LINEAR MAPS PRESERVING TENSOR PRODUCTS OF RANK-ONE HERMITIAN MATRICES

JINLI XU ${ }^{\boxtimes}$, BAODONG ZHENG and AJDA FOŠNER

(Received 13 June 2014; accepted 7 October 2014; first published online 21 November 2014)

Communicated by A. Sims

Abstract

For a positive integer $n \geq 2$, let M_{n} be the set of $n \times n$ complex matrices and H_{n} the set of Hermitian matrices in M_{n}. We characterize injective linear maps $\phi: H_{m_{1} \cdots m_{l}} \rightarrow H_{n}$ satisfying $$
\operatorname{rank}\left(A_{1} \otimes \cdots \otimes A_{l}\right)=1 \Longrightarrow \operatorname{rank}\left(\phi\left(A_{1} \otimes \cdots \otimes A_{l}\right)\right)=1
$$ for all $A_{k} \in H_{m_{k}}, k=1, \ldots, l$, where $l, m_{1}, \ldots, m_{l} \geq 2$ are positive integers. The necessity of the injectivity assumption is shown. Moreover, the connection of the problem to quantum information science is mentioned.

2010 Mathematics subject classification: primary 15A03; secondary 15A69, 15A86, 15B57.
Keywords and phrases: quantum information science, linear preserver, tensor product, rank-one matrix, Hermitian matrix.

1. Introduction and the main theorem

Let M_{n} be the set of $n \times n$ complex matrices and H_{n} the set of Hermitian matrices in M_{n}. Suppose that $m, n \geq 2$ are positive integers and suppose that $A \in M_{m}$ and $B \in M_{n}$ are the states of two quantum systems. Then their tensor (Kronecker) product $A \otimes B \in$ $M_{m} \otimes M_{n}$ will be the state in the (bipartite) joint system. In many applied and pure studies, one considers the tensor product of matrices (see for example [1, 4, 8, 13]). Most noticeably, the tensor product is often used in quantum information science [10]. In quantum physics, quantum states of a system with n physical states are represented as density matrices, that is, positive semi-definite matrices with trace one. If $A \in M_{m}$ and $B \in M_{n}$ are two quantum states in two quantum systems, then their tensor product $A \otimes B$ describes the joint state in the bipartite system, in which the general states are density matrices in $M_{m} \otimes M_{n} \equiv M_{m n}$. More generally, one may also consider tensor states and general states in a multipartite system $M_{n_{1}} \otimes \cdots \otimes M_{n_{l}} \equiv M_{m_{1} \cdots m_{l}}$, where $l>2$ is a positive integer.

[^0]Let us point out that it is relatively easy to extract information from matrices in tensor product form. For instance, if $A \in M_{m}$ has eigenvalues (respectively, singular values) a_{1}, \ldots, a_{m} and $B \in M_{n}$ has eigenvalues (respectively, singular values) b_{1}, \ldots, b_{n}, then the eigenvalues (respectively, the singular values) of $A \otimes B$ have the form $a_{i} b_{j}$ with $1 \leq i \leq m$ and $1 \leq j \leq n$. Thus, it is interesting to get information on the tensor space $M_{m n}$ by examining the properties of the small collection of matrices in tensor form $A \otimes B$. In particular, if we consider a linear map $\phi: M_{m n} \rightarrow M_{m n}$ and if one knows the images $\phi(A \otimes B)$ for $A \in M_{m}$ and $B \in M_{n}$, then the map ϕ can be completely characterized since every $C \in M_{m n}$ is a linear combination of matrices in tensor form $A \otimes B$. Nevertheless, the challenge is to use the limited information of the linear map ϕ on matrices in tensor form to determine the structure of ϕ.

Recently, there has been considerable interest in studying linear preserver problems on tensor spaces arising in quantum information science (see for example [5, 6, 11, 12] and references therein). In [6], Huang et al. and the third named author characterized linear maps on $H_{m} \otimes H_{n} \equiv H_{m n}$ preserving the spectrum $\sigma(A \otimes B)$ and the spectral radius $r(A \otimes B)$ for $A \in H_{m}$ and $B \in H_{n}$. Furthermore, in [11], Friedland et al. considered the linear group of automorphisms of Hermitian matrices which preserve the set of separable states. Recall that density matrices in $H_{m n}$ that can be written as a convex combination of product states are separable states. It is easy to see that $S \in H_{m n}$ is separable if and only if it is a convex combination of $P_{1} \otimes P_{2}$, where $P_{1} \in H_{m}$ and $P_{2} \in H_{n}$ are rank-one orthogonal projections. In [11], it was shown that a linear map sending the set of separable states onto itself has a very nice structure. Namely, it has the form

$$
A \otimes B \mapsto \tau_{1}(A) \otimes \tau_{2}(B)
$$

or $m=n$ and

$$
A \otimes B \mapsto \tau_{2}(B) \otimes \tau_{1}(A),
$$

where $\tau_{k}, k=1,2$, has the form $X \mapsto U_{k} X U_{k}^{*}$ or $X \mapsto U_{k} X^{t} U_{k}^{*}$ for some unitary $U_{1} \in M_{m}$ and $U_{2} \in M_{n}$. Here, Y^{t} denotes the transpose of a matrix Y and Y^{*} denotes the conjugate transpose of Y. For more information on linear preserver problems, one may see [7] and references therein. We also refer the reader to [2, 9, 15], where some new results on the topic can be found.

The purpose of this paper is to study injective linear maps $\phi: H_{m n} \rightarrow H_{m n}$ satisfying

$$
\operatorname{rank}(A \otimes B)=1 \Longrightarrow \operatorname{rank}(\phi(A \otimes B))=1
$$

for all $A \in H_{m}, B \in H_{n}$. We will show that such a map has the form

$$
A \otimes B=\lambda T\left(\tau_{1}(A) \otimes \tau_{2}(B)\right) T^{-1}
$$

for some invertible matrix $T \in M_{m} \otimes M_{n} \equiv M_{m n}$, where $\lambda \in\{-1,1\}$ and τ_{k} is the identity map or the transposition map $X \mapsto X^{t}$ for $k=1,2$. More generally, we consider linear maps on multipartite systems $H_{m_{1}} \otimes \cdots \otimes H_{m_{l}} \equiv H_{m_{1} \cdots m_{l}}, l \geq 2$.

Before writing our main theorem, let us introduce some basic definitions and fix the notation. First of all, throughout the paper, $l, n, m_{1}, \ldots, m_{l} \geq 2$ will be positive
integers with $n \geq m_{1} \cdots m_{l}$ and $r=n-m_{1} \cdots m_{l}$. For an integer $k \geq 1, I_{k}$ denotes the $k \times k$ identity matrix, 0_{k} the $k \times k$ zero matrix, and $E_{i j}^{(k)}, 1 \leq i, j \leq k$, the $k \times k$ matrix, all of whose entries are equal to zero except for the (i, j) th entry, which is equal to one. The set of rank-one matrices in H_{k} will be denoted by H_{k}^{1}. If k_{1}, k_{2} are positive integers, then $M_{k_{1} \times k_{2}}$ denotes the set of all $k_{1} \times k_{2}$ complex matrices. As usual, we use the notation $\operatorname{Diag}\left(a_{1}, \ldots, a_{k}\right)$ to denote the $k \times k$ diagonal matrix with diagonal entries a_{1}, \ldots, a_{k}.

For the sake of readability, we will usually write 0 instead of 0_{k} for the $k \times k$ zero matrix. Similarly, for positive integers k_{1}, k_{2}, we will denote (where dimensions of the matrices are obvious) the $k_{1} \times k_{2}$ zero matrix simply by 0 .

We call a linear map π on $H_{m_{1} \cdots m_{l}}$ canonical if

$$
\pi\left(A_{1} \otimes \cdots \otimes A_{l}\right)=\tau_{1}\left(A_{1}\right) \otimes \cdots \otimes \tau_{l}\left(A_{l}\right)
$$

for all $A_{k} \in H_{m_{k}}, k=1, \ldots, l$, where $\tau_{k}: H_{m_{k}} \rightarrow H_{m_{k}}, k=1, \ldots, l$, is either the identity map $X \mapsto X$ or the transposition map $X \mapsto X^{t}$. In this case, we write $\pi=\tau_{1} \otimes \cdots \otimes \tau_{l}$.

Our main result reads as follows.
Main Theorem. Let $\phi: H_{m_{1} \cdots m_{l}} \rightarrow H_{n}$ be an injective linear map. Then, for any $A_{1} \otimes \cdots \otimes A_{l} \in H_{m_{1} \cdots m_{l}}$,

$$
\begin{equation*}
\operatorname{rank}\left(A_{1} \otimes \cdots \otimes A_{l}\right)=1 \Longrightarrow \operatorname{rank}\left(\phi\left(A_{1} \otimes \cdots \otimes A_{l}\right)\right)=1 \tag{1.1}
\end{equation*}
$$

if and only if there exist an invertible matrix $T \in M_{n}, \lambda \in\{-1,1\}$, and a canonical map π on $H_{m_{1} \cdots m_{l}}$ such that

$$
\begin{equation*}
\phi\left(A_{1} \otimes \cdots \otimes A_{l}\right)=\lambda T\left(\pi\left(A_{1} \otimes \cdots \otimes A_{l}\right) \oplus 0_{r}\right) T^{*} \tag{1.2}
\end{equation*}
$$

for all $A_{1} \otimes \cdots \otimes A_{l} \in H_{m_{1} \cdots m_{l}}$.
Let us point out that n in the above theorem must be greater or equal to $m_{1} \cdots m_{l}$ since ϕ is assumed to be injective. Moreover, the next two examples will show that without the injectivity assumption our main theorem does not hold in general.

Example 1.1. Let $R \in H_{n}^{1}$ be any rank-one Hermitian matrix and let $\varphi: H_{m_{1} \cdots m_{l}} \rightarrow \mathbb{C}$ be any linear map such that $\varphi\left(A_{1} \otimes \cdots \otimes A_{l}\right) \neq 0$ for all $A_{k} \in H_{m_{k}}^{1}, k=1, \ldots, l$. Then a map $\phi: H_{m_{1} \cdots m_{l}} \rightarrow H_{n}$ defined by

$$
\phi\left(A_{1} \otimes \cdots \otimes A_{l}\right)=\varphi\left(A_{1} \otimes \cdots \otimes A_{l}\right) R, \quad A_{1} \otimes \cdots \otimes A_{l} \in H_{m_{1} \cdots m_{l}},
$$

is linear and it satisfies the condition (1.1). On the other hand, ϕ is not injective and it is not of the form (1.2).

In the next example, $l=2, m_{1}=m_{2}=2$, and $n=m_{1} m_{2}=4$.
Example 1.2. Let $T=\left[\begin{array}{cc}I_{2} & E_{12}^{(2)} \\ 0 & E_{11}^{(2)}\end{array}\right]$ and let $\phi: H_{4} \rightarrow H_{4}$ be a map defined by

$$
\phi(A \otimes B)=T(A \otimes B) T^{*}, \quad A, B \in H_{2} .
$$

Clearly, ϕ is linear and it satisfies the condition (1.1). Namely, if we write $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$, then

$$
\begin{aligned}
T(A \otimes B) T^{*} & =\left[\begin{array}{cc}
I_{2} & E_{12}^{(2)} \\
0 & E_{11}^{(2)}
\end{array}\right]\left[\begin{array}{cc}
a_{11} B & a_{12} B \\
a_{21} B & a_{22} B
\end{array}\right]\left[\begin{array}{cc}
I_{2} & 0 \\
E_{21}^{(2)} & E_{11}^{(2)}
\end{array}\right] \\
& =\left[\begin{array}{cc}
a_{11} B+a_{21} E_{12}^{(2)} B & a_{12} B+a_{22} E_{12}^{(2)} B \\
a_{21} E_{11}^{(2)} B & a_{22} E_{11}^{(2)} B
\end{array}\right]\left[\begin{array}{cc}
I_{2} & 0 \\
E_{21}^{(2)} & E_{11}^{(2)}
\end{array}\right]
\end{aligned}
$$

and, hence, $\phi(A \otimes B)$ is equal to the 4×4 matrix of the form

$$
\left[\begin{array}{cc}
a_{11} B+a_{21} E_{12}^{(2)} B+\left(a_{12} B+a_{22} E_{12}^{(2)} B\right) E_{21}^{(2)} & \left(a_{12} B+a_{22} E_{11}^{(2)} B\right) E_{11}^{(2)} \\
a_{21} E_{11}^{(2)} B+a_{22} E_{11}^{(2)} B E_{21}^{(2)} & a_{22} E_{11}^{(2)} B E_{11}^{(2)}
\end{array}\right]
$$

Suppose that there exist rank-one matrices $A, B \in H_{2}^{1}$ such that the rank of $\phi(A \otimes$ $B)=T(A \otimes B) T^{*}$ is not one. Then $T(A \otimes B) T^{*}$ must be the zero matrix. In particular, $a_{22} E_{11}^{(2)} B E_{11}^{(2)}=a_{22} b_{11}=0$. More precisely, either $a_{22}=0$ or $b_{11}=0$.

