areas has not previously been demonstrated [9, 18].

Research undertaken by O’Sullivan [14] developed new knowledge to overcome
those data voids that afflict water quality modelling for simulating DIN from ungauged
catchments. The research coupled catchment classification, a method demonstrated
to overcome data voids for the linear relationship between flows and landscape
features [8], with pattern matching to corroborate catchments that share nonlinear
relationships between both DIN patterns and spatial data [11, 16]. The research, for
the first time, used spatial datasets for original vegetation [13], as a proxy dataset
to the drivers of DIN. In particular, the research identified datasets, artificial neural
networks and explainable artificial intelligence evaluation methods to expose nonlinear
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and inconsistent patterns in datasets. The research demonstrated that mapped original
vegetation data represents the natural variability in biological response to the drivers
of heterogeneity in DIN patterns across the landscape [15, 17]. Explainable artificial
intelligence approaches identified original vegetation variables most influential in
the classification results. This provided a method to categorise water quality pat-
terns as they corroborate with the spatial data, that is, for vineforest, woodland or
forest-dominated catchments [17]. Application of this process knowledge of seasonal
and flow drivers facilitated classification of ungauged catchments of the Great Barrier
Reef using the spatial data as a proxy for absence of observed DIN data.

Development of the classification methods and training data composition tailored
to the nonlinear relationship of DIN to its drivers ultimately facilitated satisfactory
simulation of DIN for a pseudo-ungauged catchment [15]. The case study trial involved
development of an ANN-WQ simulator trained using spatial data for the gauged
catchments to predict DIN, and then tested in the unsupervised environment to predict
DIN for a classified pseudo-ungauged catchment, using corresponding spatial data
only. The research demonstrates that water quality simulation model performance
improves where the model is designed to recognise the temporal scale relevant for
the classified catchment (p < 0.05). This finding is consistent with other research
that found neural network performance improves where training data are refined
[1, 10]. These findings demonstrate the importance of customised training methods
to overcome nonlinearity and heterogeneity in dataset patterns to improve simulation
capacity for DIN. Finally, the research identified catchments that lack spatial data
similarity to gauged catchments and are likely unsuitable to classify with currently
gauged catchments, so need prioritisation for future gauging and water quality
monitoring programs. In summary, the research provides justification for classification
of catchments based on likely drivers of DIN. The research also provides a method
to identify where investments for additional observation data are necessary to further
improve certainty in catchment scale water quality model simulations of DIN for all
ungauged catchments that flow to the Great Barrier Reef.
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