EVEN AND ODD INTEGRAL PARTS OF POWERS OF A REAL NUMBER

ARTŪRAS DUBICKAS

Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania e-mail: arturas.dubickas@maf.vu.lt

(Received 4 November, 2005; revised 15 January, 2006; accepted 19 January, 2006)

Abstract. We define a subset \mathcal{Z} of $(1, +\infty)$ with the property that for each $\alpha \in \mathcal{Z}$ there is a nonzero real number $\xi = \xi(\alpha)$ such that the integral parts $[\xi \alpha^n]$ are even for all $n \in \mathbb{N}$. A result of Tijdeman implies that each number greater than or equal to 3 belongs to \mathcal{Z} . However, Mahler's question on whether the number 3/2 belongs to \mathcal{Z} or not remains open. We prove that the set $\mathcal{S} := (1, +\infty) \setminus \mathcal{Z}$ is nonempty and find explicitly some numbers in $\mathcal{Z} \cap (5/4, 3)$ and in $\mathcal{S} \cap (1, 2)$.

2000 Mathematics Subject Classification. 11J71, 11R04, 11R06, 11R09.

1. Introduction. Suppose that $\alpha > 1$ is a real number. Then *either* for any real number $\xi \neq 0$ the fractional parts $\{\xi \alpha^n\}$ are greater than or equal to 1/2 for infinitely many $n \in \mathbb{N}$ or there exists a real number $\xi = \xi(\alpha) \neq 0$ such that $\{\xi \alpha^n\} < 1/2$ for every $n \in \mathbb{N}$. The set of $\alpha > 1$ for which the first possibility holds will be denoted by S. Similarly, we will denote by Z the set of $\alpha > 1$ for which the second possibility holds, so $S \cap Z = \emptyset$ and $S \cup Z = (1, +\infty)$. Equivalently, $\alpha \in Z$ if and only if there is a real number $\xi = \xi(\alpha) \neq 0$ such that the integral parts $[\xi \alpha^n]$, n = 1, 2, ..., are all even.

In 1968, Mahler [16] asked whether the number 3/2 belongs to S or to Z (see also [20]). There are many reasons to believe that $3/2 \in S$. Although for a 'random' pair ξ, α the fractional parts $\{\xi\alpha^n\}, n = 1, 2, ..., a$ are uniformly distributed in [0, 1) (see [13], [21]), the behavior of the sequence $\{\xi\alpha^n\}, n = 1, 2, ..., for almost any 'specific' pair <math>\xi, \alpha$, where $\xi \neq 0, \alpha \notin \mathbb{N}$, is not known. See, however, [3], [4], [6]–[12], [22], [23] for some results in this direction. In this note, we shall collect several results about the sets S and Z.

Trivially, $\{2, 3, 4, \ldots\} \subset \mathbb{Z}$, because, for any integer $g \ge 2$, by taking $\xi = 2$ we see that the numbers $[2g^n] = 2g^n$, $n = 1, 2, \ldots$, are all even. In general, one may expect that 'large' α belong to the set \mathbb{Z} (see, for instance, Tijdeman's result [19] stated in Theorem 1(*i*) below) whereas 'small' α lie in S. In connection with this, one can ask whether there exist $\alpha > \alpha' > 1$ such that $\alpha \in S$ and $\alpha' \in \mathbb{Z}$. If the answer to this question were negative then the sets S and \mathbb{Z} would simply be two intervals. Unfortunately, the situation is not that simple, because such α and α' do exist. We will show, for instance, that the set \mathbb{Z} contains a number smaller than 1.26 and that the set S contains the golden mean $(1 + \sqrt{5})/2 = 1.61803 \ldots$

In order to state our theorems, we recall first that $\alpha > 1$ is called a *Pisot number* if it is an algebraic integer whose conjugates over \mathbb{Q} different from α itself lie in the open unit disc. A Pisot number is called a *strong Pisot number* if it is not a rational integer and if its second largest (in modulus) conjugate is positive (see [2] and [6]). Also,

 $\alpha > 1$ is called a *Salem number* if it is an algebraic integer whose conjugates over \mathbb{Q} different from α itself lie in the closed unit disc $|z| \le 1$ with at least one conjugate lying on the unit circle |z| = 1. Finally, let $P_{\alpha}(x) \in \mathbb{Z}[x]$ denote the minimal polynomial of an algebraic number α . Note that $P_{\alpha}(1) \le -1$ for each α which is a Pisot number or a Salem number.