If $a_{22}=0$, then $a_{12}=0$ since $\operatorname{rank}(A)=1$. Hence, $A=a_{11} E_{11}^{(2)}$ with $a_{11} \neq 0$ and, consequently,

$$
0=T(A \otimes B) T^{*}=\left[\begin{array}{cc}
a_{11} B & 0 \\
0 & 0
\end{array}\right]
$$

But then $B=0$, which is a contradiction.
On the other hand, if $b_{11}=0$, then $B=b_{22} E_{22}^{(2)}$ with $b_{22} \neq 0$ since $\operatorname{rank}(B)=1$. Thus, $B E_{11}^{(2)}=0, E_{11}^{(2)} B=0, E_{12}^{(2)} B=b_{22} E_{12}^{(2)}, B E_{21}^{(2)}=b_{22} E_{21}^{(2)}$, and $E_{12}^{(2)} B E_{21}^{(2)}=b_{22} E_{11}^{(2)}$. This implies that

$$
0=T(A \otimes B) T^{*}=\left[\begin{array}{rr}
b_{22}\left[\begin{array}{rr}
a_{22} & a_{21} \\
a_{12} & a_{11}
\end{array}\right] & 0 \\
0 &
\end{array}\right]
$$

But then $A=0$, which is a contradiction. So, we showed that ϕ satisfies the condition (1.1). On the other hand, ϕ is not injective (since T is not invertible) and it is not of the form (1.2).

2. Preliminary results

Before proving the main theorem of this paper we introduce some additional results which will be used in the sequel. The first one is a direct consequence of [3, Theorem 2].
Proposition 2.1. Let m, n be positive integers with $2 \leq m \leq n$ and $\phi: H_{m} \rightarrow H_{n}$ an injective linear map. Then, for any $A \in H_{m}$,

$$
\operatorname{rank}(A)=1 \Longrightarrow \operatorname{rank}(\phi(A))=1
$$

if and only if there exist an invertible matrix $T \in M_{n}$ and $\lambda \in\{-1,1\}$ such that either

$$
\phi(A)=\lambda T\left(A \oplus 0_{n-m}\right) T^{*}
$$

for all $A \in H_{m}$ or

$$
\phi(A)=\lambda T\left(A^{t} \oplus 0_{n-m}\right) T^{*}
$$

for all $A \in H_{m}$.
Remark 2.2. Let $\tau: H_{m} \rightarrow H_{m}$ be the identity map $X \mapsto X$ or the transposition map $X \mapsto X^{t}$ and let $\phi: H_{m} \rightarrow H_{n}$ be a linear rank-one preserver of the form

$$
\phi(A)=T\left(\tau(A) \oplus 0_{n-m}\right) T^{*}, \quad A \in H_{m},
$$

where $T \in M_{n}$ is a fixed matrix. Then ϕ must be injective. Namely, if ϕ is not injective and if τ is the identity map, then, by [3, Theorem 2], there exists a nonzero vector $\beta \in \mathbb{C}^{n}$ such that

$$
\phi(A)=\varphi(A) \beta \beta^{*}, \quad A \in H_{m}
$$

where $\varphi: H_{m} \rightarrow \mathbb{C}$ is a linear map satisfying $\varphi(A) \neq 0$ for all rank-one matrices $A \in H_{m}$. Hence,

$$
T\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right] T^{*}=\varphi(A) \beta \beta^{*}
$$

for all $A \in H_{m}$. Since $\beta \neq 0$, we may find an invertible matrix $P \in M_{n}$ such that $\beta \beta^{*}=\lambda P E_{11}^{(n)} P^{*}$ for some nonzero scalar λ. Writing $\varphi(A)$ instead of $\lambda \varphi(A)$ and T instead of $P^{-1} T$,

$$
T\left[\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right] T^{*}=\varphi(A) E_{11}^{(n)}
$$

Let $P=\left[p_{i j}\right]$. By choosing $A=E_{11}^{(m)}, E_{22}^{(m)}$ in the above equality, we conclude that $p_{i 1}=p_{i 2}=0$ for $i \geq 2$. Moreover, $\varphi\left(E_{11}^{(m)}\right)=\left|p_{11}\right|^{2}$ and $\varphi\left(E_{22}^{(m)}\right)=\left|p_{12}\right|^{2}$. Now let ε be any nonzero scalar. Then, according to the above observations,

$$
\varphi\left(\varepsilon E_{11}^{(m)}+\varepsilon^{-1} E_{22}^{(m)}+E_{12}^{(m)}+E_{21}^{(m)}\right)=\varepsilon^{-1}\left|\varepsilon p_{11}+p_{12}\right|^{2} .
$$

Taking $\varepsilon=-p_{11}^{-1} p_{12}$, we get $\varphi\left(\varepsilon E_{11}^{(m)}+\varepsilon^{-1} E_{22}^{(m)}+E_{12}^{(m)}+E_{21}^{(m)}\right)=0$, which contradicts the assumption that ϕ is a rank-one preserver. In the same way we show that ϕ is injective in the case when τ is the transposition map.

We continue with a series of simple lemmas. The proof of the first lemma will be omitted, since it is similar to the proof of Lemma 2.5 in [16].

Lemma 2.3. Let π_{1}, π_{2} be canonical maps on $H_{m_{1} \cdots m_{k}}$ and let $T \in M_{m_{1} \cdots m_{l}}$ be an invertible matrix. If

$$
T \pi_{1}\left(A_{1} \otimes \cdots \otimes A_{l}\right) T^{*}=\pi_{2}\left(A_{1} \otimes \cdots \otimes A_{l}\right)
$$

for all $A_{k} \in H_{m_{k}}, k=1, \ldots, l$, then $\pi_{1}=\pi_{2}$ and $T=\lambda I_{m_{1} \cdots m_{l}}$ for some nonzero scalar $\lambda \in \mathbb{C}$.

Lemma 2.4. Let $m \geq 2$ be a positive integer and let $A, B \in H_{m}$ be Hermitian matrices with $\operatorname{rank}(A)=1$. If $\operatorname{rank}(\varepsilon A+B) \leq 1$ for any real scalar $\varepsilon \neq 0$, then $B=\lambda A$ for some $\lambda \in \mathbb{R}$.

Proof. Without loss of generality, we may assume that $A=E_{11}^{(m)}$. If we write $B=\left[\begin{array}{cc}b_{11} & \beta \\ \beta^{*} & B_{m-1}\end{array}\right]$, where $B_{m-1} \in H_{m-1}, b_{11} \in \mathbb{R}$, and $\beta \in \mathbb{C}^{m-1}$, then, according to our assumptions,

$$
\operatorname{rank}(\varepsilon A+B)=\operatorname{rank}\left[\begin{array}{cc}
\varepsilon+b_{11} & \beta \\
\beta^{*} & B_{m-1}
\end{array}\right] \leq 1
$$

for all nonzero scalars $\varepsilon \in \mathbb{R}$. Therefore, if ε is any nonzero real number not equal to $-b_{11}$, then

$$
\operatorname{rank}\left[\begin{array}{cc}
\lambda+b_{11} & \beta \\
0 & B_{n-1}-\left(\varepsilon+b_{11}\right)^{-1} \beta^{*} \beta
\end{array}\right] \leq 1
$$

and, thus,

$$
B_{n-1}-\left(\varepsilon+b_{11}\right)^{-1} \beta^{*} \beta=0
$$

Since this is true for all real scalars $\varepsilon \neq 0,-b_{11}$, it follows that $B_{m-1}=0$ and $\beta^{*} \beta=0$. This means that $\beta=0$ and, consequently, $B=b_{11} E_{11}^{(m)}=b_{11} A$.

Lemma 2.5. Let r, s, t be positive integers with $t \geq s$ and let $d \in \mathbb{R}$ be a real number. Suppose that matrices $A \in H_{s}^{1}, A_{1}=E_{11}^{(r)} \otimes A, A_{2}, A_{3} \in H_{r s}, B, C \in M_{r s \times t}, D \in H_{t}^{1}$ satisfy

$$
\operatorname{rank}\left[\begin{array}{cc}
\varepsilon A_{1}+A_{2}+\varepsilon^{-1} A_{3} & B+\varepsilon^{-1} C \\
B^{*}+\varepsilon^{-1} C^{*} & \left(d+\varepsilon^{-1}\right) D
\end{array}\right]=1
$$

for all nonzero scalars $\varepsilon \in \mathbb{R}$. Then $d=0$ and there exists an invertible matrix $T \in M_{t \times t}$ such that

$$
B=\left[\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right] T \quad \text { and } \quad D=T^{*}\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right] T
$$

Moreover, if $B=\left[\begin{array}{ll}A & 0 \\ 0 & 0\end{array}\right]$, then $D=\left[\begin{array}{ll}A & 0 \\ 0 & 0\end{array}\right]$.
Proof. According to the assumptions, we can write

$$
A=\lambda_{1} U E_{11}^{(s)} U^{*} \quad \text { and } \quad D=\lambda_{2} V E_{11}^{(t)} V^{*}
$$

for some invertible matrices $U \in M_{s}, V \in M_{t}$, and $\lambda_{1}, \lambda_{2} \in\{-1,1\}$. Let $\tilde{A}_{2}, \tilde{A}_{3} \in H_{r s}$, $\tilde{B}, \tilde{C} \in M_{r s \times t}$ be matrices such that

$$
\begin{aligned}
A_{2}= & \left(U \oplus I_{r s-s}\right) \tilde{A}_{2}\left(U \oplus I_{r s-s}\right)^{*}, \\
A_{3}= & \left(U \oplus I_{r s-s}\right) \tilde{A}_{3}\left(U \oplus I_{r s-s}\right)^{*}, \\
& B=\left(U \oplus I_{r s-s}\right) \tilde{B} V^{*}, \\
& C=\left(U \oplus I_{r s-s}\right) \tilde{C} V^{*} .
\end{aligned}
$$

Then

$$
\operatorname{rank}\left[\begin{array}{cc}
\varepsilon \lambda_{1} E_{11}^{(r s)}+\tilde{A}_{2}+\varepsilon^{-1} \tilde{A}_{3} & \tilde{B}+\varepsilon^{-1} \tilde{C} \\
\tilde{B}^{*}+\varepsilon^{-1} \tilde{C}^{*} & \left(d+\varepsilon^{-1}\right) \lambda_{2} E_{11}^{(t)}
\end{array}\right]=1
$$

for all nonzero scalars $\varepsilon \in \mathbb{R}$. Furthermore, if we write $\tilde{A}_{2}=\left[\begin{array}{ll}a_{2} & \alpha_{2} \\ \alpha_{2}^{*} & R\end{array}\right], \tilde{A}_{3}=\left[\begin{array}{ll}a_{3} & \alpha_{3} \\ \alpha_{3}^{4} & S\end{array}\right]$, $\tilde{B}=\left[\begin{array}{ll}b & \beta \\ \gamma & B_{1}\end{array}\right], \tilde{C}=\left[\begin{array}{cc}c & \delta \\ \eta & C_{1}\end{array}\right]$, then

$$
\operatorname{rank}\left[\begin{array}{cccc}
\varepsilon \lambda_{1}+a_{2}+\varepsilon^{-1} a_{3} & \alpha_{2}+\varepsilon^{-1} \alpha_{3} & b+\varepsilon^{-1} c & \beta+\varepsilon^{-1} \delta \\
\alpha_{2}^{*}+\varepsilon^{-1} \alpha_{3}^{*} & R+\varepsilon^{-1} S & \gamma+\varepsilon^{-1} \eta & B_{1}+\varepsilon^{-1} C_{1} \\
\bar{b}+\varepsilon^{-1} \bar{c} & \gamma^{*}+\varepsilon^{-1} \eta^{*} & \left(d+\varepsilon^{-1}\right) \lambda_{2} & 0 \\
\beta^{*}+\varepsilon^{-1} \delta^{*} & B_{1}^{*}+\varepsilon^{-1} C_{1}^{*} & 0 & 0
\end{array}\right]=1
$$

for all nonzero scalars $\varepsilon \in \mathbb{R}$. Thus, $B_{1}+\varepsilon^{-1} C_{1}=0, \beta+\varepsilon^{-1} \delta=0$ and, since this is true for all nonzero scalars $\varepsilon \in \mathbb{R}$, we have $B_{1}=0$ and $\beta=0$.

