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We study the three-dimensional hydrodynamic interaction of a pair of identical,
initially spherical capsules freely suspended in a simple shear flow under Stokes flow
conditions. The capsules are filled with a Newtonian liquid (same density and viscosity
as the suspending fluid). Their membranes satisfy the neo-Hookean constitutive law.
We consider the rarely studied case where the capsule centres are initially located
in (or near) the plane defined by the flow direction and the vorticity vector, i.e. in
two different shear planes. The motion and deformation of the capsules are modelled
by means of a boundary integral technique to compute the flows, coupled to a finite
element method to calculate the force exerted by the membranes on the fluids. We
follow the motion and deformation of the capsules as they are convected towards
each other after a sudden start of the flow. Our main finding is that, depending on
their initial position and deformability, the two capsules may oscillate slowly about
the flow gradient axis, get nearer to each other at each oscillation to finally interact
strongly and separate. This minuet motion had not been identified previously. We
identify the regions of space where either simple crossing or minuet occurs. This
phenomenon has a marked influence on the irreversible trajectory drift of two capsules
after crossing: the minuet process leads to a significant trajectory displacement along
the flow gradient when none was expected, based on the previous studies where the
two capsules had a significant relative velocity.

Key words: capsule/cell dynamics, suspensions, boundary integral methods

1. Introduction
The hydrodynamics of pairwise interaction of deformable particles is a crucial topic

for semi-dilute suspension rheology (Batchelor & Green 1972a; Guazzelli & Morris
2012). When the particles are deformable, their shear induced deformation leads to
non-Newtonian and to self-diffusion effects. This has been demonstrated for liquid
droplets (Loewenberg & Hinch 1997; Guido & Simeone 1998). The case of capsules
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(liquid drop enclosed by a thin elastic membrane) is particularly complex because
the motion and deformation of those particles result from nonlinear fluid–structure
interactions that are difficult to model. For example, the capsules may be highly
deformed as they cross each other, which leads to the formation of a thin liquid
film between the two particles and to potential damage of the membrane due to high
shearing forces.

This phenomenon is usually studied in a simple shear flow with velocity
components given by v∞1 = γ̇ x2, v

∞

2 = v
∞

3 = 0 in a laboratory Cartesian reference
frame, where γ̇ is the shear rate. The two capsules C1 and C2 are initially positioned
with distances 1X(0)

1 , 1X(0)
2 , 1X(0)

3 between their centres. The first three-dimensional
model of two initially spherical identical capsules (radius a) interacting in simple
shear flow is due to Lac, Morel & Barthès-Biesel (2007), who considered the case
where the two capsules had their centres in the same x1x2 shear plane (1X(0)

3 =0). The
capsule membrane is treated as a very thin sheet of a hyperelastic material devoid
of bending resistance and the flow Reynolds number is assumed to be negligible.
Lac et al. showed that, in a reference frame centred on C1, capsule C2 is first
displaced along the velocity gradient so that it can overpass (‘jump over’) C1 and
it is then shifted back towards the flow axis as it moves away. However, the final
separation 1X( f )

2 is larger than the initial one 1X(0)
2 . The crossing thus leads to an

irreversible trajectory shift along the shear gradient (x2-direction). This effect, which
decreases with an increase of the capsule deformability and/or the initial distance
1X(0)

2 , ultimately leads to self-diffusion effects in a suspension. We propose to call
this crossing process the leapfrog motion. The same situation was later considered
where the two spherical capsules were replaced by two red blood cells (Omori
et al. 2013) or two vesicles (Gires et al. 2014). In both instances, it is found that
the particles do a leapfrog motion with a trajectory shift that evolves qualitatively,
as found previously by Lac et al. Experimental measurements of the trajectory of
liquid filled giant lipid vesicles compare well with the predictions of the flow model
(Kantsler, Segre & Steinberg 2008; Gires et al. 2014). In all the aforementioned
studies, the flow field around the capsules was computed by means of the boundary
integral representation of the Stokes equations. As a consequence, the pair of capsules
is effectively interacting in an infinite flow domain.

Finite differences and front tracking techniques can also be used to study the
interaction problem: the advantage is that non-Newtonian or finite inertia effects in
the suspending fluid can be considered. However, the computation is then usually
performed in a flow domain, bounded by two walls parallel to the x1x3-plane where
the velocity is imposed (to create the simple shear flow). On the other boundaries
of the box, periodic flow conditions are imposed. Doddi & Bagchi (2008) used
this technique to model the pair interaction of two initially spherical capsules,
when the inertia of the flow was not negligible. They found that, when the flow
Reynolds number increased, the capsules did not cross, but reversed their motion.
This phenomenon was confirmed for a pair of liquid droplets (Olapade, Singh
& Sarkar 2009). However, the spiralling motion reported by Doddi and Bagchi,
is linked to the size of their computational domain and is a confinement effect.
Indeed, for the results to be independent of the computational procedure and to
be transposable to unbounded flow situations, the domain has to be large enough,
typically 40a × 10a × 5a, for in-shear-plane crossing (Olapade et al. 2009). Pranay
et al. (2010) considered the case where the suspending fluid is a dilute polymeric
solution. They found that the presence of polymer leads to a decrease of the trajectory
shift only when the capsule deformability is low. A recent study (Singh & Sarkar
2015) considered the pair interaction of two capsules with different deformability
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and found that the trajectory shift is influenced by the stiffness ratio. All the studies
based on finite difference and front tracking techniques only considered pairs of
capsules with their centroids in the same shear plane, where they remain because of
the problem symmetry.

However, in a suspension, two nearby capsules will not necessarily have their
centres of mass in the same shear plane. For example, special care has to be taken
in vesicle experiments to ensure that this is approximately the case. Accordingly,
Lac & Barthès-Biesel (2008) also modelled the three-dimensional motion of two
capsules positioned in two different shear planes (1X(0)

3 6= 0). In this case, a sideways
leapfrog motion occurs with a maximum trajectory displacement along both the x2-
and x3-directions, which decreases as 1X(0)

3 and/or capsule deformability increase.
Lac and Barthès-Biesel also showed that the final trajectory shift along the x3-axis
is indeed smaller than the one along the velocity gradient x2-axis (approximately
one third), but present nevertheless. This was also globally confirmed by Gires et al.
(2014) for vesicles.