2. Results.

THEOREM 1. We have

(*i*) $[3, +\infty) \subset \mathcal{Z}$,

(ii) $3 - 2/q \in \mathbb{Z}$ for any integer $q \ge 2$,

- (iii) $\alpha \in \mathbb{Z}$ for any strong Pisot number α ,
- (iv) $\alpha \in \mathbb{Z}$ for any Pisot or Salem number α whose minimal polynomial satisfies $P_{\alpha}(1) \leq -3$.

By Theorem 1(*iv*), the thirteenth smallest known Salem number $\alpha = 1.2527759...$ whose minimal polynomial is

$$P_{\alpha}(x) = x^{18} - x^{12} - x^{11} - x^{10} - x^9 - x^8 - x^7 - x^6 + 1$$

belongs to the set \mathcal{Z} , because $P_{\alpha}(1) = -5 < -3$. (See Mossinhoff's page on Lehmer's problem http://www.cecm.sfu.ca/~mjm/Lehmer/lists/SalemList.html for a list of small Salem numbers.) Most of the results stated in Theorem 1 have been published earlier or follow easily from [19], [10], [11], [22]. Nevertheless, for the sake of completeness, we will give the proofs of (i)-(iii) below and derive (iv) from [10], [22].

The first example of a number $\alpha > 1$ lying in the set S was given recently by the author in [8]: for any $d \ge 4$ one can take $\alpha > 1$ that satisfies $\alpha^d - \alpha - 1 = 0$. So the set S is nonempty. Note that if $\alpha \in S$ then $\alpha^{1/q} \in S$ for each $q \in \mathbb{N}$, because the set of fractional parts $\{\xi \alpha^n\}$, where $n \in \mathbb{N}$, is a subset of the set $\{\xi \alpha^{n/q}\}, n \in \mathbb{N}$. The next theorem not only contains the example given above but also describes some new numbers in S.

THEOREM 2. We have

- (i) $2^{1/q} \in S$ for any integer $q \ge 2$,
- (ii) $\alpha \in S$ for any $\alpha > 1$ which is a root of an irreducible polynomial $x^d x^r 1$, where 0 < r < d,
- (iii) $\alpha \in S$ for any $\alpha > 1$ which is a root of the polynomial $x^d x^m x^r + 1$, where $0 < r \le m < d$, but is not a Pisot number.

Note that in case (*iii*) the polynomial $x^d - x^m - x^r + 1$ is reducible. Hence the degree of $\alpha > 1$ over \mathbb{Q} is smaller than *d*. The requirement that α is not a Pisot number is necessary. If, for instance, m = r = d - 1 then

$$x^{d} - 2x^{d-1} + 1 = (x - 1)(x^{d-1} - x^{d-2} - \dots - x - 1).$$

The polynomial $P_{\alpha}(x) = x^{d-1} - x^{d-2} - \cdots - x - 1$ is irreducible and defines a Pisot number $\alpha > 1$ for each $d \ge 3$. Since $P_{\alpha}(1) \le -3$ for every $d \ge 5$, Theorem 1(*iv*) implies that $\alpha \in \mathbb{Z}$. However, for d = 3, $\alpha = (1 + \sqrt{5})/2$ belongs to S by Theorem 2(*ii*). All irreducible polynomials of the form $x^d - x^r - 1$ have been described in [15].

Since $\sqrt{2} \in S$ and $\sqrt{m} \in Z$ for each integer $m \ge 4$, it is natural to ask the following:

PROBLEM 3. Determine whether $\sqrt{3}$ belongs to S or to Z.

We remark that if $\sqrt{3} \in S$ then writing $\sqrt{3}$ in its base 3 expansion $\sqrt{3} = 1 + \sum_{i=1}^{\infty} b_i 3^{-i}$, where $b_1, b_2, \ldots \in \{0, 1, 2\}$, and taking $\xi = 1$ we would derive that

$$\{\sqrt{3} \cdot 3^{j}\} = b_{j+1}3^{-1} + b_{j+2}3^{-2} + \dots \ge 1/2$$

for infinitely many $j \in \mathbb{N}$. Hence $b_m = 2$ for infinitely many $m \in \mathbb{N}$. Such results, however, are completely out of reach. See, for instance, [1] for a recent progress on the distribution of digits in the expansions of algebraic irrational numbers in base $b \ge 2$.