Next, according to the above observations, the determinant of the submatrix $\left[\begin{array}{cc}\varepsilon \lambda_{1}+a_{2}+\varepsilon^{-1} a_{3} & b+\varepsilon^{-1} c \\ \bar{b}+\varepsilon^{-1} \bar{c} & \left(d+\varepsilon^{-1}\right) \lambda_{2}\end{array}\right]$ must be zero. More precisely, for all nonzero scalars $\varepsilon \in \mathbb{R}$,

$$
\left(d+\varepsilon^{-1}\right) \lambda_{2}\left(\varepsilon \lambda_{1}+a_{2}+\varepsilon^{-1} a_{3}\right)=\left(b+\varepsilon^{-1} c\right)\left(\bar{b}+\varepsilon^{-1} \bar{c}\right)
$$

This implies that $\lambda_{1}=\lambda_{2}, d=0$, and $|b|=1$. Now assume that $\lambda_{1}=\lambda_{2}=1$. Since, for all nonzero scalars $\varepsilon \in \mathbb{R}$,

$$
\operatorname{rank}\left[\begin{array}{cc}
\alpha_{2}^{*}+\varepsilon^{-1} \alpha_{3}^{*} & \gamma+\varepsilon^{-1} \eta \\
\bar{b}+\varepsilon^{-1} \bar{c} & \varepsilon^{-1}
\end{array}\right] \leq 1
$$

we conclude that $\gamma=0$. Thus,

$$
B=\left[\begin{array}{cc}
U & 0 \\
0 & I_{r s-s}
\end{array}\right]\left[\begin{array}{cc}
b E_{11}^{(s)} & 0 \\
0 & 0
\end{array}\right] V^{*}=\left[\begin{array}{cc}
U E_{11}^{(s)} U^{*} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
b U^{-*} & 0 \\
0 & I_{t-s}
\end{array}\right] V^{*} .
$$

If we write

$$
T:=\left[\begin{array}{cc}
b U^{-*} & 0 \\
0 & I_{t-s}
\end{array}\right] V^{*},
$$

then $B=\left[\begin{array}{ll}A & 0 \\ 0 & 0\end{array}\right] T$ and

$$
\begin{aligned}
D & =V E_{11}^{(t)} V^{*}=V\left[\begin{array}{cc}
E_{11}^{(s)} & 0 \\
0 & 0
\end{array}\right] V^{*} \\
& =V\left[\begin{array}{cc}
\bar{b} U^{-1} & 0 \\
0 & I_{t-s}
\end{array}\right]\left[\begin{array}{cc}
U E_{11}^{(s)} U^{*} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
b U^{-*} & 0 \\
0 & I_{t-s}
\end{array}\right] V^{*} \\
& =T^{*}\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right] T .
\end{aligned}
$$

Finally, if $B=\left[\begin{array}{ll}A & 0 \\ 0 & 0\end{array}\right]$ and, if we write $T=\left[\begin{array}{ll}T_{1} & T_{2} \\ T_{3} & T_{4}\end{array}\right]$, where $T_{1} \in M_{s}$, then $A T_{1}=A$ and $A T_{2}=0$. Therefore,

$$
D=\left[\begin{array}{ll}
T_{1} & T_{2} \\
T_{3} & T_{4}
\end{array}\right]^{*}\left[\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
T_{1} & T_{2} \\
T_{3} & T_{4}
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right] .
$$

The next result is immediately obtained from [14, Lemma 2.2].

Lemma 2.6. Let m, i, j be positive integers with $m \geq 2$ and $1 \leq i<j \leq m$. If $A \in H_{m}$ satisfies

$$
\operatorname{rank}\left(A+k E_{i i}^{(m)}+k^{-1} E_{j j}^{(m)}\right)=1
$$

for all positive integers k, then $A=\lambda E_{i j}^{(m)}+\bar{\lambda} E_{j i}^{(m)}$ for some $\lambda \in \mathbb{C}$ with $|\lambda|=1$.
The proof of our main result will heavily rely on the following lemma. Since its proof is quite long and technical, we will present it at the end of the paper (see Section 4).
Lemma 2.7. Let $t \geq m_{1} \cdots m_{l}$ be a positive integer, $f: H_{m_{1} \cdots m_{l}} \rightarrow M_{\left(m_{1} \cdots m_{l}\right) \times t}$ an arbitrary map, and π a canonical map on $H_{m_{1} \cdots m_{l}}$. Suppose that a linear map $L: H_{m_{1} \cdots m_{l}} \rightarrow$ $M_{\left(m_{1} \cdots m_{l}\right) \times t}$ satisfies

$$
L\left(A_{1} \otimes \cdots \otimes A_{l}\right)=\pi\left(A_{1} \otimes \cdots \otimes A_{l}\right) f\left(A_{1} \otimes \cdots \otimes A_{l}\right)
$$

for all $A_{k} \in H_{m_{k}}^{1}, k=1, \ldots, l$. Then there exists $Q \in M_{\left(m_{1} \cdots m_{l}\right) \times t}$ such that

$$
L\left(A_{1} \otimes \cdots \otimes A_{l}\right)=\pi\left(A_{1} \otimes \cdots \otimes A_{l}\right) Q
$$

for all $A_{k} \in H_{m_{k}}, k=1, \ldots, l$. Moreover, if $L(A) \neq 0$ whenever $0 \neq A \in H_{m_{1} \cdots m_{l}}$, then $\operatorname{rank}(Q)=m_{1} \cdots m_{l}$.

3. Proof of the main theorem

Since the sufficiency part of the main theorem is clear, we consider only the necessity part. So, throughout this section, we assume that $\phi: H_{m_{1} \cdots m_{l}} \rightarrow H_{n}$ is an injective linear map satisfying (1.1).

Considering the map $X \mapsto \phi\left(E_{11}^{\left(m_{1}\right)} \otimes X\right), X \in H_{m_{2} \cdots m_{l}}$, and using Proposition 2.1, we conclude that

$$
\phi\left(E_{11}^{\left(m_{1}\right)} \otimes X\right)=\lambda T\left(\left(E_{11}^{\left(m_{1}\right)} \otimes \pi(X)\right) \oplus 0_{r}\right) T^{*}, \quad X \in H_{m_{2} \cdots m_{l}}
$$

for some invertible matrix $T \in M_{n}$, where $\lambda \in\{-1,1\}$ and π is a canonical map on $H_{m_{2} \cdots m_{l}}$. Composing ϕ with the map $Y \mapsto T^{-1} Y\left(T^{*}\right)^{-1}$ and, if necessary, with the map $Y \mapsto-Y$, we may assume that

$$
\begin{equation*}
\phi\left(E_{11}^{\left(m_{1}\right)} \otimes X\right)=\left(E_{11}^{\left(m_{1}\right)} \otimes \pi(X)\right) \oplus 0_{r}, \quad X \in H_{m_{2} \cdots m_{l}} \tag{3.1}
\end{equation*}
$$

Let $1 \leq s \leq m_{1}$ be a positive integer. Using induction on s, we have to show that for all $A_{s} \in H_{s}$ and all $X \in H_{m_{2} \cdots m_{l}}$,

$$
\phi\left(\left(A_{s} \oplus 0_{m_{1}-s}\right) \otimes X\right)=\left(\tau_{1}\left(A_{s} \oplus 0_{m_{1}-s}\right) \otimes \pi(X)\right) \oplus 0_{r},
$$

where τ_{1} is either the identity map on $H_{m_{1}}$ for all $1 \leq s \leq m_{1}$ or the transposition map on $H_{m_{1}}$ for all $1 \leq s \leq m_{1}$.

By (3.1), the above statement holds true for $s=1$. Now suppose that $s>1$ and that

$$
\begin{equation*}
\phi\left(\left(A_{s-1} \oplus 0_{m_{1}-s+1}\right) \otimes X\right)=\left(\tau_{1}\left(A_{s-1} \oplus 0_{m_{1}-s+1}\right) \otimes \pi(X)\right) \oplus 0_{r} \tag{3.2}
\end{equation*}
$$

for all $A_{s-1} \in H_{s-1}$ and all $X \in H_{m_{2} \cdots m_{l}}$.

Set

$$
\phi\left(E_{s s}^{\left(m_{1}\right)} \otimes X\right)=\left[\begin{array}{ll}
A_{s}(X) & B_{s}(X) \\
B_{s}(X)^{*} & D_{s}(X)
\end{array}\right], \quad X \in H_{m_{2} \cdots m_{l}}
$$

and

$$
\phi\left(\left(E_{1 s}^{\left(m_{1}\right)}+E_{s 1}^{\left(m_{1}\right)}\right) \otimes X\right)=\left[\begin{array}{ll}
A_{1 s}(X) & B_{1 s}(X) \\
B_{1 s}(X)^{*} & D_{1 s}(X)
\end{array}\right], \quad X \in H_{m_{2} \cdots m_{l}},
$$

where A_{s} and $A_{1 s}$ are maps from $H_{m_{2} \cdots m_{l}}$ to $H_{(s-1) m_{2} \cdots m_{l}}$. Then, of course, D_{s} maps from $H_{m_{2} \cdots m_{l}}$ to $H_{\left(n-(s-1) m_{2} \cdots m_{l}\right)}$. Let

$$
\Delta_{l}:=\left\{A_{1} \otimes \cdots \otimes A_{l}: A_{j} \in H_{m_{j}}^{1}\right\}, \quad \Gamma_{l}:=\left\{A_{2} \otimes \cdots \otimes A_{l}: A_{j} \in H_{m_{j}}^{1}\right\} .
$$

By injectivity of $\phi, D_{s}(X) \neq 0$ for every $X \in \Gamma_{l}$. Indeed, if $D_{s}\left(X_{0}\right)=0$ for some $X_{0} \in \Gamma_{l}$, then $B_{s}\left(X_{0}\right)=0$ and, thus,

$$
\phi\left(E_{s s} \otimes X_{0}\right)=A_{s}\left(X_{0}\right) \oplus 0_{\left(n-(s-1) m_{2} \cdots m_{l}\right)} .
$$

On the other hand, there exist $A_{s-1} \in H_{s-1}$ and $Y \in H_{m_{2} \cdots m_{l}}$ such that $\tau_{1}\left(A_{s-1} \oplus\right.$ $\left.0_{m_{1}-s+1}\right) \otimes \pi(Y)=A_{s}\left(X_{0}\right) \oplus 0_{\left(m_{1}-s+1\right) m_{2} \cdots m_{l}}$. Therefore, by (3.2),

$$
\phi\left(\left(A_{s-1} \oplus 0_{m_{1}-s+1}\right) \otimes Y\right)=A_{s}\left(X_{0}\right) \oplus 0_{\left(n-(s-1) m_{2} \cdots m_{l}\right)}
$$

which contradicts the injectivity of ϕ. Moreover, if $X \in \Gamma_{l}$, then we have $\operatorname{rank}\left(D_{s}(X)\right) \leq$ $\phi\left(E_{s s} \otimes X\right)=1$ and, hence, $\operatorname{rank}\left(D_{s}(X)\right)=1$. In other words, D_{s} maps tensor products of rank-one matrices to rank-one matrices.

