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Abstract. The standard mixing length model of convection is ill behaved at the centre of a star
since the pressure scale height Hp = P/(ρg) → ∞ as r → 0, and the convective flux remains
non zero at r = 0. We propose a modifcation of this model of convection that has the correct
behaviour in the central regions of a star and smoothly changes to the standard MLT away from
the centre.
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1. The standard mixing length model
For simplicity we neglect radiative cooling and take viscous drag to be half the buoy-

ancy term, in which case the equations governing the mixing length model are (cf. Böhm-
Vitense 1958)
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Downwards moving eddies have δT < 0, v < 0 and so contribute a positive (upwards)
energy flux. Upwards moving eddies have δT > 0, v > 0 and likewise contribute a positive
energy flux.

Multiplying the first two equations in (1) by P/(dP/dr) = −Hp = −P/(ρg) gives
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Eddies are considered on average to have come from a distance �/2 away, where � is the
mixing length, so integrating from r0 = r + �/2 to r, and from r − �/2 to r, gives
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Taking the mixing length � = αHp gives the standard result
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2. Solution near the centre
In the central regions this analysis is no longer valid since dP/dr → 0, Hp → ∞ as

r → 0, and the total flux must anyway go to zero whereas the expression in equation (4)
remains non zero.

Consider a point X at small r: a downward moving eddy starting at r0 = r + �/2 has
a negative δT and negative v and so contributes a positive outward energy flux the same
as Fdown in Eq. (3). However the upwards eddy at X started a distance �/2 below X and
hence at r1 = (�/2− r) on the other side of the origin. It then accelerated downwards to
the origin with negative δT and v then decelerated upwards to arrive at X with negative
δT but now a positive v, and so contributes a negative upwards flux. Since the motion
of the eddy is taken to be adiabatic, the magnitude of |δT | and |v| are given by taking
an eddy starting at �/2 − r and moving downwards to r. The two fluxes are then
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In the neighbourhood of r = 0 the pressure P has the series expansion
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Substituting for P (r), P (�/2 + r), P (�/2 − r), taking the limit for small r and setting
� = αHc gives
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which goes to zero ∝ r, as it should since the radiative flux Frad and total flux F go to
zero ∝ r.

The results for r >> � and for r << � can be combined in the approximate expression
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