The next problem seems to be quite difficult too.

PROBLEM 4. Is it true that if $\alpha \in S$ then for each nonzero real number ξ the sequence $[\xi \alpha^n]$, n = 1, 2, ..., contains infinitely many even numbers?

By the definition of S, the sequence $[\xi \alpha^n]$, n = 1, 2, ..., contains infinitely many odd numbers. It is easy to see that the answer to Problem 4 is affirmative precisely when there is a nonzero real number ξ such that $\{\xi \alpha^n\} \ge 1/2$ for each $n \in \mathbb{N}$, where $\{\xi \alpha^n\} > 1/2$ for infinitely many n and $\{\xi \alpha^n\} = 1/2$ for infinitely many $n \in \mathbb{N}$. Taking, for instance, $\xi = 1/2$ and $\alpha = \sqrt{3}$ we are back to a similar question about the distribution of digits in base 3 expansion again. This time, the number in question is $\sqrt{3}/2$.

Note that all numbers of S described in Theorem 2 are algebraic integers and lie in the interval (1, 2). We thus conclude this section with the following problem.

PROBLEM 5. Is there an element of S greater than 2?

3. Proof of Theorem 1. We shall prove (*i*) and (*ii*) using the method of nested intervals as in [19]. Suppose first that $\alpha > 3$. We claim that there is a $\xi > 0$ such that $\{\xi\alpha^n\} \le \beta := 1/(\alpha - 1)$ for every $n \in \mathbb{N}$. Clearly, $\{\xi\alpha^n\} \le \beta$ if and only if there is an integer k_n such that $k_n\alpha^{-n} \le \xi \le (k_n + \beta)\alpha^{-n}$. Let k_1 be an arbitrary integer greater than α . Set $I_1 = [k_1\alpha^{-1}, (k_1 + \beta)\alpha^{-1}]$. The sequence of intervals $I_j = [k_j\alpha^{-j}, (k_j + \beta)\alpha^{-j}]$, where $k_j \in \mathbb{N}$, j = 1, 2, ..., is nested if and only if $k_j\alpha^{-j} \le k_{j+1}\alpha^{-j-1}$ and $(k_j + \beta)\alpha^{-j} \ge (k_{j+1} + \beta)\alpha^{-j-1}$ for each $j \in \mathbb{N}$. This happens precisely when for each $j \in \mathbb{N}$ the interval $[\alpha k_j, \alpha(k_j + \beta) - \beta]$ contains the integer k_{j+1} . Since the length of this interval is $\alpha\beta - \beta = 1$, such an integer k_{j+1} exists for every $j \in \mathbb{N}$. Hence, setting $\xi := \bigcap_{j=1}^{\infty} I_j$, we have that $\{\xi\alpha^n\} \le 1/(\alpha - 1) < 1/2$ for every $n \in \mathbb{N}$. Therefore, each $\alpha > 3$ lies in \mathbb{Z} . Trivially, 2, $3 \in \mathbb{Z}$. This proves (*i*) and also (*ii*) for $\alpha = 2$, where q = 2.

Next, we will prove (*ii*) for $\alpha = (3q-2)/q$, where $q \ge 3$ is an integer. As above, $\{\xi(3-2/q)^n\} \le 1/2$ if and only if there is an integer k_n such that $k_n(3-2/q)^{-n} \le \xi \le (k_n+1/2)(3-2/q)^{-n}$. Fix an integer k_1 greater than 3. Set $I_1 = [k_1(3-2/q)^{-1}, (k_1+1/2)(3-2/q)^{-1}]$. The sequence of intervals $I_j = [k_j(3-2/q)^{-j}, (k_j+1/2)(3-2/q)^{-j}]$, where $k_j \in \mathbb{N}, j = 1, 2, ...$, is nested if and only if

$$(3 - 2/q)k_j \le k_{j+1} \le (3 - 2/q)(k_j + 1/2) - 1/2 = (3 - 2/q)k_j + 1 - 1/q.$$