Let $X \in \Gamma_{l}$ be an arbitrary matrix and let $\varepsilon \in \mathbb{R}$ be any nonzero scalar. Since $\left(\varepsilon E_{11}^{\left(m_{1}\right)}+\varepsilon^{-1} E_{s s}^{\left(m_{1}\right)}+E_{1 s}^{\left(m_{1}\right)}+E_{s 1}^{\left(m_{1}\right)}\right) \otimes X \in \Delta_{l}$,

$$
\operatorname{rank} \phi\left(\left(\varepsilon E_{11}^{\left(m_{1}\right)}+\varepsilon^{-1} E_{s s}^{\left(m_{1}\right)}+E_{1 s}^{\left(m_{1}\right)}+E_{s 1}^{\left(m_{1}\right)}\right) \otimes X\right)=1
$$

Thus, by the induction hypothesis (3.2),

$$
\operatorname{rank}\left[\begin{array}{cc}
\varepsilon E_{11}^{(s-1)} \otimes \pi(X)+A_{1 s}(X)+\varepsilon^{-1} A_{s}(X) & B_{1 s}(X)+\varepsilon^{-1} B_{s}(X) \\
B_{1 s}(X)^{*}+\varepsilon^{-1} B_{s}(X)^{*} & D_{1 s}(X)+\varepsilon^{-1} D_{s}(X)
\end{array}\right]=1
$$

and, hence,

$$
\operatorname{rank}\left(D_{1 s}(X)+\varepsilon^{-1} D_{s}(X)\right) \leq 1
$$

We already know that $\operatorname{rank}\left(D_{s}(X)\right)=1$. Thus, by Lemma 2.4, there exists a scalar $d \in \mathbb{R}$ such that $D_{1 s}(X)=d D_{s}(X)$. This yields that

$$
\operatorname{rank}\left[\begin{array}{cc}
\varepsilon E_{11}^{(s-1)} \otimes \pi(X)+A_{1 s}(X)+\varepsilon^{-1} A_{s}(X) & B_{1 s}(X)+\varepsilon^{-1} B_{s}(X) \tag{3.3}\\
B_{1 s}(X)^{*}+\varepsilon^{-1} B_{s}(X)^{*} & \left(d+\varepsilon^{-1}\right) D_{s}(X)
\end{array}\right]=1 .
$$

Applying Lemma 2.5, we conclude that $d=0$ and that there exists a map $f: \Gamma_{l} \rightarrow$ $M_{\left(m_{2} \cdots m_{l}\right) \times\left(n-m_{2} \cdots m_{l}\right)}$ such that

$$
B_{1 s}(X)=\left[\begin{array}{c}
\pi(X) f(X) \\
0
\end{array}\right], \quad X \in \Gamma_{l .} .
$$

Now, using Lemma 2.7,

$$
B_{1 s}(X)=\left[\begin{array}{c}
\pi(X) Q \\
0
\end{array}\right], \quad X \in H_{m_{2} \cdots m_{l}}
$$

for some $Q \in M_{\left(m_{2} \cdots m_{l}\right) \times\left(n-m_{2} \cdots m_{l}\right)}$.
Furthermore, if $B_{1 s}\left(X_{0}\right)=0$ for some nonzero $X_{0} \in H_{m_{2} \cdots m_{l}}$, then

$$
\phi\left(\left(E_{1 s}^{\left(m_{1}\right)}+E_{s 1}^{\left(m_{1}\right)}\right) \otimes X_{0}\right)=\left[\begin{array}{cc}
A_{1 s}\left(X_{0}\right) & 0 \\
0 & 0
\end{array}\right],
$$

which contradicts the injectivity of ϕ (see the arguments above for D_{s}). Applying the second part of Lemma 2.7, we obtain that $\operatorname{rank}(Q)=m_{2} \cdots m_{l}$. Hence, $Q=\left[I_{m_{2} \cdots m_{l}} 0\right] R$ for some invertible matrix $R \in M_{n-(s-1) m_{2} \cdots m_{l}}$.

Now, without loss of generality, we may compose ϕ with the map $Y \mapsto\left(I_{(s-1) m_{2} \cdots m_{l}} \oplus\right.$ $\left.R^{-1}\right)^{*} Y\left(I_{(s-1) m_{2} \cdots m_{l}} \oplus R^{-1}\right)$ (this does not change the induction hypothesis (3.2)). Next, we rewrite $B_{s}(X)\left(I_{(s-1) m_{2} \cdots m_{l}} \oplus R^{-1}\right)$ as $B_{s}(X)$. Note that then $B_{1 s}(X)=\left[\begin{array}{ccc}\pi(X) & 0 \\ 0 & 0\end{array}\right]$. Using (3.3) and Lemma 2.5, we see that $D_{s}(X)=\left[\begin{array}{cc}\pi(X) & 0 \\ 0 & 0\end{array}\right]$. Hence,

$$
\phi\left(E_{s s}^{\left(m_{1}\right)} \otimes X\right)=\left[\begin{array}{cc}
A_{s}(X) & B_{s}(X) \\
B_{s}(X)^{*} & \pi(X) \oplus 0
\end{array}\right], \quad X \in H_{m_{2} \cdots m_{l}} .
$$

On the other hand, considering the map $X \mapsto \phi\left(E_{s s}^{\left(m_{1}\right)} \otimes X\right), X \in H_{m_{2} \cdots m_{l}}$, and using Proposition 2.1, we conclude that

$$
\phi\left(E_{s s}^{\left(m_{1}\right)} \otimes X\right)=\lambda T\left(\left(E_{s s}^{\left(m_{1}\right)} \otimes \pi^{\prime}(X)\right) \oplus 0_{r}\right) T^{*}, \quad X \in H_{m_{2} \cdots m_{l}}
$$

for some invertible matrix $T \in M_{n}$, where $\lambda \in\{-1,1\}$ and π^{\prime} is a canonical map on $H_{m_{2} \cdots m_{l}}$. This yields that

$$
\lambda T\left[\begin{array}{cc}
0 & 0 \\
0 & \pi^{\prime}(X) \oplus 0
\end{array}\right] T^{*}=\left[\begin{array}{cc}
A_{s}(X) & B_{s}(X) \\
B_{s}(X)^{*} & \pi(X) \oplus 0
\end{array}\right], \quad X \in H_{m_{2} \cdots m_{l}} .
$$

Set

$$
T=\left[\begin{array}{lll}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{array}\right]
$$

with $T_{11} \in M_{(s-1) m_{2} \cdots m_{l}}, T_{22} \in M_{m_{2} \cdots m_{l}}$, and $T_{33} \in M_{n-s m_{2} \cdots m_{l}}$. Then

$$
\lambda\left[\begin{array}{lll}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \pi^{\prime}(X) & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{array}\right]^{*}=\left[\begin{array}{cc}
A_{s}(X) & B_{s}(X) \\
B_{s}(X)^{*} & \pi(X) \oplus 0
\end{array}\right]
$$

and, thus,

$$
\lambda\left[\begin{array}{ccc}
T_{12} \pi^{\prime}(X) T_{12}^{*} & T_{12} \pi^{\prime}(X) T_{22}^{*} & T_{12} \pi^{\prime}(X) T_{32}^{*} \\
T_{22} \pi^{\prime}(X) T_{12}^{*} & T_{22} \pi^{\prime}(X) T_{22}^{*} & T_{22} \pi^{\prime}(X) T_{32}^{*} \\
T_{32} \pi^{\prime}(X) T_{12}^{*} & T_{32} \pi^{\prime}(X) T_{22}^{*} & T_{32} \pi^{\prime}(X) T_{32}^{*}
\end{array}\right]=\left[\begin{array}{cc}
A_{s}(X) & B_{s}(X) \\
B_{s}(X)^{*} & \pi(X) \oplus 0
\end{array}\right] .
$$

Choosing $X=I_{m_{2} \cdots m_{l}}$, we see that $\lambda=1, T_{32}=0$, and that T_{22} must be invertible. This implies that $T_{22} \pi^{\prime}(X) T_{22}^{*}=\pi(X)$ and, by Lemma 2.3, $\pi=\pi^{\prime}$. Moreover, there exists a nonzero scalar $\mu \in \mathbb{C}$ such that $T_{22}=\mu I_{m_{2} \cdots m_{l}}$. If we write

$$
\widetilde{T}=\left[\begin{array}{ccc}
I_{(s-1) m_{2} \cdots m_{l}} & \bar{\mu} T_{12} & 0 \\
0 & I_{m_{2} \cdots m_{l}} & 0 \\
0 & 0 & I_{n-s m_{2} \cdots m_{l}}
\end{array}\right]
$$

then

$$
\phi\left(E_{s s} \otimes X\right)=\left[\begin{array}{ccc}
T_{12} \pi(X) T_{12}^{*} & \bar{\mu} T_{12} \pi(X) & 0 \\
\mu \pi(X) T_{12}^{*} & \pi(X) & 0 \\
0 & 0 & 0
\end{array}\right]=\widetilde{T}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \pi(X) & 0 \\
0 & 0 & 0
\end{array}\right] \widetilde{T}^{*} .
$$

Hence, without loss of generality, we may assume that

$$
\begin{equation*}
\phi\left(E_{s s}^{\left(m_{1}\right)} \otimes X\right)=\left(E_{s s}^{\left(m_{1}\right)} \otimes \pi(X)\right) \oplus 0_{r}, \quad X \in H_{m_{2} \cdots m_{l}} . \tag{3.4}
\end{equation*}
$$

To prove the induction, we have to show that for any $1 \leq i<s$ and any $X \in H_{m_{2} \cdots m_{l}}$,

$$
\phi\left(\left(E_{i s}^{(s)}+E_{s i}^{(s)}\right) \otimes X\right)=\left(\left(E_{i s}^{(s)}+E_{s i}^{(s)}\right) \otimes \pi(X)\right) \oplus 0_{r}
$$

and

$$
\phi\left(\left(\sqrt{-1} E_{i s}^{(s)}-\sqrt{-1} E_{s i}^{(s)}\right) \otimes X\right)=\left(\left(\sqrt{-1} E_{i s}^{(s)}-\sqrt{-1} E_{s i}^{(s)}\right) \otimes \pi(X)\right) \oplus 0_{r},
$$

since matrices $E_{i s}^{(s)}+E_{s i}^{(s)}, \sqrt{-1} E_{i s}^{(s)}-\sqrt{-1} E_{s i}^{(s)}, E_{j j}^{(s)}, 1 \leq i, j \leq s$, form the base of H_{s}. To see this, let $X \in \Gamma_{l}$ be any matrix and let $1 \leq i<s$ be any integer. Denote

$$
T(X):=\operatorname{Diag}\left(T_{1}(X), \ldots, T_{s}(X), I_{n-s m_{2} \cdots m_{l}}\right)
$$

where $T_{k}(X)=I_{m_{2} \cdots m_{l}}$ for $1 \leq k<s, k \neq i$, and $T_{i}(X)=T_{s}(X) \in M_{m_{2} \cdots m_{l}}$ is an invertible matrix such that $T_{s}(X) \pi(X) T_{s}^{*}(X)=E_{11}^{\left(m_{2} \cdots m_{l}\right)}$. By (3.2) and (3.4),

$$
T(X) \phi\left(E_{i i}^{\left(m_{1}\right)} \otimes X\right) T(X)^{*}=\left(E_{i i}^{\left(m_{1}\right)} \otimes E_{11}^{\left(m_{2} \cdots m_{l}\right)}\right) \oplus 0_{r}
$$

and

$$
T(X) \phi\left(E_{s s}^{\left(m_{1}\right)} \otimes X\right) T(X)^{*}=\left(E_{s s}^{\left(m_{1}\right)} \otimes E_{11}^{\left(m_{2} \cdots m_{l}\right)}\right) \oplus 0_{r}
$$

Using Lemma 2.6 , there exists $\lambda_{X} \in \mathbb{C}$ with $\left|\lambda_{X}\right|=1$ such that

$$
T(X) \phi\left(\left(E_{i s}^{\left(m_{1}\right)}+E_{s i}^{\left(m_{1}\right)}\right) \otimes X\right) T(X)^{*}=\left(\lambda_{X} E_{i s}^{\left(m_{1}\right)} \otimes E_{11}^{\left(m_{2} \cdots m_{l}\right)}+\bar{\lambda}_{X} E_{s i}^{\left(m_{1}\right)} \otimes E_{11}^{\left(m_{2} \cdots m_{l}\right)}\right) \oplus 0_{r} .
$$

Let

$$
L(X):=\lambda_{X} T_{i}(X)^{-1} E_{11}^{\left(m_{2} \cdots m_{l}\right)}\left(T_{s}(X)^{*}\right)^{-1}
$$

Then

$$
\phi\left(\left(E_{i s}^{\left(m_{1}\right)}+E_{s i}^{\left(m_{1}\right)}\right) \otimes X\right)=\left(E_{i s}^{\left(m_{1}\right)} \otimes L(X)+E_{s i}^{\left(m_{1}\right)} \otimes L(X)^{*}\right) \oplus 0_{r} .
$$

Note also that

$$
L(X)=\lambda_{X} T_{i}(X)^{-1} E_{11}^{\left(m_{2} \cdots m_{l}\right)}\left(T_{s}(X)^{*}\right)^{-1}=\lambda_{X} \pi(X) .
$$

If we define a map $f: \Gamma_{l} \rightarrow M_{m_{2} \cdots m_{l}}$ by $f(X)=\lambda_{X} I_{m_{2} \cdots m_{l}}, X \in \Gamma_{l}$, then $\lambda_{X} \pi(X)=$ $f(X) \pi(X)$ and, using Lemma 2.7,

$$
\lambda_{X} \pi(X)=\pi(X) f(X)=\pi(X) Q
$$

for all $X \in H_{m_{2} \cdots m_{l}}$. Choosing $X=I_{m_{2} \cdots m_{l}}$, we see that $Q=\lambda_{I_{m_{2} \cdots m_{l}}} I_{m_{2} \cdots m_{l}}$. Thus, for every $X \in H_{m_{2} \cdots m_{l}}$,

$$
\phi\left(\left(E_{i s}^{\left(m_{1}\right)}+E_{s i}^{\left(m_{1}\right)}\right) \otimes X\right)=\left(\lambda_{i s} E_{i s}^{\left(m_{1}\right)}+\bar{\lambda}_{i s} E_{s i}^{\left(m_{1}\right)}\right) \otimes \pi(X),
$$

where $\lambda_{i s}=\lambda_{I_{m_{2} \cdots m_{l}}}$.
Similarly,

$$
\phi\left(\left(\sqrt{-1} E_{i s}^{\left(m_{1}\right)}-\sqrt{-1} E_{s i}^{\left(m_{1}\right)}\right) \otimes X\right)=\left(\mu_{i s} \sqrt{-1} E_{i s}^{\left(m_{1}\right)}-\bar{\mu}_{i s} \sqrt{-1} E_{s i}^{\left(m_{1}\right)}\right) \otimes \pi(X)
$$

for some $\mu_{i s} \in \mathbb{C}$ with $\left|\mu_{i s}\right|=1$.
Since the rank of the matrix

$$
\phi\left(\left(E_{i i}^{\left(m_{1}\right)}+(1+\sqrt{-1}) E_{i s}^{\left(m_{1}\right)}+(1-\sqrt{-1}) E_{s i}^{\left(m_{1}\right)}+2 E_{s s}^{\left(m_{1}\right)}\right) \otimes E_{11}^{\left(m_{2} \cdots m_{l}\right)}\right)
$$

is one, we have $\left(\lambda_{i s}+\mu_{i s} \sqrt{-1}\right)\left(\bar{\lambda}_{i s}-\bar{\mu}_{i s} \sqrt{-1}\right)=2$ and, hence, either $\lambda_{i s}=\mu_{i s}$ or $\lambda_{i s}=-\mu_{i s}$. More precisely, there exists $\varepsilon_{i s} \in\{-1,1\}$ such that $\mu_{i s}=\varepsilon_{i s} \lambda_{i s}$.