However, in all aforementioned studies, the two capsules always had a significant
initial relative velocity, obtained by means of 1X(0)

2 > 0.5a. This choice was made
to avoid very long computations. The only exceptions are due to Lac et al. (2007)
and Omori et al. (2013), who showed that, for two capsules located on the same
streamline (1X(0)

1 6= 0, 1X(0)
2 =1X(0)

3 = 0), the perturbation created by the deformation
and membrane rotation of the two capsules created a small but finite velocity field that
displaced the centroids along the x2-axis and led to a relative velocity of the capsules
and to a leapfrog motion. The result was interesting as it showed that such initial
conditions led to the largest self-diffusion effect. The conclusion of this review is that
there is presently no information on the interaction of two capsules when their centres
are located in the x1x3-plane.

The objective of this paper is to fill this gap and to investigate the three-dimensional
motion of two capsules when their centroids are in or near the same x1x3-plane. We
will take advantage of the computational technique that we have developed, based
on the coupling of a boundary integral to compute the flow and finite elements to
compute the capsule wall mechanics (Walter et al. 2010). This coupling has proved
to be very stable in a number of situations where long transient motion of a single
capsule needed to be monitored (Walter, Salsac & Barthès-Biesel 2011; Hu, Salsac
& Barthès-Biesel 2012; Dupont, Salsac & Barthès-Biesel 2013; Dupont et al. 2016).
We will see that a new interaction mode is revealed: given the choice, the capsules
oscillate around the shear gradient axis, rather than around the vorticity axis. We call
this interaction mode the minuet motion, as it is similar to the one reported for Volvox
algae (Drescher et al. 2009), albeit for different hydrodynamic interactions.

The paper is organized as follows: the problem is set out in § 2 together with a
short description of the numerical method. The different types of capsule interaction
are presented in § 3, where we also discuss the main factors that determine the motion
type. In § 4, we analyse which factors determine the motion type and illustrate the
area of space where oscillatory motion is expected to occur. In § 5, we then study the
consequences on the trajectory shift and self-diffusion phenomena in the suspension.
In the final § 6, we summarize the findings and provide a conclusion.

2. Problem statement and numerical method
2.1. Problem description

Two identical spherical capsules C1 and C2 (radius a), filled with a Newtonian liquid
(viscosity µ, density ρ) and enclosed by a very thin hyper-elastic membrane (surface

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

18
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.181


892 A19-4 X.-Q. Hu, X.-C. Lei, A.-V. Salsac and D. Barthès-Biesel

x2

x1

x3
Shear plane

Vorticitydirection

Initial position
{X1

(0), X2
(0), X3

(0)}

FIGURE 1. Two capsules flowing in simple shear flow. The reference frame is linked
to capsule C1 and the coordinate system is centred on it. The centre of C2 is initially
positioned at X(0).

shear modulus Gs and area dilation modulus Ks), are freely suspended in another
Newtonian liquid (viscosity µ, density ρ) and subjected to a simple shear flow with
shear rate γ̇ . Inertia effect is neglected. The capsules centroids are denoted G1 and G2.
We use a reference frame centred on G1, that moves with it (figure 1). Our objective
is to study the interaction process between the two capsules as they are convected by
the flow and, specifically, to compute the evolution of the velocity V(t) and position
X(t) of G2 with time t.

The undisturbed flow v∞ of the external liquid is given by

v∞1 (x)= γ̇ x2; v∞2 (x)= v
∞

3 (x)= 0. (2.1a,b)

Note that, since the problem is inertialess, the flow field has the same expression
(2.1) in a laboratory reference frame. The motion of the internal and external fluids
is governed by the Stokes equations, with associated boundary conditions given by:

(i) vanishing flow perturbation far from the capsules:

vext(x)→ v∞(x) as ‖x− x(Gα)‖→∞ α = 1, 2; (2.2)

(ii) at a material point x located on the membrane of either capsule

vext(x)= vint(x)= ẋ, (2.3)
q+∇s · T= 0, (2.4)

where the superscript ext or int refers respectively to the suspending fluid or to
the capsule internal liquid. The jump of viscous traction across the membranes is
q, the in-plane elastic tension tensor in the membrane is denoted T and ∇s is the
surface gradient operator. Equation (2.4) is the membrane equilibrium equation, which
expresses the dynamic coupling between the solid membranes and the fluids.

As this fluid–structure interaction problem is now classical, we will only present
the main hypotheses used here and refer the reader to the comprehensive review of
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Barthès-Biesel (2016). The fluid velocity at any point x is written as a boundary
integral on the surfaces S1 and S2 of the two capsules (Lac et al. 2007)

v(x)= v∞(x)−
1

8πµ

∫
S1∪S2

J(x, y) · q(y) dS(y), (2.5)

where J is the free space Green’s function given by

J(x, y)=
I

‖x− y‖
+
(x− y)⊗ (x− y)
‖x− y‖3

, (2.6)

where I is the identity tensor. The pressure p− p0 at a point x is given by

p(x)− p0 =−
1

4π

∫
S1∪S2

q(y) · (x− y)
‖x− y‖3

dS(y), (2.7)

where p0 denotes the far field pressure.
The capsule membrane is assumed to be an infinitely thin sheet of a three-

dimensional isotropic volume incompressible material that satisfies a neo-Hookean
(NH) constitutive law. Bending resistance is neglected. The membrane constitutive
law relates the principal elastic tensions (forces per unit arclength measured in the
membrane plane) T1 and T2 to the two principal extension ratios λ1 and λ2