It is easy to see that the interval $[(3q-2)k_j, (3q-2)k_j + q - 1]$ contains an integer divisible by q, say qu. So we can take $k_{j+1} := u$. Hence, setting $\xi := \bigcap_{j=1}^{\infty} I_j$, we derive that $\{\xi(3-2/q)^n\} \le 1/2$ for each $n \in \mathbb{N}$. However, since $3-2/q, q \ge 3$, is not an integer, there are only finitely many $n \in \mathbb{N}$ (or no such n at all) for which $\{\xi(3-2/q)^n\} = 1/2$. (See, for instance, Lemma 4 in [11].) If n_0 is the largest among those n we can replace

 ξ by $\xi(3 - 2/q)^{n_0}$. With this new ξ , the inequality $\{\xi(3 - 2/q)^n\} < 1/2$ holds for every $n \in \mathbb{N}$. This completes the proof of *(ii)*.

For a strong Pisot number α , we have $\{\alpha^n\} \to 1$ as $n \to \infty$ (see [6]). Indeed, since $S_n := \alpha^n + \alpha_2^n + \cdots + \alpha_d^n \in \mathbb{Z}$, where $\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_d$ are the conjugates of α labelled so that $\alpha > 1 > \alpha_2 > |\alpha_j|$ for j > 2, we deduce that $S_n - \alpha^n$ is positive for each *n* sufficiently large. Clearly, $S_n - \alpha^n \to 0$ as $n \to \infty$. It follows that $\{\alpha^n\} =$ $1 - \alpha_2^n - \cdots - \alpha_d^n$ for each sufficiently large integer *n*. Hence $\{\alpha^n\} \to 1$ as $n \to \infty$. In particular, by taking $\xi = -\alpha^{n_0}$ with n_0 sufficiently large, we obtain that $\{-\alpha^{n_0}\alpha^n\} < 1/2$ for each $n \in \mathbb{N}$. This proves (*iii*).

The proof of (*iv*) for Pisot and Salem numbers follows [10] and [22], respectively. To be precise, it was shown in [10] that if the minimal polynomial of a Pisot number α satisfies $P_{\alpha}(1) \leq -2$ then, setting $\xi = 1/(P'_{\alpha}(\alpha)(\alpha - 1))$, we have $\lim_{n\to\infty} \{\xi \alpha^n\} = 1/|P_{\alpha}(1)|$. Similarly, Zaimi [22] showed that if the minimal polynomial of a Salem number α satisfies $P_{\alpha}(1) \leq -2$ then, for any $\varepsilon > 0$, there is a nonzero $\xi = \xi(\alpha, \varepsilon) \in \mathbb{Q}(\alpha)$ such that $1/|P_{\alpha}(1)| - \varepsilon < \{\xi \alpha^n\} < 1/|P_{\alpha}(1)| + \varepsilon$ for each $n \in \mathbb{N}$ large enough. So in both (Pisot and Salem) cases one can find a positive integer n_0 such that, by taking $\xi \alpha^{n_0} \in \mathbb{Q}(\alpha)$ instead of ξ , we obtain that $1/|P_{\alpha}(1)| - \varepsilon < \{\xi \alpha^n\} < 1/|P_{\alpha}(1)| + \varepsilon$ for each $n \in \mathbb{N}$ under the stronger condition $P_{\alpha}(1) \leq -3$ if $\varepsilon < 1/6$. This proves (*iv*). The proof of Theorem 1 is completed.

Since in [10] and in [22] the statements concerning the fractional parts $\{\xi \alpha^n\}$ mentioned in the proof of (iv) are not given explicitly, let us summarize them here as follows.

THEOREM 6. Suppose that α is a Pisot number or a Salem number with minimal polynomial $P_{\alpha}(x) \in \mathbb{Z}[x]$. If $P_{\alpha}(1) \leq -2$ then for any $\varepsilon > 0$ there is a real number $\xi \in \mathbb{Q}(\alpha)$ (which depends on ε in the case α is a Salem number) such that

$$1/|P_{\alpha}(1)| - \varepsilon < \{\xi \alpha^n\} < 1/|P_{\alpha}(1)| + \varepsilon$$

for any $n \in \mathbb{N}$.