Case 1. Let $s=2$. Then there exists T such that

$$
\phi\left(\left(A_{2} \oplus 0_{m_{1}-2}\right) \otimes X\right)=\left(\left(T \tau_{1}\left(A_{2}\right) T^{*} \oplus 0_{m_{1}-2}\right) \otimes \pi(X)\right) \oplus 0_{r} .
$$

Now, if $\varepsilon_{12}=1$, then $\mu_{i s}=\lambda_{i s}$ and τ_{1} is the identity map, that is,

$$
\phi\left(\left(A_{2} \oplus 0_{m_{1}-2}\right) \otimes X\right)=\left(\left(T A_{2} T^{*} \oplus 0_{m_{1}-2}\right) \otimes \pi(X)\right) \oplus 0_{r}
$$

On the other hand, if $\varepsilon_{12}=-1$, then $\mu_{i s}=-\lambda_{i s}$ and τ_{1} is the transposition map, that is,

$$
\phi\left(\left(A_{2} \oplus 0_{m_{1}-2}\right) \otimes X\right)=\left(\left(T A_{2}^{t} T^{*} \oplus 0_{m_{1}-2}\right) \otimes \pi(X)\right) \oplus 0_{r} .
$$

Case 2. Let $s>2$ and let us assume for a moment that $\tau_{1}=\mathrm{id}$. Since the matrices $\left(E_{i i}^{\left(m_{1}\right)}+E_{i j}^{\left(m_{1}\right)}+E_{i s}^{\left(m_{1}\right)}+E_{j i}^{\left(m_{1}\right)}+E_{j j}^{\left(m_{1}\right)}+E_{j s}^{\left(m_{1}\right)}+E_{s i}^{\left(m_{1}\right)}+E_{s j}^{\left(m_{1}\right)}+E_{s s}^{\left(m_{1}\right)}\right) \otimes$ $E_{11}^{\left(m_{2} \cdots m_{l}\right)}$ and $\left(E_{i i}^{\left(m_{1}\right)}+\sqrt{-1} E_{i j}^{\left(m_{1}\right)}+E_{i s}^{\left(m_{1}\right)}-\sqrt{-1} E_{j i}^{\left(m_{1}\right)}+E_{j j}^{\left(m_{1}\right)}-\sqrt{-1} E_{j s}^{\left(m_{1}\right)}+E_{s i}^{\left(m_{1}\right)}+\right.$ $\left.\sqrt{-1} E_{s j}^{\left(m_{1}\right)}+E_{s s}^{\left(m_{1}\right)}\right) \otimes E_{11}^{\left(m_{2} \cdots m_{l}\right)}$ belong to the set Γ_{l}, we have, for $1 \leq i<j<s$,

$$
\operatorname{rank}\left[\begin{array}{ccc}
1 & 1 & \lambda_{i s} \\
1 & 1 & \lambda_{j s} \\
\bar{\lambda}_{i s} & \bar{\lambda}_{j s} & 1
\end{array}\right]=1
$$

and

$$
\operatorname{rank}\left[\begin{array}{ccc}
1 & \sqrt{-1} & \lambda_{i s} \\
-\sqrt{-1} & 1 & -\varepsilon_{j s} \lambda_{j s} \sqrt{-1} \\
\bar{\lambda}_{i s} & \varepsilon_{j s} \bar{\lambda}_{j s} \sqrt{-1} & 1
\end{array}\right]=1
$$

Thus, $\lambda_{j s}=\lambda_{i s}=1$ and $\varepsilon_{j s}=1$ and, consequently,

$$
\phi\left(\left(A_{s} \oplus 0_{m_{1}-s}\right) \otimes X\right)=\left(\left(A_{s} \oplus 0_{m_{1}-s}\right) \otimes \pi(X)\right) \oplus 0_{r}
$$

The proof is completed.

4. Proof of Lemma 2.7

We divide the proof into several lemmas.
Lemma 4.1. Let t, m be positive integers with $t \geq m$, let $f: H_{m} \rightarrow M_{m \times t}$ be a map, and let τ be the identity map or the transposition map on H_{m}. Suppose that a linear map $L: H_{m} \rightarrow M_{m \times t}$ satisfies

$$
L(A)=\tau(A) f(A)
$$

for all $A \in H_{m}^{1}$. Then

$$
L(A)=\tau(A) Q, \quad A \in H_{m}
$$

where $Q=\sum_{i=1}^{m} E_{i i}^{(m)} f\left(E_{i i}^{(m)}\right)$.
Proof. Without loss of generality, we may assume that τ is the identity map since the proof in the other case is similar.

First, it is clear that

$$
L\left(E_{i i}^{(m)}\right)=E_{i i}^{(m)} f\left(E_{i i}^{(m)}\right)=E_{i i}^{(m)} \sum_{i=1}^{m} E_{i i}^{(m)} f\left(E_{i i}^{(m)}\right)=E_{i i}^{(m)} Q
$$

for all $1 \leq i \leq m$. Now let $1 \leq i<j \leq m$ and let us denote

$$
A(\lambda)=\lambda E_{i i}^{(m)}+E_{i j}^{(m)}+E_{j i}^{(m)}+\lambda^{-1} E_{j j}^{(m)}, \quad 0 \neq \lambda \in \mathbb{R} .
$$

If we write $f(A(\lambda))=\left[a_{r s}(\lambda)\right]$ and $Q=\left[q_{r s}\right]$, then

$$
\left.\left.\begin{array}{rl}
L(A(\lambda)) & =\left(\lambda E_{i i}^{(m)}+E_{i j}^{(m)}+E_{j i}^{(m)}+\lambda^{-1} E_{j j}^{(m)}\right) f(A(\lambda)) \\
0 & \cdots
\end{array}\right] 00 a_{i t}(\lambda)+a_{j t}(\lambda)\right] .\left[\begin{array}{ccc}
\lambda a_{i 1}(\lambda)+a_{j 1}(\lambda) & \cdots & \lambda \\
0 & \cdots & 0 \\
a_{i 1}(\lambda)+\lambda^{-1} a_{j 1}(\lambda) & \cdots & a_{i t}(\lambda)+\lambda^{-1} a_{j t}(\lambda) \\
0 & \cdots & 0
\end{array}\right] .
$$

On the other hand,

$$
\begin{aligned}
& L(A(\lambda))=L\left(\lambda E_{i i}^{(m)}+E_{i j}^{(m)}+E_{j i}^{(m)}+\lambda^{-1} E_{j j}^{(m)}\right) \\
& =L\left(E_{i i}^{(m)}+E_{i j}^{(m)}+E_{j i}^{(m)}+E_{j j}^{(m)}\right)+(\lambda-1) L\left(E_{i i}\right)+\left(\lambda^{-1}-1\right) L\left(E_{j j}\right) \\
& =\left[\begin{array}{ccc}
0 & \cdots & 0 \\
a_{i 1}(1)+a_{j 1}(1)+(\lambda-1) q_{i 1} & \cdots & a_{i t}(1)+a_{j t}(1)+(\lambda-1) q_{i t} \\
0 & \cdots & 0 \\
a_{i 1}(1)+a_{j 1}(1)+\left(\lambda^{-1}-1\right) q_{j 1} & \cdots & a_{i t}(1)+a_{j t}(1)+\left(\lambda^{-1}-1\right) q_{j t} \\
0 & \cdots & 0
\end{array}\right] .
\end{aligned}
$$

Comparing the above equalities,

$$
a_{i k}(1)+a_{j k}(1)+(\lambda-1) q_{i k}=\lambda\left(a_{i k}(1)+a_{j k}(1)+\left(\lambda^{-1}-1\right) q_{j k}\right)
$$

for all integers $1 \leq k \leq t$. This yields that for all nonzero scalars $\lambda \in \mathbb{R}$,

$$
(1-\lambda)\left(a_{i k}(1)+a_{j k}(1)-q_{i k}-q_{j k}\right)=0
$$

and, hence,

$$
a_{i k}(1)+a_{j k}(1)=q_{i k}+q_{j k}, \quad 1 \leq k \leq t
$$

Thus,

$$
\begin{aligned}
L\left(E_{i j}^{(m)}+E_{j i}^{(m)}\right) & =L\left(E_{i i}^{(m)}+E_{i j}^{(m)}+E_{j i}^{(m)}+E_{j j}^{(m)}\right)-L\left(E_{i i}^{(m)}\right)-L\left(E_{j j}^{(m)}\right) \\
& =\left[\begin{array}{ccc}
0 & \cdots & 0 \\
a_{i 1}(1)+a_{j 1}(1)-q_{i 1} & \cdots & a_{i t}(1)+a_{j t}(1)-q_{i t} \\
0 & \cdots & 0 \\
a_{i 1}(1)+a_{j 1}(1)-q_{j 1} & \cdots & a_{i t}(1)+a_{j t}(1)-q_{j t} \\
0 & \cdots & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & \cdots & 0 \\
q_{j 1} & \cdots & q_{j t} \\
0 & \cdots & 0 \\
q_{i 1} & \cdots & q_{i t} \\
0 & \cdots & 0
\end{array}\right] .
\end{aligned}
$$

So, we proved that

$$
L\left(E_{i j}^{(m)}+E_{j i}^{(m)}\right)=\left(E_{i j}^{(m)}+E_{j i}^{(m)}\right) Q, \quad 1 \leq i<j \leq m
$$

Using similar arguments, we can show that

$$
L\left(\sqrt{-1} E_{i j}^{(m)}-\sqrt{-1} E_{j i}^{(m)}\right)=\left(\sqrt{-1} E_{i j}^{(m)}-\sqrt{-1} E_{j i}^{(m)}\right) Q, \quad 1 \leq i<j \leq m
$$

This completes the proof, since the matrices $E_{i j}^{(m)}+E_{j i}^{(m)}, \sqrt{-1} E_{i j}^{(m)}-\sqrt{-1} E_{j i}^{(m)}, E_{k k}^{(m)}$, $1 \leq i<j \leq m, 1 \leq k \leq m$, form the base of H_{m}.