T1 =
Gs

λ1λ2

[
λ2

1 −
1

(λ1λ2)2

]
, (2.8)

with a similar expression for T2, where the subscripts 1 and 2 are permuted. For
simplicity, we have denoted these principal directions 1 and 2, but they should not
be confused with the Cartesian directions in space. The surface shear elastic modulus
Gs and area dilation modulus Ks are related by Ks = 3Gs (Barthès-Biesel 2016). The
corresponding total deformation energy of the membrane of one capsule is given by

W =
Gs

2

∫
S

(
λ2

1 + λ
2
3 − 3+

1
λ2

1λ
2
2

)
dS, (2.9)

where S stands for either S1 or S2.
The main parameters are the capillary number

Ca=
µγ̇ a
Gs

, (2.10)

which measures the relative stiffness of the capsule, and the initial position of G2 at
time t= 0, when the flow is suddenly started

X(0)=X(0)
= {X(0)

1 , X(0)
2 , X(0)

3 }. (2.11)

We shall discuss the typical case where X(0)
1 and X(0)

3 are negative while X(0)
2 is positive:

the flow of G2 occurs from left to right in the trajectory figures. The case X(0)
3 > 0

provides the same results as the typical case since it corresponds to the symmetric
configuration with respect to the shear plane. Positive values of X(0)

1 and negative
ones for X(0)

2 correspond to the mirror image of the typical case, with respect to the
x2x3-plane. When the crossing process is completed, the final steady position of G2 is
{X( f )

1 , X( f )
2 , X( f )

3 }. We define the final trajectory shifts of the capsule

δ2 = |X
( f )
2 | − |X

(0)
2 |, δ3 = |X

( f )
3 | − |X

(0)
3 |, (2.12a,b)

which are computed for |X( f )
1 | = 10a.
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2.2. Numerical method
The fluid–structure interaction problem is solved by means of the numerical scheme
that couples a boundary integral method (BI) to solve the fluid flow and the finite
element method (FE) to solve the membrane mechanics (Walter et al. 2010; Hu et al.
2012). This method is well adapted to Stokes flows and has the advantage of requiring
the discretization of the capsule surfaces S1 and S2 only. It automatically accounts for
an unbounded fluid domain. The model inputs are the capillary number Ca and the
initial position X(0) of capsule C2. Following Lac et al. (2007), we use the fact that
the two capsules are identical to centre the flow field on the midpoint O of G1G2, so
that (2.5) can be solved on only one capsule and becomes

v(x)= v∞(x)−
1

8πµ

∫
S2

[J(x, y)− J(x,−y)] · q(y) dS(y). (2.13)

The capsule surface S2 is discretized using P2 triangle elements, in which 6 nodes
are allocated at the vertices and the middle of each side. The mesh is generated
from the initial spherical shape by projecting a regular icosahedron to the sphere and
then subdividing each element subsequently to the desired precision. A mesh of 1280
elements and 2562 nodes has been used in all the simulations, corresponding to a
characteristic mesh size 1hc =O(0.1a). Such a spatial discretization has been shown
to lead to a relative error of order 10−3 on the Taylor deformation of a single capsule
in shear flow (Walter et al. 2010). Furthermore, it can withstand some membrane
compression without creating any numerical instability (Hu et al. 2012). The explicit
time iteration is stable only if the time step is such that γ̇ 1t<O(Ca1hc/a) (Walter
et al. 2010). In the case of a NH membrane and Ca = 0.3, γ̇ 1t = 5 × 10−4 allows
us to compute the capsule trajectory over long times without stability issues. We stop
the computation when the distance G1G2 is larger than 10a.

At time t = 0, C2 (positioned at {X(0)
1 /2, X(0)

2 /2, X(0)
3 /2}) and C1 (positioned at

{−X(0)
1 /2,−X(0)

2 /2,−X(0)
3 /2}) are subjected to the sudden start of the flow. The model

follows the motion of the capsule membrane over time. At any time, the model can
thus output the position of the surface nodes, from which it is possible to infer, for
each capsule, the deformation and elastic tensions in the membrane as well as the
position and velocity of the centroid. The knowledge of this velocity allows us to
transcript the results in the reference frame linked to C1.

The accuracy of the numerical model is checked by comparing capsules trajectories
with those obtained by Lac et al. (2007) and Lac & Barthès-Biesel (2008), and also
by assessing the influence of the time step and of the spatial discretization of the
capsule membranes (see the Appendix): the conclusion is that the centroid trajectories
are accurate to within 0.05a.

3. Types of capsule interaction: simple crossing (leapfrog) or minuet motion
A major finding of our work is that, depending on the initial position of C2, there

are two types of motion:

(i) Simple crossing (also denoted leapfrog): C2 catches up with C1, interacts and
goes away. The two capsules are not necessarily in the same shear plane.

(ii) Minuet motion: C2 catches up with C1, interacts, overpasses C1, reverses its
motion and repeats the process one, two or three times before getting away.

The two motions are illustrated and analysed in the following.
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FIGURE 2. Leapfrog motion of two capsules with their centres in the same shear plane
(X(0)

1 /a=−10, X(0)
2 = 0, X(0)

3 = 0, Ca= 0.3). (a) Three-dimensional view of the trajectory
of C2. (b) G2 trajectory in the shear plane. (c) Three-dimensional view of the deformed
capsules at t1 when X1(t1) = 0. (d–f ) C1 intersections with the three coordinates planes
at t1.

3.1. Single interaction: leapfrog motion
As a reference, we consider the situation where the two capsules are in the shear plane
on the same streamline (X(0)

1 = 10a, X(0)
2 = 0, X(0)

3 = 0, Ca= 0.3). Similar computations
have been made by Lac et al. (2007) for pre-inflated capsules, but only the value of
the final trajectory shift is reported. Under Stokes flow conditions, the capsules must
remain in this plane. The trajectory of C2 is shown in figure 2(a,b) (movie 1 available
at https://doi.org/10.1017/jfm.2020.181).