We remark that the fractional parts $\{\xi \alpha^n\}, n \in \mathbb{N}$, can be quite small for some Salem numbers that are not too large. Take, for instance, the Salem number $\alpha = 1.6733248...$ given in [14] whose minimal polynomial is

$$P_{\alpha}(x) = x^{14} - x^{12} - x^{11} - x^{10} - x^9 - 2x^8 - 3x^7 - 2x^6 - x^5 - x^4 - x^3 - x^2 + 1,$$

so that $P_{\alpha}(1) = -13$. Then, by Theorem 6, for any $\varepsilon > 0$, there exists a real number $\xi = \xi(\alpha, \varepsilon) \in \mathbb{Q}(\alpha)$ such that $1/13 - \varepsilon < \{\xi \alpha^n\} < 1/13 + \varepsilon$ for each $n \in \mathbb{N}$. This not only implies that $\alpha \in \mathbb{Z}$ but also that every integral part $[\zeta \alpha^n]$, where $n \in \mathbb{N}$ and $\zeta = 12\xi$, is divisible by 12.

4. Proof of Theorem 2. In all three cases it suffices to show that, for any $\xi \neq 0$, the integral parts $x_n := [\xi \alpha^n]$, n = 1, 2, ..., cannot all be even. Suppose they are, i.e. $\alpha \in \mathbb{Z}$. Setting $y_n := \{\xi \alpha^n\}$ for $n \in \mathbb{N}$, we have $x_{n+q} - 2x_n = 2y_n - y_{n+q}$ (case (*i*)) or $x_{n+d} - x_{n+r} - x_n = y_n + y_{n+r} - y_{n+d}$ (case (*ii*)) or $x_{n+d} - x_{n+m} - x_{n+r} + x_n = -y_n + y_{n+r} + y_{n+m} - y_{n+d}$ (case (*iii*)). A fractional part is a non-negative number smaller than 1. So the right-hand sides of all three equalities belong to the interval (-2, 2). But all left-hand sides are even integers. Hence, for every $n \in \mathbb{N}$, we have $x_{n+q} - 2x_n = 2y_n - y_{n+q} = 0$

(case (i)), $x_{n+d} - x_{n+r} - x_n = y_n + y_{n+r} - y_{n+d} = 0$ (case (ii)), $x_{n+d} - x_{n+m} - x_{n+r} + x_n = -y_n + y_{n+r} + y_{n+m} - y_{n+d}$ (case (iii)).

In case (*i*) we deduce that $y_{n+qm} = 2^m y_n$ for any $m \in \mathbb{N}$. Taking *m* arbitrarily large we obtain that $y_n = \{\xi 2^{n/q}\} = 0$ for every $n \in \mathbb{N}$. Next, by considering, firstly, the subsequence n = qk, k = 1, 2, ..., and, secondly, the subsequence n = qk + 1, k = 1, 2, ..., we derive that $\xi 2^{n/q}$ is an integer for every $n \in \mathbb{N}$ if and only if $\xi = 0$, a contradiction. Hence $2^{1/q} \in S$ for each integer $q \ge 2$. This proves (*i*).

In case (*iii*) the sequence $s_n := -y_n + y_{n+r} + y_{n+m} - y_{n+d} = 0$ is periodic. So, by Lemma 3 of [8], $\alpha > 1$ must be a Pisot number or a Salem number. It cannot be a Pisot number by the condition of (*iii*). Hence α is a Salem number. But from $\alpha^d - \alpha^m - \alpha^r + 1 = 0$ on replacing $\alpha \to \alpha^{-1}$ (Salem numbers are reciprocal) we obtain that $\alpha^d - \alpha^{d-r} - \alpha^{d-m} + 1 = 0$. Observe that if m + r = d then $\alpha^d - \alpha^m - \alpha^r + 1 = (\alpha^m - 1)(\alpha^r - 1) = 0$, a contradiction with $\alpha > 1$. If $m + r \neq d$ then

$$\begin{aligned} \alpha^{d} - \alpha^{m} - \alpha^{r} + 1 - (\alpha^{d} - \alpha^{d-r} - \alpha^{d-m} + 1) &= \alpha^{d-m} - \alpha^{r} + \alpha^{d-r} - \alpha^{m} \\ &= (\alpha^{r} + \alpha^{m})(\alpha^{d-r-m} - 1) = 0, \end{aligned}$$

a contradiction again. This proves (*iii*). (Note that we proved the following statement: each irreducible reciprocal factor of $x^d - x^m - x^r + 1$ is cyclotomic. See [15] for more about irreducible factors of such quadrinomials.)

