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ON MINIMAX INEQUALITIES ON SPACES
HAVING CERTAIN CONTRACTIBLE SUBSETS

SEHIE PARK

The concept of a convex space is extended to an if-space; that is, a space having
certain family of contractible subsets. For such spaces the KKM type theorems,
the Fan-Browder fixed point theorem, the Ky Fan type matching theorem, and
minimax inequalities are given. Moreover, applications to a von Neumann-Sion
type minimax theorem, a saddle point theorem, a quasi-variational inequality, and
a Kakutani type fixed point theorem are obtained.

1. INTRODUCTION

The celebrated Ky Fan minimax inequality [8] has numerous applications in various
and diverse fields of mathematics. Also, there have appeared a number of equivalent
formulations and generalisations. For the literature, see [14, 16].

It is well-known that the Brouwer fixed point theorem, the Sperner lemma, the
Knaster-Kuratowski-Mazurkiewicz theorem (simply, KKM theorem), Fan's geometric
lemma, the Fan-Browder fixed point theorem, Fan's minimax inequality, a matching
theorem, and many others are equivalent. Since their applications are so broad and
rich, such area of study can be adequately called the KKM theory.

At first, this theory was mainly concerned with convex subsets of topological vector
spaces. However, recently, it has been extended to convex spaces by Lassonde [12],
and to pseudo-convex spaces, contractible spaces, or spaces having certain families
of contractible subsets (simply, 27-spaces [2]) by Horvath [9, 10, 11]. This line of
generalisations of earlier works are followed by Bardaro and Ceppitelli [2], Ding and
Tan [6], Ding, Kim, and Tan [4, 5], Tarafdar [18], and Park [16]. Influenced by Zhou
and Chen [19], some of those authors claimed to obtain new minimax inequalities for
IT-spaces and their applications. However, some of the inequalities were incorrectly
stated and mutual relations among them and some basic results in the KKM theory
were misstated or ignored.

In the present paper, we introduce two KKM type theorems for U-spaces with
new coercivity conditions and some equivalent formulations including generalisations of
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26 S. Park [2]

known minimax inequalities. Moreover, applications to a von Neumann type minimax
theorem, a saddle point theorem, a quasi-variational inequality, and a Kakutani type
fixed point theorem are discussed.

In Section 3 we state the KKM type theorems and their basic equivalent formula-
tions for 27-spaces. Our method is based on that of Tarafdar [18] and Park [16].

Section 4 deals with generalisations of known minimax inequalities for ^-spaces
and the mutual relations among them and the KKM type theorems.

In Section 5 we give some direct applications of our minimax inequalities and their
equivalent formulations. We obtain a generalised form of the von Neumann-Sion mini-
max theorem for J5T-spaces. We also give a generalised version of a saddle point theorem
[16, Theorem 2.14] and an improved version of a quasi-variational inequality [19, The-
orem 3.1]. Finally, we note that the latter implies a general form of the Kakutani fixed
point theorem.

2. PRELIMINARIES

Let X and Y be two sets. A multifunction F : X —» 2Y is a function from
X into the power set 2Y of Y. Let F(D) = \J{Fx : x € D} for D C X and
F~xy = {x e X :y e Fx} for y E Y. Let F{D) be the family of all nonempty finite
subsets of D.

A convex s-pa.ce X is a nonempty convex set (in a vector space) with any topology
that induces the Euclidean topology on the convex hulls of its finite subsets. For details,
see Lassonde [12]. For a nonempty subset D of X, a multifunction F : D —» 2X is
said to be KKM if co A c F(A) for each A £ F(D), where co denotes the convex hull.

A subset C of a topological space X is said to be compactly closed [respectively,
open] in X if for every compact set K C X the set C f~l K is closed [respectively, open]
in if. A topological space X is said to be contractible if the identity map ljp of X is
homotopic to a constant map.

Motivated by earlier works of Horvath [9, 10, 11] and Bardaro and Ceppitelli [2],
we introduce the following notions.