When the flow is started, the two capsules are far enough from each other that they
behave as if they were almost alone in the fluid. Within γ̇ t∼ 6 they reach a roughly
ellipsoidal shape around which the membrane rotates, as shown in figure 2(d) (see
the review by Barthès-Biesel (2016)). The deformation and rotation of C1 lead to a
stresslet that creates a small velocity field and a small depression. This perturbation
displaces C2 along the velocity gradient in the direction that moves it towards C1, as
shown in figure 2(b). Note that this phenomenon is the opposite of the one observed
by Doddi & Bagchi (2008) when inertia is taken into account. As a consequence,
V2(t) > 0 for t > 0 and C2 is convected towards C1, as shown in figure 2(a,b). The
only way for C2 to pass C1 is to ‘jump’ over it in the x1x2-plane (thus the term
‘leapfrog motion’). The fact that the motion is constrained to the shear plane leads
to a high velocity difference ‖V − v∞‖/γ̇ a in the x1- and x2-directions (figure 3).
The evolution of the pressure at the midpoint between G1 and G2 (2.7) can also
explain the interaction phenomenon: indeed, as |X1(t)/a| decreases, the pressure in
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1 /a=−10, X(0)
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12840
X1/a

-4-8-12 12840
X1/a

-4-8-12

1.2(a) (b)
0.9

0.6

0.3

0

-0.3

-0.6

-0.9

-1.2

(p
 −

 p
0)

/(
G

s/
a)

(W
 −

 W
∞

)/
G

sa
2

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

Leapfrog
Minuet

Initial state

G1X(0)

FIGURE 4. Pressure and membrane energy evolution during the leapfrog and minuet
motions for Ca= 0.3. (a) Pressure p at the mid-point between G1 and G2; (b) membrane
elastic energy W. Leapfrog: X(0)

1 /a = −10, X(0)
2 = 0, X(0)

3 = 0. Minuet: X(0)
1 /a = −2.6,

X(0)
2 = 0, X(0)

3 /a=−2.6.

the lubrication film between the two capsules increases (figure 4a) and pushes C2

in the x2-direction, along which the maximum displacement of G2 is X(m)
2 . As C2

overtakes C1, the widening of the lubrication film leads to a depression (figure 4a),
which decreases X2, until a final steady value X( f )

2 is reached when the two capsules
are far apart (|X1| > 6a, in this case). The final trajectory shift δ2 = |X

( f )
2 − X(0)

2 | is
0.9a, and is equal to the one found by Lac et al. under the same flow situation for
a 5 % pre-inflation. The finite value of δ2 indicates that the two capsule interaction
leads to self-diffusion effects in a dilute suspension of capsules. The deformed
profiles of C1 (equivalently of C2) in the x1x2-, x1x3- and x2x3-planes are shown in
figure 2(d–f ) at time γ̇ t1 = 9.7, when the two capsules cross, which we define by
X1(t1) = 0. Figure 2(d, f ) shows that there is indeed a thin lubrication film between
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FIGURE 5. Minuet of two capsules (X(0)
1 /a = −2.6, X(0)

2 = 0, X(0)
3 /a = −2.6, Ca = 0.3).

(a) Three-dimensional view of the trajectory of C2. (b) Projections of G2 trajectories in
the x1x2- and x1x3-planes. (c–e) C1 profile intersections with the three coordinates planes
at times t1 and t2 when X1(t1)= X1(t2)= 0.

the two capsules (which corroborates the pressure build-up) and that the two capsules
are highly deformed. The global deformation can be assessed through the membrane
elastic energy W given by (2.9). The value of W(X1) − W∞, where W∞ is the
deformation energy of a single capsule, allows us to estimate the intensity of the
mechanical interaction between the two capsules. During the close interaction, the
two capsules undergo large transient deformation, leading to a peak in W − W∞
(figure 4b). The separation process leads to some deformation oscillations, until a
final steady state is reached, which is identical to the single capsule one, elastic
energy wise (figure 4b).

3.2. Minuet motion

We now consider the case X(0)
1 /a = −2.6, X(0)

2 = 0, X(0)
3 /a = −2.6, Ca = 0.3, where

capsule C2 is located off the shear plane and can thus move freely in space: this leads
to trajectories that are completely different from the ones described above. As in the
previous case, the rotation of C1 displaces G2 along the velocity gradient, so that C2 is
convected towards C1. The three-dimensional trajectory of C2 is shown in figure 5(a),
where the two capsules are shown in their initial positions (movie 2). In order to
get a clearer grasp of the process, we analyse the trajectories of the projections of
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G2 in the x1x2- and x1x3-planes in figure 5(b). As |X1(t)/a| decreases, the pressure
increases slightly (figure 4a): this leads to a slight increase in both |X2(t)| and |X3(t)|
(figure 5b), which allows enough space for capsule C2 to pass C1 by moving around
the x2-axis (insets in figure 5a). Correspondingly, the maximum displacement |X(m1)

2 | is
smaller than in the leapfrog situation. Similarly, the velocity difference ‖V− v∞‖/γ̇ a
remains small while occurring in all three directions, as shown in figure 3. The energy
variation W − W∞ is also very small (figure 4b), which indicates that there is little
mechanical interaction between the capsules. This point is further corroborated by the
quasi-superposition of the deformed profiles of C1 at time t1 when X1(t1) = 0, and
when it is alone in the flow (figure 5c–e).

As the capsules separate, the small depression (figure 4a) leads to a negative
displacement along the x2-axis, which takes G2 into the reverse flow region and
entices C2 to move back towards C1. The pressure is still negative when the reversal
takes place, so that |X3(t)| decreases. As a consequence, there is not enough space for
C2 to move around C1 in a x1x3-plane and a sideways leapfrog motion takes place,
which is qualitatively similar to the one that occurs in the shear plane, as described
in the previous section: there is a significant pressure build-up in the lubrication film,
followed by a depression as the capsules part (figure 4a). The pressure variation
leads to an increase of |X2(t)| up to a value |X(m2)

2 |, which is large enough to allow
the further decrease to the final displacement |X( f 2)

2 |, without crossing into a reverse
flow region. At time t2 when X1(t2) = 0, the two capsules are closer than at time
t1 and thus undergo a transient deformation, as appears in figure 5(a) (inset) and in
figure 5(d,e). Correspondingly, the mechanical energy W −W∞ undergoes a transient
variation, which, however, is much smaller than the one that occurs when the capsules
cross in the shear plane (figure 4b). We deduce that minuet motion is less energy
consuming than leapfrog motion.