In case (*ii*) the sequence $s_n := -y_n + y_{n+r} - y_{n+d} = 0$ is periodic. As above, Lemma 3 of [8] implies that α is a Pisot number or a Salem number and $\xi \in \mathbb{Q}(\alpha)$. Since $\alpha > 1$ is a root of an irreducible nonreciprocal polynomial $x^d - x^r - 1$, it can only be a Pisot number. (Indeed it can: for instance, if r = 1 and d = 2 or d = 3.) Note that it is not a strong Pisot number, because the polynomial $x^d - x^r - 1$ has no roots in the interval [0, 1]. Suppose that the conjugates of $\alpha = \alpha_1 > 1$ over \mathbb{Q} are $\alpha_2, \ldots, \alpha_d$, where $|\alpha_1| > 1 > |\alpha_2| \ge |\alpha_3| \ge \cdots \ge |\alpha_d|$. Since $x_{n+d} - x_{n+r} - x_n = 0$ for every $n \in \mathbb{N}$, we have that $x_n = \xi_1 \alpha_1^n + \cdots + \xi_d \alpha_d^n$. Moreover (see [5] or the proof of Theorem 3 in [8]), $\xi_j \in \mathbb{Q}(\alpha_j)$, $j = 1, \ldots, d$, and the numbers ξ_1, \ldots, ξ_d are conjugate over \mathbb{Q} . Similarly, from the linear recurrence $y_{n+d} - y_{n+r} - y_n = 0$, $n = 1, 2, \ldots$, we obtain that there exist certain complex numbers η_1, \ldots, η_d such that $y_n = \eta_1 \alpha_1^n + \cdots + \eta_d \alpha_d^n$ for each $n \in \mathbb{N}$. But $x_n + y_n = \xi \alpha_1^n$, so that $\eta_1 = \xi - \xi_1, \eta_2 = -\xi_2, \ldots, \eta_d = -\xi_d$. If $\eta_1 \neq 0$ then $|y_n| \to \infty$ as $n \to \infty$, a contradiction. It follows that η_1 must be equal to zero, so $\xi_1 = \xi$. Summarizing, we have that $y_n = -\xi_2 \alpha_2^n - \xi_3 \alpha_3^n - \cdots - \xi_d \alpha_d^n$, where $\xi_2 \in \mathbb{Q}(\alpha_2), \ldots, \xi_d \in \mathbb{Q}(\alpha_d)$ are conjugate over \mathbb{Q} and $\xi_2 \neq 0$.

In order to get a contradiction it suffices to show that the sums $y_n = -\xi_2 \alpha_2^n - \xi_3 \alpha_3^n - \cdots - \xi_d \alpha_d^n$ are negative for infinitely many $n \in \mathbb{N}$. Indeed, since every Pisot number $\alpha = \alpha_1$ has at most two conjugates of largest modulus in the unit disc (see [18]) which is $|\alpha_2|$, but α is not a strong Pisot number, i.e. $\alpha_2 \notin (0, 1)$ there are only two possibilities. Either α_2 is a real negative number in (-1, 0) and $|\alpha_2| > |\alpha_j|$ for j > 2 or α_2 and α_3 are complex conjugate numbers, i.e. $\alpha_3 = \overline{\alpha_2}$ and $|\alpha_2| > |\alpha_j|$ for j > 3. In both cases, since $-\xi_2 \alpha_2^n - \xi_3 \alpha_3^n = -2\Re(\xi_2 \alpha_2^n)$, the sign of y_n is the same as that of $-\Re(\xi_2 \alpha_2^n)$ for each *n* sufficiently large. Of course, if $\alpha_2 \in (-1, 0)$ then $-\xi_2 \alpha_2^n$ is positive for infinitely many $n \in \mathbb{N}$ and negative for infinitely many $n \in \mathbb{N}$. Assume that α_2 is complex. Let us write $\alpha_2 = \varrho e^{i\theta}$ and $\xi_2 = \varrho' e^{i\vartheta}$. Then $\Re(\xi_2 \alpha_2^n) = \varrho \varrho' \cos(n\theta + \vartheta)$. Since θ/π is irrational (see [17] or derive a contradiction from $\alpha_2^m = \alpha_3^m$, where $m \in \mathbb{N}$, by mapping α_2 to α), Kronecker's theorem [5] yields that the fractional parts $\{n\theta/2\pi + \vartheta/2\pi\}$, $n = 1, 2, \ldots$, are dense in [0, 1). It follows that $\cos(n\theta + \vartheta)$ is positive for infinitely many $n \in \mathbb{N}$ and negative for infinitely many $n \in \mathbb{N}$. This completes the proof of Theorem 2.