Lemma 4.2. Let k, t be positive integers with $1 \leq k \leq m_{1}$ and $t \geq m_{1} m_{2}$, let $f: H_{m_{2}} \rightarrow$ $M_{\left(m_{1} m_{2}\right) \times t}$ be a map, and let τ be the identity map or the transposition map on $H_{m_{2}}$. Suppose that a linear map $L_{k}: H_{m_{2}} \rightarrow M_{\left(m_{1} m_{2}\right) \times t}$ satisfies

$$
L_{k}(A)=\left(E_{k k}^{\left(m_{1}\right)} \otimes \tau(A)\right) f(A)
$$

for all $A \in H_{m_{2}}^{1}$. Then

$$
L_{k}(A)=\left(E_{k k}^{\left(m_{1}\right)} \otimes \tau(A)\right) Q_{k}, \quad A \in H_{m_{2}}
$$

where $Q_{k}=\sum_{i=1}^{m_{2}}\left(E_{k k}^{\left(m_{1}\right)} \otimes E_{i i}^{\left(m_{2}\right)}\right) f\left(E_{i i}^{\left(m_{2}\right)}\right)$.
Proof. We observe two cases.
Case 1. First we consider the case $k=1$. Let us write

$$
f(A)=\left[\begin{array}{l}
g(A) \\
h(A)
\end{array}\right], \quad A \in H_{m_{2}},
$$

where $g(A) \in M_{m_{2} \times t}$. Then

$$
L_{1}(A)=\left(E_{11}^{\left(m_{1}\right)} \otimes A\right) f(A)=\left(E_{11}^{\left(m_{1}\right)} \otimes A\right)\left[\begin{array}{l}
g(A) \\
h(A)
\end{array}\right]=\left[\begin{array}{c}
\tau(A) g(A) \\
0
\end{array}\right]
$$

for all $A \in H_{m_{2}}^{1}$. Now let $\tilde{L}_{1}: H_{m_{2}}^{1} \rightarrow M_{m_{2} \times t}$ be a linear map such that $\tilde{L}_{1}(A)=\tau(A) g(A)$ for all $A \in H_{m_{2}}^{1}$. Then, by Lemma 4.1,

$$
\tilde{L}_{1}(A)=\tau(A) \sum_{i=1}^{m_{2}} E_{i i}^{\left(m_{2}\right)} g\left(E_{i i}^{\left(m_{2}\right)}\right), \quad A \in H_{m_{2}} .
$$

Hence,

$$
\begin{aligned}
L_{1}(A) & =\left[\begin{array}{c}
\tau(A) \sum_{i=1}^{m_{2}} E_{i i}^{\left(m_{2}\right)} g\left(E_{i i}^{\left(m_{2}\right)}\right) \\
0
\end{array}\right] \\
& =\left(E_{11}^{\left(m_{1}\right)} \otimes \tau(A)\right) \sum_{i=1}^{m_{2}}\left(E_{11}^{\left(m_{1}\right)} \otimes E_{i i}^{\left(m_{2}\right)}\right)\left[\begin{array}{l}
g\left(E_{i i}^{\left(m_{2}\right)}\right) \\
h\left(E_{i i}^{\left(m_{2}\right)}\right)
\end{array}\right] \\
& =\left(E_{11}^{\left(m_{1}\right)} \otimes \tau(A)\right) \sum_{i=1}^{m_{2}}\left(E_{11}^{\left(m_{1}\right)} \otimes E_{i i}^{\left(m_{2}\right)}\right) f\left(E_{i i}^{\left(m_{2}\right)}\right) \\
& =\left(E_{11}^{\left(m_{1}\right)} \otimes \tau(A)\right) Q_{1} .
\end{aligned}
$$

Case 2. Suppose that $k>1$. Let $P_{1 k}:=I_{m_{1}}-E_{11}^{\left(m_{1}\right)}-E_{k k}^{\left(m_{1}\right)}+E_{1 k}^{\left(m_{1}\right)}+E_{k 1}^{\left(m_{1}\right)}$. Then $E_{k k}^{\left(m_{1}\right)}=P_{1 k} E_{11}^{\left(m_{1}\right)} P_{1 k}$ and

$$
\begin{aligned}
L_{k}(A) & =\left(\left(P_{1 k} E_{11}^{\left(m_{1}\right)} P_{1 k}\right) \otimes \tau(A)\right) f(A) \\
& =\left(P_{1 k} \otimes I_{m_{2}}\right)\left(E_{11}^{\left(m_{1}\right)} \otimes \tau(A)\right)\left(P_{1 k} \otimes I_{m_{2}}\right) f(A)
\end{aligned}
$$

Let us define a map $\tilde{f}: H_{m_{2}} \rightarrow M_{\left(m_{1} m_{2}\right) \times t}$ by $\tilde{f}(A)=\left(P_{1 k} \otimes I_{m_{2}}\right) f(A)$ and a linear map $\tilde{L}_{k}: H_{m_{2}} \rightarrow M_{\left(m_{1} m_{2}\right) \times t}$ by $\tilde{L}_{k}(A)=\left(P_{1 k} \otimes I_{m_{2}}\right) L_{k}(A)$. Then, for any $A \in H_{m_{2}}^{1}$,

$$
\tilde{L}_{k}(A)=\left(E_{11}^{\left(m_{1}\right)} \otimes \tau(A)\right) \tilde{f}(A) .
$$

Applying Case 1,

$$
\tilde{L}_{k}(A)=\left(E_{11}^{\left(m_{1}\right)} \otimes \tau(A)\right) \sum_{i=1}^{m_{2}}\left(E_{11}^{\left(m_{1}\right)} \otimes E_{i i}^{m_{2}}\right) \tilde{f}\left(E_{i i}^{\left(m_{2}\right)}\right), \quad A \in H_{m_{2}} .
$$

Thus, for any $A \in H_{m_{2}}$,

$$
\begin{aligned}
L_{k}(A) & =\left(P_{1 k} \otimes I_{m_{2}}\right) \tilde{L}_{k}(A) \\
& =\left(P_{1 k} \otimes I_{m_{2}}\right)\left(E_{11}^{\left(m_{1}\right)} \otimes \tau(A)\right) \sum_{i=1}^{m_{2}}\left(E_{11}^{\left(m_{1}\right)} \otimes E_{i i}^{m_{2}}\right)\left(P_{1 k} \otimes I_{m_{2}}\right) f\left(E_{i i}^{\left(m_{2}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \left(P_{1 k} \otimes I_{m_{2}}\right)\left(E_{11}^{\left(m_{1}\right)} \otimes \tau(A)\right)\left(P_{1 k} \otimes I_{m_{2}}\right) \\
& \quad \cdot \sum_{i=1}^{m_{2}}\left(P_{1 k} \otimes I_{m_{2}}\right)\left(E_{11}^{\left(m_{1}\right)} \otimes E_{i i}^{\left(m_{2}\right)}\right)\left(P_{1 k} \otimes I_{m_{2}}\right) f\left(E_{i i}^{\left(m_{2}\right)}\right) \\
= & \left(E_{k k}^{\left(m_{1}\right)} \otimes \tau(A)\right) \sum_{i=1}^{m_{2}}\left(E_{k k}^{\left(m_{1}\right)} \otimes E_{i i}^{\left(m_{2}\right)}\right) f\left(E_{i i}^{\left(m_{2}\right)}\right) \\
= & \left(E_{k k}^{\left(m_{1}\right)} \otimes \tau(A)\right) Q_{k} .
\end{aligned}
$$

Lemma 4.3. Let k, t be positive integers with $1 \leq k \leq m_{2}$ and $t \geq m_{1} m_{2}$, let $f: H_{m_{1}} \rightarrow$ $M_{\left(m_{1} m_{2}\right) \times t}$ be an arbitrary map, and let τ be the identity map or the transposition map on $H_{m_{1}}$. Suppose that a linear map $L_{k}: H_{m_{1}} \rightarrow M_{\left(m_{1} m_{2}\right) \times t}$ satisfies

$$
L_{k}(A)=\left(\tau(A) \otimes E_{k k}^{\left(m_{2}\right)}\right) f(A)
$$

for all $A \in H_{m_{1}}^{1}$. Then

$$
L_{k}(A)=\left(\tau(A) \otimes E_{k k}^{\left(m_{2}\right)}\right) Q_{k}, \quad A \in H_{m_{1}}
$$

where $Q_{k}=\sum_{i=1}^{m_{1}}\left(E_{i i}^{\left(m_{1}\right)} \otimes E_{k k}^{\left(m_{2}\right)}\right) f\left(E_{i i}^{\left(m_{1}\right)}\right)$.
Proof. Let $P \in M_{m_{1} m_{2}}$ be a permutation matrix such that $P(A \otimes B) P^{-1}=B \otimes A$ for all $A \in H_{m_{1}}, B \in H_{m_{2}}$. Define a map $\tilde{f}: H_{m_{1}} \rightarrow M_{\left(m_{1} m_{2}\right) \times t}$ by $\tilde{f}(A)=P f(A)$ and a linear $\operatorname{map} \tilde{L}_{k}: H_{m_{1}} \rightarrow M_{\left(m_{1} m_{2}\right) \times t}$ by $\tilde{L}_{k}(A)=P L_{k}(A)$. Then, for any $A \in H_{m_{1}}^{1}$,

$$
\tilde{L}_{k}(A)=P\left(\tau(X) \otimes E_{k k}^{\left(m_{2}\right)}\right) P^{-1} \tilde{f}(X)=\left(E_{k k}^{\left(m_{2}\right)} \otimes \tau(A)\right) \tilde{f}(A)
$$

Thus, by Lemma 4.2,

$$
\tilde{L}_{k}(A)=\left(E_{k k}^{\left(m_{2}\right)} \otimes \tau(A)\right) \sum_{i=1}^{m_{1}}\left(E_{k k}^{\left(m_{2}\right)} \otimes E_{i i}^{\left(m_{1}\right)}\right) \tilde{f}\left(E_{i i}^{\left(m_{1}\right)}\right), \quad A \in H_{m_{1}}
$$

Hence, for all $A \in H_{m_{1}}$,

$$
\begin{aligned}
L_{k}(A) & =P^{-1}\left(E_{k k}^{\left(m_{2}\right)} \otimes \tau(A)\right) \sum_{i=1}^{m_{1}}\left(E_{k k}^{\left(m_{2}\right)} \otimes E_{i i}^{\left(m_{1}\right)}\right) P f\left(E_{i i}^{\left(m_{1}\right)}\right) \\
& =P^{-1}\left(E_{k k}^{\left(m_{2}\right)} \otimes \tau(A)\right) P \sum_{i=1}^{m_{1}} P^{-1}\left(E_{k k}^{\left(m_{2}\right)} \otimes E_{i i}^{\left(m_{1}\right)}\right) P f\left(E_{i i}^{\left(m_{1}\right)}\right) \\
& =\left(\tau(A) \otimes E_{k k}^{\left(m_{2}\right)}\right) \sum_{i=1}^{m_{1}}\left(E_{i i}^{\left(m_{1}\right)} \otimes E_{k k}^{\left(m_{2}\right)}\right) f\left(E_{i i}^{\left(m_{1}\right)}\right) \\
& =\left(\tau(A) \otimes E_{k k}^{\left(m_{2}\right)}\right) Q_{k} .
\end{aligned}
$$

Lemma 4.4. Let h, k, t be positive integers with $1 \leq h \leq m_{1}, 1 \leq k \leq m_{3}$, and $t \geq$ $m_{1} m_{2} m_{3}$, let $f: H_{m_{2}} \rightarrow M_{\left(m_{1} m_{2} m_{3}\right) \times t}$ be an arbitrary map, and let τ be the identity map or the transposition map on $H_{m_{2}}$. Suppose that a linear map $L_{h, k}: H_{m_{2}} \rightarrow M_{\left(m_{1} m_{2} m_{3}\right) \times t}$
satisfies

$$
L_{h, k}(A)=\left(E_{h h}^{\left(m_{1}\right)} \otimes \tau(A) \otimes E_{k k}^{\left(m_{3}\right)}\right) f(A)
$$

for all $A \in H_{m_{2}}^{1}$. Then

$$
L_{h, k}(A)=\left(E_{h h}^{\left(m_{1}\right)} \otimes \tau(A) \otimes E_{k k}^{\left(m_{3}\right)}\right) Q_{h, k}, \quad A \in H_{m_{2}},
$$

where $Q_{h, k}=\sum_{i=1}^{m_{2}}\left(E_{h h}^{\left(m_{1}\right)} \otimes E_{i i}^{\left(m_{2}\right)} \otimes E_{k k}^{\left(m_{3}\right)}\right) f\left(E_{i i}^{\left(m_{2}\right)}\right)$.
Proof. Let $P \in M_{m_{1} m_{2} m_{3}}$ be a matrix such that $P(A \otimes B \otimes C) P^{-1}=A \otimes C \otimes B$ for all $A \in H_{m_{1}}, B \in H_{m_{2}}, C \in H_{m_{3}}$. Define a map $\tilde{f}: H_{m_{2}} \rightarrow M_{\left(m_{1} m_{2} m_{3}\right) \times t}$ by $\tilde{f}(A)=P f(A)$ and a linear map $\tilde{L}_{h, k}: H_{m_{2}} \rightarrow M_{\left(m_{1} m_{2} m_{3}\right) \times t}$ by $\tilde{L}_{h, k}(A)=P L_{h, k}(A)$. Then, for any $A \in H_{m_{2}}^{1}$,

$$
\tilde{L}_{h, k}(A)=\left(E_{h h}^{\left(m_{1}\right)} \otimes E_{k k}^{\left(m_{3}\right)} \otimes \tau(A)\right) \tilde{f}(A) .
$$