If we now start with the same initial conditions (X(0)
1 /a=−2.6, X(0)

2 = 0, X(0)
3 /a=

−2.6) but reduce the capsule deformability by setting Ca= 0.2, two reversals occur,
as shown in figure 6 (movies 3 and 4). The first reversal is essentially the same
as for Ca = 0.3. However, when the capsules cross again at time t2, there is still
enough space to allow crossing around the x3-axis. Furthermore, the displacement
along the x2-axis is still small (X2(t2)/a = −0.39), compared to the one observed
for Ca = 0.3 (X2(t2)/a = −0.51), so that the pressure induced trajectory shift forces
G2 to cross again into the reverse flow region: the capsule is thus convected again
towards C1. During the third crossing, since |X3(t3)|/a < 2, the capsule has to do a
sideways leapfrog motion that leads to a displacement X2(t2)/a = 0.92, that is large
enough to accommodate the trajectory shift without changing the flow direction of the
capsule: the latter finally goes back in the direction where it came from. Note that, at
time t3, the two capsules undergo a significant transient deformation, due to a strong
interaction. This phenomenon is unexpected in view of the fairly large initial distance
between the capsules.

4. What factors determine the motion type?
The type of motion (leapfrog or minuet) is determined by the evolution of X2(t)

after crossing, since it is a change of sign of X2(t) that causes reversal of motion. At
crossing, the film pressure displaces G2 along the velocity gradient, to a maximum
value |X(m)

2 |. After crossing, the separation process and the subsequent depression lead
to a displacement ∆2 of G2 back to the x1-axis. For leapfrog motion, the trajectory
shift is easily identified as ∆2=|X

(m)
2 −X( f )

2 | (see figure 2b). When reversal occurs, the
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FIGURE 6. Minuet with multiple reversals for X(0)
1 /a = −2.6, X(0)

2 = 0, X(0)
3 /a = −2.6,

Ca = 0.2. The instants of close interaction when X1 = 0 are denoted t1, t2 and t3 in
chronological order. (a) Three-dimensional view of the trajectory of C2. (b,c) Projections
of G2 trajectories in the x1x2- and x1x3-planes. (d) Three-dimensional profiles at close
interaction.

film pressure decrease also leads to a trajectory shift ∆2, which is difficult to evaluate
in a simple fashion. However, since ∆2 is a consequence of the separation process, we
can surmise that it follows an evolution similar to the one found in leapfrog motion in
the shear plane, i.e. that it decreases when the capsule separation |X(0)

2 | and/or |X(0)
3 |

increase and when the capsule deformability Ca increases (Lac et al. 2007; Lac &
Barthès-Biesel 2008; Pranay et al. 2010; Omori et al. 2013; Gires et al. 2014). We
conclude that, whenever |X(m)

2 | is less than ∆2, reverse motion is to be expected. The
main parameters that determine the values of |X(m)

2 | and of ∆2, are the initial capsule
separation X(0) and the capillary number Ca. We now study their influence separately.

4.1. Effect of the initial capsule separation X(0)

The effect of the initial offset |X(0)
3 | from the shear plane is shown for Ca = 0.3,

X(0)
1 /a = −3.0 and X(0)

2 /a = 0 in figure 7. When |X(0)
3 | is small (e.g. |X(0)

3 /a| 6 2),
the situation is close to the one when the two capsules are in the same shear plane.
Correspondingly, they undergo a sideways leapfrog motion with a displacement
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FIGURE 7. Effect of the initial position X(0)
3 on the capsule trajectory for Ca = 0.3,

X(0)
1 /a=−3.0 and X(0)

2 /a= 0. Projections of G2 trajectories in the x1x2-plane (a) and in
the x1x3-plane (b). When |X(0)

3 |/a 6 2, capsule C2 has not enough room to move around
C1: it overpasses it with a sideways leapfrog motion.

|X(m)
2 /a| > 0.4, which is large enough to allow direct crossing (figure 7a). For

a larger offset |X(0)
3 /a| > 2.6, C2 has room to move around C1 in an x1x3-plane:

then the displacement |X(m)
2 /a| ∼ 0.2 is small (figure 7a), and thus reversal motion

occurs during separation. As |X(0)
3 | increases, the influence of C1 decreases and

the two capsules have almost no relative velocity. The motion shown in figure 7 for
|X(0)

3 /a| = 4 is near the limit of what can be reasonably computed: indeed, the capsule
reaches X1 = 0 at time γ̇ t1 = 50 at the first crossing, and at time γ̇ t2 = 266 at the
second crossing. We conclude that the minuet motion is slow.

We now turn to the effect of the initial distance |X(0)
1 | on the trajectory of C2,

as shown in figure 8 for Ca = 0.3, X(0)
2 /a = 0 and X(0)

3 /a = −2.6. Note that, since
|X(0)

3 /a|> 2, C2 has room to move around C1 in an x1x3-plane. However, the far field
perturbation created by C1 is a stresslet, which varies as the square of the inverse
distance G1G2. It is this perturbation that displaces G2 along the x2-axis and gives C2

the small relative approach velocity, which leads to crossing. This perturbation velocity
varies as [X(0)

1 /a]
−2

when |X(0)
1 |/a � 1 (|X(0)

1 |/a > 4 in this particular case). Even
though it is small, its prolonged effect over a long time leads to a significant |X(m)

2 |

displacement and thus to a sideways leapfrog motion. Note that the initial position
X(0)

2 /a= 0 is unstable when the capsules interact. However, when the initial distance
|X(0)

1 | becomes of order a (e.g. |X(0)
1 |/a = 3), the displacement |X(m)

2 | has no time to
build up and remains small: then reversal occurs.