ACKNOWLEDGEMENTS. This research was supported in part by the Lithuanian State Studies and Science Foundation and by INTAS grant no. 03-51-5070.

REFERENCES

1. B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers I. Expansions in integer bases, *Annals of Math.*, to appear.

2. D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, in *Advances in Number Theory, Proceedings of the 1991 CNTA conference* (eds. F. Q. Gouvea and N. Yui) (Oxford University Press, 1993), 333–340.

3. Y. Bugeaud, Linear mod one transformations and the distribution of fractional parts $\{\xi(p/q)^n\}$, *Acta Arith.* **114** (2004), 301–311.

4. Y. Bugeaud and A. Dubickas, Fractional parts of powers and Sturmian words, C. R. Acad. Sci. Paris, Sér. I Math. 341 (2005), 69–74.

5. J. W. S. Cassels, *An introduction to diophantine approximation* (Cambridge University Press, 1957).

6. A. Dubickas, A note on powers of Pisot numbers, Publ. Math. Debrecen 56 (2000), 141-144.

7. A. Dubickas, Integer parts of powers of Pisot and Salem numbers, *Archiv der Math.* 79 (2002), 252–257.

8. A. Dubickas, Arithmetical properties of powers of algebraic numbers, *Bull. London Math. Soc.* 38 (2006), 70–80.

9. A. Dubickas, On the distance from a rational power to the nearest integer, *J. Number Theory* **117** (2006), 222–239.

10. A. Dubickas, On the limit points of the fractional parts of powers of Pisot numbers, *Archivum Math.*, to appear.

11. A. Dubickas, On the powers of 3/2 and other rational numbers, submitted.

12. L. Flatto, J. C. Lagarias and A. D. Pollington, On the range of fractional parts $\{\xi(p/q)^n\}$, *Acta Arith.* **70** (1995), 125–147.

13. J. F. Koksma, Ein mengen-theoretischer Satz über Gleichverteilung modulo eins, *Compositio Math.* 2 (1935), 250–258.

14. P. Lakatos, A new construction of Salem polynomials, C. R. Math. Rep. Acad. Sci. Canada 25 (2003), 47–54.

15. W. Ljunggren, On the irreducibility of certain trinomials and quadrinomials, *Math. Scand.* **8** (1960), 65–70.

16. K. Mahler, An unsolved problem on the powers of 3/2, J. Austral. Math. Soc. Ser. A 8 (1968), 313–321.

17. M. Mignotte, Sur les conjugées des nombres de Pisot, C. R. Acad. Sci. Paris, Sér. I Math. 298 (1984), 21.

18. C. J. Smyth, The conjugates of algebraic integers, Amer. Math. Monthly 82 (1975), 86.

19. R. Tijdeman, Note on Mahler's 3/2-problem, K. Norske Vidensk. Selsk. Skr. 16 (1972), 1–4.

20. T. Vijayaraghavan, On the fractional parts of the powers of a number. I, J. London Math. Soc. (1) **15** (1940), 159–160.

21. H. Weyl, Über die Gleichverteilung von Zahlen modulo Eins, *Math. Ann.* **77** (1916), 313–352.

22. T. Zaimi, An arithmetical property of Salem numbers, J. Number Theory, to appear.

23. T. Zaimi, On integer and fractional parts powers of Salem numbers, *Archiv Math.* (Basel), to appear.