Thus, by Lemma 4.2, we conclude that for all $A \in H_{m_{2}}$,

$$
\tilde{L}_{h, k}(A)=\left(E_{h h}^{\left(m_{1}\right)} \otimes E_{k k}^{\left(m_{3}\right)} \otimes \tau(A)\right) \sum_{i=1}^{m_{1}}\left(E_{h h}^{\left(m_{1}\right)} \otimes E_{k k}^{\left(m_{3}\right)} \otimes E_{i i}^{\left(m_{2}\right)}\right) \tilde{f}\left(E_{i i}^{\left(m_{2}\right)}\right) .
$$

Hence, for all $A \in H_{m_{2}}$,

$$
\begin{aligned}
L_{h, k}(A)= & P^{-1}\left(E_{h h}^{\left(m_{1}\right)} \otimes E_{k k}^{\left(m_{3}\right)} \otimes \tau(A)\right) \sum_{i=1}^{m_{1}}\left(E_{h h}^{\left(m_{1}\right)} \otimes E_{k k}^{\left(m_{3}\right)} \otimes E_{i i}^{\left(m_{2}\right)}\right) P f\left(E_{i i}^{\left(m_{2}\right)}\right) \\
= & P^{-1}\left(E_{h h}^{\left(m_{1}\right)} \otimes \tau(A) \otimes E_{k k}^{\left(m_{3}\right)}\right) P \\
& \cdot \sum_{i=1}^{m_{1}} P^{-1}\left(E_{h h}^{\left(m_{1}\right)} \otimes E_{i i}^{\left(m_{2}\right)} \otimes E_{k k}^{\left(m_{3}\right)}\right) P f\left(E_{i i}^{\left(m_{2}\right)}\right) \\
= & \left(E_{h h}^{\left(m_{1}\right)} \otimes \tau(A) \otimes E_{k k}^{\left(m_{3}\right)}\right) \sum_{i=1}^{m_{1}}\left(E_{h h}^{\left(m_{1}\right)} \otimes E_{i i}^{\left(m_{2}\right)} \otimes E_{k k}^{\left(m_{3}\right)}\right) f\left(E_{i i}^{\left(m_{2}\right)}\right) \\
= & \left(E_{h h}^{\left(m_{1}\right)} \otimes \tau(A) \otimes E_{k k}^{\left(m_{3}\right)}\right) Q_{h, k .} .
\end{aligned}
$$

Before writing the last lemma of this section, let us fix some additional notation. For $H_{m_{1} \cdots m_{l}}$, we define a chain of sets

$$
\begin{gathered}
\Delta_{0}:=\left\{E_{i_{1} i_{1}}^{\left(m_{1}\right)} \otimes E_{i_{2} i_{2}}^{\left(m_{2}\right)} \otimes \cdots \otimes E_{i i_{i}}^{\left(m_{l}\right)}: 1 \leq i_{j} \leq m_{j}\right\}, \\
\Delta_{1}:=\left\{A_{1} \otimes E_{i_{2} i_{2}}^{\left(m_{2}\right)} \otimes \cdots \otimes E_{i_{i} i_{l}}^{\left(m_{l}\right)}: A_{1} \in H_{m_{1}}^{1}, 1 \leq i_{j} \leq m_{j}\right\}, \\
\vdots \\
\Delta_{k}:=\left\{A_{1} \otimes \cdots \otimes A_{k} \otimes E_{i_{k+1} i_{k+1}}^{\left(m_{k+1}\right)} \otimes \cdots \otimes E_{i i_{l} l}^{\left(m_{l}\right)}: A_{j} \in H_{m_{j}}^{1}, 1 \leq i_{j} \leq m_{j}\right\}, \\
\vdots \\
\Delta_{l}:=\left\{A_{1} \otimes \cdots \otimes A_{l}: A_{j} \in H_{m_{j}}^{1}\right\} .
\end{gathered}
$$

It is clear that $\Delta_{0} \subseteq \Delta_{1} \subseteq \cdots \subseteq \Delta_{l}$, and that the linear span of Δ_{l} is equal to the whole algebra $H_{m_{1} \cdots m_{l}}$.

Lemma 2.7 is a direct consequence of the following result.
Lemma 4.5. Let t be a positive integer with $t \geq m_{1} \cdots m_{l}$, let $f: H_{m_{1} \cdots m_{l}} \rightarrow M_{\left(m_{1} \cdots m_{l}\right) \times t}$ be an arbitrary map, and let π be a canonical map on $H_{m_{1} \cdots m_{l}}$. Suppose that a linear map $L: H_{m_{1} \cdots m_{l}} \rightarrow M_{\left(m_{1} \cdots m_{l}\right) \times t}$ satisfies

$$
L(A)=\pi(A) f(A)
$$

for all $A \in \Delta_{l}$. Then

$$
L(A)=\pi(A) Q, \quad A \in H_{m_{1} \cdots m_{l}},
$$

where

$$
Q=\sum_{i_{1}=1}^{m_{1}} \sum_{i_{2}=1}^{m_{2}} \cdots \sum_{i_{l}=1}^{m_{l}}\left(E_{i_{1} i_{l}}^{\left(m_{1}\right)} \otimes \cdots \otimes E_{i, i_{l}}^{\left(m_{l}\right)}\right) f\left(E_{i_{1} i_{1}}^{\left(m_{1}\right)} \otimes \cdots \otimes E_{i, i_{l}}^{\left(m_{l}\right)}\right) .
$$

Remark 4.6. If $l=2$ and $m_{1}=m_{2}=2$, then

$$
\begin{aligned}
Q= & \sum_{i_{1}=1}^{m_{1}} \sum_{i_{2}=1}^{m_{2}}\left(E_{i_{1} i_{1}}^{\left(m_{1}\right)} \otimes E_{i_{2} i_{2}}^{\left(m_{2}\right)}\right) f\left(E_{i_{1} i_{1}}^{\left(m_{1}\right)} \otimes E_{i_{2} i_{2}}^{\left(m_{2}\right)}\right) \\
= & \sum_{i_{1}=1}^{2} \sum_{i_{2}=1}^{2}\left(E_{i_{1} i_{1}}^{(2)} \otimes E_{i_{2} i_{2}}^{(2)}\right) f\left(E_{i_{1} i_{1}}^{(2)} \otimes E_{i_{2} i_{2}}^{(2)}\right) \\
= & \left(E_{11}^{(2)} \otimes E_{11}^{(2)}\right) f\left(E_{11}^{(2)} \otimes E_{11}^{(2)}\right)+\left(E_{22}^{(2)} \otimes E_{11}^{(2)}\right) f\left(E_{22}^{(2)} \otimes E_{11}^{(2)}\right) \\
& \quad+\left(E_{11}^{(2)} \otimes E_{22}^{(2)}\right) f\left(E_{11}^{(2)} \otimes E_{22}^{(2)}\right)+\left(E_{22}^{(2)} \otimes E_{22}^{(2)}\right) f\left(E_{22}^{(2)} \otimes E_{22}^{(2)}\right) .
\end{aligned}
$$

Proof of Lemma 4.5. It suffices to prove that

$$
\begin{equation*}
L(A)=\pi(A) f(A)=\pi(A) Q \tag{4.1}
\end{equation*}
$$

for all $A \in \Delta_{k}, k=0, \ldots, l$. We use induction on k.
First, let $A \in \Delta_{0}$. Then we may write $A=E_{h_{1} h_{1}}^{\left(m_{1}\right)} \otimes \cdots \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)}$ for some $1 \leq h_{j} \leq m_{j}$, $j=1, \ldots, l$, and

$$
\begin{aligned}
\pi(A) Q & =\left(E_{h_{1} h_{1}}^{\left(m_{1}\right)} \otimes \cdots \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)}\right) Q \\
& =\left(E_{h_{1} h_{1}}^{\left(m_{1}\right)} \otimes \cdots \otimes E_{\left.h_{h} h_{l}\right)}^{\left(m_{l}\right)}\right) f\left(E_{h_{h_{1} h_{1}}^{\left(m_{1}\right)}}^{\left(m_{l}\right)} \otimes \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)}\right) \\
& =A f(A)=\pi(A) f(A)=L(A) .
\end{aligned}
$$

So, (4.1) holds for $k=0$.
Now, assume that (4.1) holds for $0 \leq k<l$. We would like to prove that (4.1) holds for $k+1$. Let us write

$$
\pi=\tau_{1} \otimes \cdots \otimes \tau_{l}
$$

where τ_{j} is either the identity map or the transposition map on $H_{m_{j}}$ for each $j=1, \ldots, l$.

Case 1. If $k=0$ and $A=A_{1} \otimes E_{h_{2} h_{2}}^{\left(m_{2}\right)} \otimes \cdots \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)} \in \Delta_{1}$ with $A_{1} \in H_{m_{1}}^{1}$, then

$$
L(A)=\left(\tau_{1}\left(A_{1}\right) \otimes E_{h_{2} h_{2}}^{\left(m_{2}\right)} \otimes \cdots \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)}\right) f\left(A_{1} \otimes E_{h_{2} h_{2}}^{\left(m_{2}\right)} \otimes \cdots \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)}\right)
$$

Let us define a map $\tilde{f}: H_{m_{1}} \rightarrow M_{\left(m_{1} \cdots m_{l}\right) \times t}$ by

$$
\tilde{f}\left(X_{1}\right)=f\left(X_{1} \otimes E_{h_{2} h_{2}}^{\left(m_{2}\right)} \otimes \cdots \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)}\right), \quad X_{1} \in H_{m_{1}}
$$

and a map $\tilde{L}: H_{m_{1}} \rightarrow M_{\left(m_{1} \cdots m_{l}\right) \times t}$ by

$$
\tilde{L}\left(X_{1}\right)=L\left(X_{1} \otimes E_{h_{2} h_{2}}^{\left(m_{2}\right)} \otimes \cdots \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)}\right), \quad X_{1} \in H_{m_{1}} .
$$

Clearly, \tilde{L} is a linear map. Moreover, $\operatorname{rank}\left(\tilde{L}\left(X_{1}\right)\right)=1$ whenever $\operatorname{rank}\left(X_{1}\right)=1$. Applying Lemma 4.3,

$$
\begin{aligned}
\tilde{L}\left(X_{1}\right) & =L\left(X_{1} \otimes E_{h_{2} h_{2}}^{\left(m_{2}\right)} \otimes \cdots \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)}\right) \\
& =\left(\tau_{1}\left(X_{1}\right) \otimes E_{h_{2} h_{2}}^{\left(m_{2}\right)} \otimes \cdots \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)}\right) \cdot \sum_{i=1}^{m_{1}}\left(E_{i i}^{\left(m_{1}\right)} \otimes E_{h_{2} h_{2}}^{\left(m_{2}\right)} \otimes \cdots \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)}\right) \tilde{f}\left(E_{i i}^{\left(m_{1}\right)}\right)
\end{aligned}
$$

for all $X_{1} \in H_{m_{1}}$. On the other hand, we already know that

$$
\begin{aligned}
& \left(E_{i i}^{\left(m_{1}\right)} \otimes E_{h_{2} h_{2}}^{\left(m_{2}\right)} \otimes \cdots \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)}\right) f\left(E_{i i}^{\left(m_{1}\right)} \otimes E_{h_{2} h_{2}}^{\left(m_{2}\right)} \otimes \cdots \otimes E_{\left.h_{l} h_{l}\right)}^{\left(m_{l}\right)}\right) \\
& \quad=\left(E_{i i}^{\left(m_{1}\right)} \otimes E_{h_{2} h_{2}}^{\left(m_{2}\right)} \otimes \cdots E_{h_{l} h_{l}}^{\left(m_{l_{l}}\right)}\right) Q
\end{aligned}
$$

for all $1 \leq i \leq m_{1}$. Comparing the above two equations, we arrive at

$$
\begin{aligned}
L(A) & =L\left(A_{1} \otimes E_{h_{2} h_{2}}^{\left(m_{2}\right)} \otimes \cdots \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)}\right) \\
& =\left(\tau_{1}\left(A_{1}\right) \otimes E_{h_{2} h_{2}}^{\left(m_{2}\right)} \otimes \cdots \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)}\right) \sum_{i=1}^{m_{1}}\left(E_{i i}^{m_{1}} \otimes E_{h_{2} h_{2}}^{\left(m_{2}\right)} \otimes \cdots \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)}\right) Q \\
& =\left(\tau_{1}\left(A_{1}\right) \otimes E_{h_{2} h_{2}}^{\left(m_{2}\right)} \otimes \cdots \otimes E_{\left.h_{l} h_{l}\right)}^{\left(m_{l}\right)}\right)\left(I_{m_{1}} \otimes E_{h_{2} h_{2}}^{\left(m_{2}\right)} \otimes \cdots \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)}\right) Q \\
& =\left(\tau_{1}\left(A_{1}\right) \otimes E_{h_{2} h_{2}}^{\left(m_{2}\right)} \otimes \cdots \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)}\right) Q \\
& =\pi(A) Q .
\end{aligned}
$$