Similar situations of capsule interaction have been considered by Lac & Barthès-
Biesel (2008), who did not report any motion reversal, even when they studied three-
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FIGURE 8. Effect of the initial position X(0)
1 on the capsule trajectory for Ca = 0.3,

X(0)
2 /a=0 and X(0)

3 /a=−2.6. Projections of G2 trajectories in the x1x2-plane (a) and in the
x1x3-plane (b). When |X(0)

1 |/a> 4, capsule C2 has moved sufficiently across the streamlines
that it can overpass C1 with a sideways leapfrog motion.

dimensional motions with non-zero values of X(0)
3 . This is due to the fact that they

started with X(0)
2 /a > 0.5 and X(0)

1 /a > 10, values which were too large for minuet to
occur.

4.2. Effect of capsule deformability
Under given flow conditions, the capsule deformability is accounted for by the
capillary number Ca and increases with it. Some global results are presented in the
form of phase diagrams. For X(0)

2 = 0 and |X(0)
1 | = |X

(0)
3 |, the effect of varying the

initial capsule separation and deformability is shown in figure 9(a). Minuet thus
occurs approximately for 2< |X(0)

3 |/a< 4. For |X(0)
3 |/a> 4∼ 5, the capsule separation

is so large that the relative velocity is very small and the capsule doublet configuration
remains essentially stationary. The effect of Ca is complex: for a typical separation
|X(0)

3 |/a= 2.6 and up to Ca6 0.7, a minuet takes place with one reversal for moderate
values of deformability (0.2 < Ca < 0.7) or two (or more) reversals when Ca 6 0.2.
This transition from one to two reversals when Ca is reduced has been illustrated
in § 3.2. However, for large capsule deformability (Ca > 0.7), no motion reversal
occurs: the capsules are so deformed and tilted towards the flow direction, that, when
they overpass, their trajectory perturbation is small. The effect of X(0)

2 is shown in
figure 9(b) for the typical case |X(0)

1 |/a= |X
(0)
3 |/a= 2.6. Minuet occurs only for small

values of |X(0)
2 |/a and moderate Ca, i.e. for small relative velocities between two

capsules with moderate deformability. This limited range of minuet motion explains
why it had not been detected before.

Note that the inherent deformability of a capsule, even when Ca is very small,
makes it different from a rigid sphere. Consequently, it is impossible to find permanent
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FIGURE 9. Phase diagrams for motion type: (a) motion type as a function of Ca and
X(0)

3 for X(0)
1 = X(0)
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2 = 0. The points represent the positions of G2 at rest: × one

oscillation, + two oscillations,f three oscillations. (b) Motion type as a function of Ca
and X(0)

2 for |X(0)
1 |/a= |X

(0)
3 |/a= 2.6.

capsule doublets like those predicted by Batchelor & Green (1972b) for two spheres
freely suspended in simple shear flow: indeed, such doublets can occur only for
perfect spheres, as pointed out by the authors.

4.3. Region of minuet motion

The domain around C1, where long term doublets are formed, is illustrated in figure 10
for Ca = 0.3. The sphere of radius 2.2a centred on G1 is an exclusion region, that
leaves a space 0.2a between the two capsules. When X(0)

1 = X(0)
2 = 0, the capsule

doublet separated by X(0)
3 , remains stationary. Whenever the centre of capsule C2 is

located in the yellow area, the two capsules will cross once (leapfrog motion) and
separate. In the green area, the two capsules will remain close and oscillate a few
times before eventually separating. For |X(0)

3 |/a & 4, the interaction becomes weak,
so that the doublet configuration remains essentially stationary. The minuet domain
shown in figure 10 is in fact three-dimensional and extends in the x2-direction over a
small distance of order 0.06a for Ca= 0.3 (see figure 9b). When Ca is decreased, the
boundary between leapfrog and minuet motions does not change appreciatively, but
the thickness of the three-dimensional minuet domain increases. Conversely, as shown
in figure 10, when Ca increases, the boundary is tilted towards the x3-axis and the
minuet domain thickness decreases. Note that for X(0)

2 > 0.5a, the whole region would
be yellow (apart from the exclusion area).

An important consequence of the minuet motion is linked to the fact that it tends
to push together two capsules that were initially distant and not expected to interact
much. This point is illustrated in figure 6 where the initial separation G1G2−2a=1.7a
is decreased during crossing to a film with thickness approximately 0.2a, which is thin
enough to lead to potential physico-chemical interactions or damage.
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FIGURE 10. Domain of doublet formation around capsule C1 for X(0)
2 = 0, Ca= 0.3 and

a NH membrane. The sphere of radius 2a is a steric exclusion area, while the grey zone
between the spheres of radii 2.2a and 2a is an exclusion region, that leaves a space 0.2a
between the two capsules. The points represent the positions of G2 at rest, and the symbols
indicate the motion type: × minuet, @ leapfrog, 6 steady doublet. The position of the
boundary between the two domains for Ca= 0.5 is indicated by a dash line.

4.4. Effect of the membrane constitutive equation
It is of interest to assess the influence of the wall constitutive law, as all the above
results have been obtained for a neo-Hookean membrane. In particular, it is possible
to assume that the principal tensions and elongations are related by the Skalak law
(SK) (Skalak et al. 1973), which reads

T1 =
Gs

λ1λ2
[λ2

1(λ
2
1 − 1)+Cλ2

1λ
2
2(λ

2
1λ

2
2 − 1)]. (4.1)

The surface shear elastic modulus is Gs and the area dilation modulus is given
by Ks = (1 + 2C)Gs. The two laws (2.8) and (4.1) predict the same small
deformation behaviour for C = 1, but for large deformations, the NH law is strain
softening, whereas SK law is strain hardening (Barthès-Biesel, Diaz & Dhenin 2002).
Correspondingly, for the same value of Ca, the deformation of a single capsule in
simple shear flow is larger for a NH membrane than for a SK one (Barthès-Biesel
2016).

We can then expect that the transition between a leapfrog and a minuet motion will
happen for values of Ca that will be different for capsules with SK or NH membranes.
In order to verify this prediction, we model the interaction of two capsules enclosed
either by a SK membrane (C = 1) or a NH membrane, in the case X(0)

1 /a = −3.0,
X(0)

2 = 0, X(0)
3 /a = −2.6 and Ca = 0.5. As shown in figure 11(a), the NH capsules
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FIGURE 11. Interaction process of two capsules with a NH membrane or a SK membrane
for Ca= 0.5, X(0)

1 /a=−3, X(0)
2 = 0, X(0)

3 /a=−2.6. (a) The NH capsule does a sideways
leapfrog motion, while the SK capsule does a motion reversal. (b) Deformed profiles of
the capsule C1 at time t1 defined by X1(t1)= 0.

do a sideways leapfrog motion whereas the SK capsules undergo one oscillation and
reverse their direction of motion. The explanation for this difference of behaviour is
linked to the fact that the NH capsule is more deformed than the SK one (figure 11b),
and that its trajectory displacement ∆2 is thus small enough to prevent it from going
into the reverse flow region.

5. Global effects: trajectory shift and doublet duration
5.1. Trajectory shift

When two capsules with a NH membrane are in the same shear plane (X(0)
3 /a=0), it is

a well-established fact that, after crossing, the two capsules are irreversibly displaced
from their initial trajectory: for a given value of Ca, the trajectory shift δ2 = |X

( f )
2 | −

|X(0)
2 | is maximum for X(0)

2 /a= 0, decreases when |X(0)
2 | increases and becomes almost

zero for |X(0)
2 |/a > 2 (Lac & Barthès-Biesel 2008; Pranay et al. 2010; Omori et al.

2013; Gires et al. 2014). The effect of X(0)
3 /a is mostly reported for the case X(0)

2 /a=
0.5: then δ2 is maximum for X(0)

3 /a = 0, decreasing to almost zero for |X(0)
3 /a > 2

(Lac & Barthès-Biesel 2008; Gires et al. 2014). The trajectory shift along the vorticity
direction δ3= |X

( f )
3 | − |X

(0)
3 | is small and less than 0.1a (see also figure 15). The effect

of Ca is small and does not change the findings. The influence of the membrane
constitutive law on the leapfrog motion in the shear plane was studied by Pranay et al.
(2010), who compared the effect of a NH or SK law (C= 10) on the trajectory shift
δ2. They found that, for the same Ca, δ2 is larger for a SK law than for a NH one:
this is due to the high apparent rigidity of the SK law, linked to a high value of the
area dilation modulus.

The new results for X(0)
2 /a= 0 are illustrated for Ca= 0.3 in figure 12, where they

are compared with the results of Lac & Barthès-Biesel (2008), obtained for X(0)
2 /a=

0.5. For X(0)
3 /a6 2 when a leapfrog motion occurs, the shift δ2 decreases with X(0)

3 /a
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FIGURE 12. Irreversible trajectory shifts δ2 and δ3, computed at |X( f )
1 |/a = 10, as a

function of X(0)
3 (X(0)

1 /a=−3.0, X(0)
2 = 0, Ca= 0.3). Open symbols correspond to leapfrog

motion, filled ones to minuet motion. The dash-dot line corresponds to the results of Lac
& Barthès-Biesel (2008), obtained for X(0)

1 /a=−10, X(0)
2 /a= 0.5 and β = 1.05.

and is approximately 50 % larger for X(0)
2 /a= 0 than for X(0)

2 /a= 0.5 (figure 12a): this
is in agreement with the previously reported evolution of δ2 with X(0)

2 /a and X(0)
3 /a.

However, when the doublet motion evolves from leapfrog to minuet, a bifurcation
takes place for |X(0)

3 |/a = 2.1 ± 0.1: δ2 jumps to values that are approximately one
order of magnitude larger than the ones that would be expected from the previous
X(0)

2 /a= 0.5 results or from the prolongation of the leapfrog curve for δ2.
Similarly, whereas the shift δ3/a remains small during the leapfrog motion, it

becomes large and negative for X(0)
2 /a > 2 (figure 12b). This means that, at the end

of the interaction process, the capsule C2 is nearer the shear plane x1x2 than when the
flow started. The minuet motion thus leads to a shift δ3 along the vorticity direction,
which tends to reduce the initial distance between the two capsules, in opposition
to a diffusive effect. But since the capsule separation in the x3-direction is reduced,
a sideways leapfrog motion takes place, with a resulting large value of δ2, and thus
diffusive effects along the shear gradient direction. Decreasing Ca does not change
much the above results. However, when the capsule deformability increases, the
bifurcation occurs for increasingly large values of |X(0)

3 |/a and is difficult to compute
as the minuet becomes very slow (see § 5.2).

The influence of the membrane law is shown in figure 13: the SK capsule undergoes
a leapfrog motion for |X(0)

3 |/a 6 2 and then makes a minuet for |X(0)
3 |/a > 2.2. The

evolutions of δ2 are almost superimposed for a NH membrane (Ca = 0.3) and for
a SK membrane (Ca = 0.5). When the SK capsule deformability increases to Ca =
1.0, the transition between leapfrog and minuet motions occurs further away, around
|X(0)

3 |/a ∼ 3.5. We can then conclude that, indeed, the effect of a strain hardening
membrane would just be to shift the results to larger values of Ca, without changing
the essence of the interaction process.
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FIGURE 13. Trajectory shift δ2 as a function of X(0)
3 for different membranes constitutive

laws (X(0)
1 /a = −3.0, X(0)

2 = 0). The solid line corresponds to a neo-Hookean membrane
with Ca = 0.3 (figure 12). The dashed lines correspond to a Skalak membrane (C = 1);
E Ca= 0.5,@ Ca= 1.0. Open symbols: leapfrog motion; filled symbols: minuet motion.

0
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FIGURE 14. Effect of Ca, X(0)
3 and constitutive law on the times γ̇ t1 and γ̇ t2 of first

and second crossings (X(0)
1 /a=−3.0 and X(0)

2 /a= 0).