Case 2. Let $0<k<l-1$ and let

$$
A=A_{1} \otimes \cdots \otimes A_{k} \otimes A_{k+1} \otimes E_{h_{k+2} h_{k+2}}^{\left(m_{k+2}\right)} \otimes \cdots \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)} \in \Delta_{k+1}
$$

with $A_{j} \in H_{m_{j}}^{1}$ for $j=1, \ldots, k+1$. For the sake of readability, let us denote

$$
E:=E_{h_{k+2} h_{k+2}}^{\left(m_{k+2}\right)} \otimes \cdots \otimes E_{h_{l} h_{l}}^{\left(m_{l}\right)}
$$

So, $A=A_{1} \otimes \cdots \otimes A_{k} \otimes A_{k+1} \otimes E$. Since $\operatorname{rank}\left(\tau_{1}\left(A_{1}\right) \otimes \cdots \otimes \tau_{k}\left(A_{k}\right)\right)=1$, there exist invertible matrices $U, V \in M_{m_{1} \cdots m_{k}}$ such that

$$
\tau_{1}\left(A_{1}\right) \otimes \cdots \otimes \tau_{k}\left(A_{k}\right)=U E_{11}^{\left(m_{1} \cdots m_{k}\right)} V
$$

Let us define a map $\tilde{f}: H_{m_{k+1}} \rightarrow M_{\left(m_{1} \cdots m_{l}\right) \times t}$ by

$$
\tilde{f}\left(X_{k+1}\right)=\left(V \otimes I_{m_{k+1} \cdots m_{l}}\right) f\left(\tau_{1}\left(A_{1}\right) \otimes \cdots \otimes \tau_{k}\left(A_{k}\right) \otimes \tau_{k+1}\left(X_{k+1}\right) \otimes E\right)
$$

for all $X_{k+1} \in H_{m_{k+1}}$ and a map $\tilde{L}: H_{m_{k+1}} \rightarrow M_{\left(m_{1} \cdots m_{l}\right) \times t}$ by

$$
\tilde{L}\left(X_{k+1}\right)=\left(U^{-1} \otimes I_{m_{k+1} \cdots m_{l}}\right) L\left(\tau_{1}\left(A_{1}\right) \otimes \cdots \otimes \tau_{k}\left(A_{k}\right) \otimes \tau_{k+1}\left(X_{k+1}\right) \otimes E\right)
$$

for all $X_{k+1} \in H_{m_{k+1}}$. Clearly, \tilde{L} is a linear map and, for any $X_{k+1} \in H_{m_{k+1}}^{1}$,

$$
\begin{aligned}
\tilde{L}\left(X_{k+1}\right)= & \left(U^{-1} \otimes I_{m_{k+1} \cdots m_{l}}\right)\left(\tau_{1}\left(A_{1}\right) \otimes \cdots \otimes \tau_{k}\left(A_{k}\right) \otimes \tau_{k+1}\left(X_{k+1}\right) \otimes E\right) \\
& \cdot\left(V^{-1} \otimes I_{m_{k+1} \cdots m_{l}}\right) \tilde{f}\left(X_{k+1}\right) \\
= & \left(E_{11}^{\left(m_{1} \cdots m_{k}\right)} \otimes \tau_{k+1}\left(X_{k+1}\right) \otimes E\right) \tilde{f}\left(X_{k+1}\right) .
\end{aligned}
$$

By Lemma 4.4,

$$
\begin{aligned}
& \tilde{L}\left(X_{k+1}\right)=\left(E_{11}^{\left(m_{1} \cdots m_{k}\right)} \otimes \tau_{k+1}\left(X_{k+1}\right) \otimes E\right) \\
& \cdot \sum_{i=1}^{m_{k+1}}\left(E_{11}^{\left(m_{1} \cdots m_{k}\right)} \otimes E_{i i}^{\left(m_{k+1}\right)} \otimes E\right) \tilde{f}\left(E_{i i}^{\left(m_{k+1}\right)}\right) \\
&=\left(E_{11}^{\left(m_{1} \cdots m_{k}\right)} \otimes \tau_{k+1}\left(X_{k+1}\right) \otimes E\right)\left(U^{-1} \otimes I_{m_{k+1} \cdots m_{l}}\right) \\
& \cdot \sum_{i=1}^{m_{k+1}}\left(U \otimes I_{m_{k+1} \cdots m_{l}}\right)\left(E_{11}^{\left(m_{1} \cdots m_{k}\right)} \otimes E_{i i}^{\left(m_{k+1}\right)} \otimes E\right) \\
&=\left(E_{11}^{\left(m_{1} \cdots m_{k}\right)} \otimes \tau_{k+1}\left(X_{k+1}\right) \otimes E\right)\left(U^{-1} \otimes I_{m_{k+1} \cdots m_{l}}\right) \\
& \cdot \sum_{i=1}^{m_{k+1}}\left(\tau_{1}\left(A_{1}\right) \otimes \cdots \otimes \tau_{k}\left(A_{k}\right) \otimes E_{i i}^{\left(m_{k+1}\right)} \otimes E\right) \\
& \cdot f\left(\tau_{1}\left(A_{1}\right) \otimes \cdots \otimes \tau_{k}\left(A_{k}\right) \otimes E_{i i}^{\left(m_{k+1}\right)} \otimes E\right)
\end{aligned}
$$

for all $X_{k+1} \in H_{m_{k+1}}$. Using the induction hypothesis,

$$
\begin{aligned}
& \tilde{L}\left(X_{k+1}\right)=\left(E_{11}^{\left(m_{1} \cdots m_{k}\right)} \otimes \tau_{k+1}\left(X_{k+1}\right) \otimes E\right)\left(U^{-1} \otimes I_{m_{k+1} \cdots m_{l}}\right) \\
& \quad \cdot \sum_{i=1}^{m_{k+1}}\left(\tau_{1}\left(A_{1}\right) \otimes \cdots \otimes \tau_{k}\left(A_{k}\right) \otimes E_{i i}^{\left(m_{k+1}\right)} \otimes E\right) Q \\
&=\left(E_{11}^{\left(m_{1} \cdots m_{k}\right)} \otimes \tau_{k+1}\left(X_{k+1}\right) \otimes E\right) \\
& \cdot \sum_{i=1}^{m_{k+1}}\left(E_{11}^{\left(m_{1} \cdots m_{k}\right)} \otimes E_{i i}^{\left(m_{k+1}\right)} \otimes E\right)\left(V \otimes I_{m_{k+1} \cdots m_{l}}\right) Q \\
&=\left(E_{11}^{\left(m_{1} \cdots m_{k}\right)} \otimes \tau_{k+1}\left(X_{k+1}\right) \otimes E\right) \\
& \cdot\left(E_{11}^{\left(m_{1} \cdots m_{k}\right)} \otimes I_{m_{k+1}} \otimes E\right)\left(V \otimes I_{m_{k+1} \cdots m_{l}}\right) Q \\
&=\left(E_{11}^{\left(m_{1} \cdots m_{k}\right)} \otimes \tau_{k+1}\left(X_{k+1}\right) \otimes E\right)\left(V \otimes I_{m_{k+1} \cdots m_{l}}\right) Q
\end{aligned}
$$

for all $X_{k+1} \in H_{m_{k+1}}$. Hence,

$$
\begin{aligned}
L(A) & =L\left(A_{1} \otimes \cdots \otimes A_{k} \otimes A_{k+1} \otimes E\right) \\
& =\left(U \otimes I_{m_{k+1} \cdots m_{l}}\right) \tilde{L}\left(A_{k+1}\right) \\
& =\left(U \otimes I_{m_{k+1} \cdots m_{l}}\right)\left(E_{11}^{\left(m_{1} \cdots m_{k}\right)} \otimes \tau_{k+1}\left(A_{k+1}\right) \otimes E\right)\left(V \otimes I_{m_{k+1} \cdots m_{l}}\right) Q \\
& =\left(\tau_{1}\left(A_{1}\right) \otimes \cdots \otimes \tau_{k}\left(A_{k}\right) \otimes \tau_{k+1}\left(A_{k+1}\right) \otimes E\right) Q \\
& =\pi(A) Q .
\end{aligned}
$$

Case 3. If $k=l-1$, then the proof is similar to the proof in Case 1 and the proof in Case 2. We just use Lemma 4.2 instead of Lemma 4.3 or Lemma 4.4.

Remark 4.7. If $\operatorname{rank}(Q)<m_{1} \cdots m_{l}$, then we can write

$$
Q=U\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0_{s}
\end{array}\right] V
$$

for some invertible matrices $U \in M_{m_{1} \cdots m_{l}}$ and $V \in M_{t}$, where $r<m_{1} \cdots m_{l}$ and $s=m_{1} \cdots m_{l}-r>0$. Since a canonical map π is bijective on $H_{m_{1} \cdots m_{l}}$, there exists a nonzero matrix $A \in H_{m_{1} \cdots m_{l}}$ such that

$$
\pi(A)=\left(U^{-1}\right)^{*}\left[\begin{array}{cc}
0_{r} & 0 \\
0 & I_{s}
\end{array}\right] U^{-1}
$$

Consequently,

$$
L(A)=\pi(A) Q=\left(U^{-1}\right)^{*}\left[\begin{array}{cc}
0_{r} & 0 \\
0 & I_{s}
\end{array}\right] U^{-1} U\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0_{s}
\end{array}\right] V=0_{\left(m_{1} \cdots m_{l}\right) \times t .} .
$$

So, if $L(A) \neq 0$ whenever $0 \neq A \in H_{m_{1} \cdots m_{l}}$, then $\operatorname{rank}(Q)=m_{1} \cdots m_{l}$.

Acknowledgements

The authors are sincerely thankful to Professors Chi-Kwong Li and Nung-Sing Sze who introduced the topic to them, for their kind consideration and warm help. This research was done when Ajda Fošner and Jinli Xu were attending the Summer Research Workshop on Quantum Information Science 2013 at Taiyuan University of Technology. They gratefully acknowledge the support and kind hospitality from the host university.

References

[1] N. Bourbaki, Algebra I, Elements of Mathematics, 2 (Springer, New York, 1989).
[2] M. A. Chebotar, M. Brešar and W. S. Martindale, Functional Identities (Birkhäuser, Basel, 2007).
[3] X.-Y. Gao and X. Zhang, 'Additive rank-1 preservers between spaces of Hermitian matrices', J. Appl. Math. Comput. 26 (2008), 183-199.
[4] A. K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, NJ, 1989).
[5] N. Johnston, 'Characterizing operations preserving separability measures via linear preserver problems', Linear Multilinear Algebra 59 (2011), 1171-1187.
[6] C.-K. Li, A. Fošner, Z. Huang and N.-S. Sze, 'Linear preservers and quantum information science’, Linear Multilinear Algebra 61 (2013), 1377-1390.
[7] C.-K. Li and S. Pierce, 'Linear preserver problems', Amer. Math. Monthly 108 (2001), 591-605.
[8] S. Mac Lane and B. Birkhoff, Algebra (American Mathematical Society, Providence, RI, 1999).
[9] L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Lecture Notes in Mathematics, 1895 (Springer, Berlin, 2007).
[10] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000).
[11] Y.-T. Poon, S. Friedland, C.-K. Li and N.-S. Sze, 'The automorphism group of separable states in quantum information theory', J. Math. Phys. 52 (2011), 042203.
[12] Y.-T. Poon, C.-K. Li and N.-S. Sze, 'Linear preservers of tensor product of unitary orbits and product numerical range', Linear Algebra Appl. 438 (2013), 3797-3803.
[13] W.-H. Steeb and H. Yorick, Matrix Calculus and Kronecker Product: A Practical Approach to Linear and Multilinear Algebra, 2nd edn (World Scientific, Singapore, 2011).
[14] X.-M. Tang, 'Additive rank-1 preservers between Hermitian matrix spaces and applications', Linear Algebra Appl. 395 (2005), 333-342.
[15] Z.-X. Wan, Geometry of Matrices (World Scientific, Singapore, 1996).
[16] J.-L. Xu, B.-D. Zheng and A. Fošner, 'Linear maps preserving rank of tensor products of matrices', Linear Multilinear Algebra (2014); doi:10.1080/03081087.2013.869589.

JINLI XU, Department of Mathematics, Harbin Institute of Technology, Harbin 150001, PR China e-mail: jclixv@qq.com

BAODONG ZHENG, Department of Mathematics, Harbin Institute of Technology, Harbin 150001, PR China e-mail: zbd@hit.edu.cn

AJDA FOŠNER, Faculty of Management, University of Primorska, Cankarjeva 5, SI-6104 Koper, Slovenia e-mail: ajda.fosner@fm-kp.si

[^0]: (C) 2014 Australian Mathematical Publishing Association Inc. 1446-7887/2014 \$16.00