5.2. Doublet duration

The minuet motion, when it occurs, is very slow, as shown in figure 14 for X(0)
1 /a=

−3.0 and X(0)
2 /a= 0. The time γ̇ t1, at which the first crossing occurs, increases with

the separation |X(0)
3 |/a, but does not depend on Ca, the membrane law or the type

of motion (leapfrog or minuet). The fact that γ̇ t1 increases with |X(0)
3 |/a is due to
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FIGURE 15. Projection of G2 trajectories for β = 1.05, Ca = 0.45 and different initial
positions. Capsule C2 starts from X(0)

1 /a = −20, X(0)
2 /a = 0.5 and different X(0)

3 . The
comparison between the results of Lac & Barthès-Biesel (symbols) and the present results
(lines) shows very good agreement.

the fact that the relative velocity of C2, which is initially zero, builds up from a
flow perturbation (due to C1), the intensity of which decreases with the square of the
distance between the two capsules. The time γ̇ t2 of the second crossing is quite large
and increases significantly with capsule deformability and distance.

This means that the two capsules remain close to each other for a long time, while
drifting slowly. When |X(0)

3 |/a> 4, γ̇ t2 becomes too large to be reliably computed (the
values of γ̇ t2 for Ca= 1.0 and a SK membrane are very high, and are included here
to illustrate the phenomenon).

6. Discussion and conclusion
The situation that we have studied pertains to a semi-dilute suspension of capsules

that is suddenly put in motion by a simple shear flow. The novel aspect of our work
is that we consider a pair of nearby capsules with their centres in (or near) the
plane normal to the velocity gradient (X(0)

2 ∼ 0). This capsule configuration had never
been studied before, because it entails long computations. Indeed, the only results
on capsule interaction off the shear plane had been obtained for capsules with a
significant relative velocity, which prevented minuet from occurring and which led to
weak capsule interactions and small trajectory displacement.

When X(0)
2 ∼ 0, the important results are:

(i) The capsule pair can remain stable for a long time, while dancing a minuet.
(ii) When they separate, the capsules can reverse direction.

(iii) When one or more oscillations occur, the irreversible trajectory shift is large.
(iv) This minuet dance progressively leads the capsules to closely interact and deform

significantly.
(v) The less deformable the capsule, the more prone it is to do a minuet.

(vi) The zone where a minuet can occur has been identified.

During the close interaction, the film thickness between the two capsules is of
the order of ∼ 0.1a − 0.2a. For small capsules, this may lead to physico-chemical
interaction.
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In order to make the problem consistent, we considered as an initial condition a
suspension of spherical capsules at rest, and suddenly started the flow. When the
capsules are pre-deformed to the profile that they would have if they were alone in
the flow, we have verified that they take the same motion (leapfrog or minuet) as if
they were initially spherical: the only difference is that, for pre-deformed capsules,
the first close interaction happens γ̇ t6 5 earlier than for spherical capsules. It follows
that the minuet interaction is not restricted to the transient start of the flow of a
suspension. For example, from figure 6, we note that, at the end of the interaction,
when C2 is located at X1/a= 5.0, X2/a= 0.54, X3/a=−1.1, it has almost recovered
its equilibrium shape. Suppose that C2 then meets a new capsule C3, located in
the vicinity of X1/a = 7.6, X2/a = 0.54, X3/a = 1.5. Being in the same relative
configuration as C1 and C2 were at time t= 0, capsules C2 and C3 will do a minuet.
We can thus expect minuet motions in semi-dilute suspensions.

In conclusion, we have shown a novel and unexpected effect in the pair interaction
of two capsules, that depends on the relative position of the two particles. It would
be interesting to check experimentally the existence of long lasting capsule doublets
that do a minuet motion.
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Appendix
The results of the BI–FE model (1280 elements) are first compared to those

obtained by Lac et al. (2007) and Lac & Barthès-Biesel (2008) for two pre-inflated
capsules with a NH membrane and radius βa, where β is the inflation ratio. The
pre-stress is created by means of an internal pressure p0, which leads to an isotropic
elastic tension T0 = p0a/2, given by Laplace’s law. For a neo-Hookean membrane,
T0 = 6Gs(β − 1) in the limit of small inflation. The trajectories of G2 obtained with
the two methods show very good agreement, as illustrated in figure 15 for Ca= 0.45.

As the minuet motion is a novel phenomenon, which occurs over fairly long
times, it is of importance to verify that the trajectories do not suffer from error
accumulation over time. The test case consists of two capsules enclosed by a SK
membrane (C = 1) with Ca = 0.5, X(0)

1 /a = −3.0, X(0)
2 = 0 and X(0)

3 /a = −2.4. As
shown in figure 13, those capsules undergo a minuet with one reversal. The choice
of a SK law rather than a NH one enables us to use larger values of Ca, and thus
larger time steps for similar trajectories. As shown in figure 16(a) for 1280 elements
on the capsule surfaces, decreasing the time step γ̇ 1t from 2× 10−3 to 5× 10−4 has
no effect on the trajectory. Conversely, we keep the same time step γ̇ 1t = 2× 10−3
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FIGURE 16. Effect of numerical parameters on the G2 trajectory, projected on the x1x2-
and x1x3-planes for SK membranes, for Ca= 0.5, X(0)

1 /a=−3.0, X(0)
2 /a= 0, X(0)

3 /a=−2.4.
(a,b) Effect of time step for 1280 elements. (c,d) Effect of mesh refinement for γ̇ 1t =
2× 10−3.

and compare the trajectories obtained with two spatial meshes with 1280 or 5120
elements, corresponding to mesh sizes 1hc =O(0.1a) and O(0.05a), respectively. As
shown in figure 16(b), the trajectories differ by at most one (fine) mesh size at the
interaction point. We conclude that the trajectories that are presented in this study
using 1280 elements and γ̇ 1t = 5 × 10−4, are reliable and that the final trajectory
shifts δ2/a and δ3/a have an error of the order of 0.05a.
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