A triple (X,D\ F) is called an H-space if X is a topological space, D a nonempty
subset of X, and F = {F^} a family of contractible subsets of X indexed by A € F(D)

such that FA C TB whenever A C B £ f(D). (The triple is called an H-space in [2]
whenever D = X.) If D = X, we denote (X; F) instead of (X, X; F). For an .ff-space
(X;T) and any nonempty subset Y of X, we have an JJ-space (X,Y;T).

Any convex space X is an .ff-space (X; F) by putting Fyi = co A. Other examples
of (X; F) are any pseudo-convex space [9], any homeomorphic image of a convex space,
any contractible space, and so on. For other examples, see [2]. Every n-simplex An is
an IT-space (An,D; F), where D is the set of vertices and TA = co A for A e
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[3] On minimax inequalities 27

For an (X, D; T), a subset C of X is said to be H-convex if for each A £
A C C implies TA C C. Note that X itself and 0 are 27-convex. A multifunction
F : D -> 2X is said to be H-KKM ii TA C F(i4) for each A 6 ^(£>) [2]. A subset L of
X is called an H-subspace of (X, D; T) if £n£> ^ 0 and for every A € T(L D D), TAV\L
is contractible. This is equivalent to saying that the triple {L,L D 2?; {I\A D £}) is an
JJ-space. (An 2I-subspace is called weakly H-convex in [2] whenever X = D.)

Recently, Tarafdar [18] introduced the concept of an JT-KKM map more strict
than that of [2], but more in line with the usual one in a vector space. Motivated by
[18], we introduce the following:

Given a nonempty subset S of an 17-space (X,D;T), the H-convex hull of S,
denoted by 27-co S, is defined by

H- co 5 = f]{Y : S C Y C X and Y is F-convex }.

As in [18], note that H-co S is the smallest JJ-convex subset of X containing S and
that

H- co 5 = | J { # - co A : A E ^ (5)} .

Following Tarafdar [18], a multifunction F : D -» 2X is said to be H-KKM (which
will be denoted T-KKM in this paper) if .ff-co A C F(A) for each A € F(D). Note
that T-KKM implies .ff-KKM. In fact, TA C H-co A since A C H-co A and JJ-co A
is iT-convex.

LEMMA . Let (X, D; T) be an H-space and G : D -» 2* an H-KKM multifunction
with compactly closed va/ues. Then every finite subfamily of {Gx : x G .D} has a
nonempty intersection.

Lemma is given in [16, Theorem 1] using the KKM theorem and the method of
Horvath [10, Theorem 1, 11, Theorem 1].

Recall that an extended real-valued function / : X —* R on a topological space
X is lower [respectively, upper] semicontinuoua (l.s.c.) [respectively, u.s.c] if {x £ X :
fx > r} [respectively, {x £ X : fx < r}] is open for each r £ R.

3. THE KKM TYPE THEOREMS AND THEIR EQUIVALENCIES

We begin with the following KKM theorem for .ff-spaces.

THEOREM 1 . Let (X, D; T) be an H-space and G : D -* 2X an H-KKM multi-
function with compactly closed values. Suppose that there exists a nonempty compact
subset K of X such that either

(i) f\{Gx :x 6M} CK for some M 6 T{D); or

(ii) for each N £ F(D), there exists a compact H-subspace LN of X con-

taining N such that LN n f\{Gx : x £ LN n D} C K.
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Then K n f){Gx : i £ f l } ^ .

PROOF: Case (i). Clear from the Lemma.
Note that, from Case (i), if X itself is compact, then Theorem 1 holds without

assuming (i) or (ii). From this fact we can deduce Case (ii) as follows:
Case (ii). Suppose that Knf\{Gx : z £ £>} = 0; that is, K C \J{X\Gx : x 6 D}.

Since the compact subset K is covered by compactly open sets X\Gx, x G D, there
exists an N G F(D) such that K C \J{X\Gx : x G N}. Let LN be the compact
27-subspace in (ii) and G' : LNC\D —* 2LN a multifunction defined by G'x = Gx
for x £ LN n D. Then each G'x is closed in LN. Moreover, G' is JT-KKM. For,

A G F(LN HD)=>Ae F(D) =*TAC G{A)

TA n LN C G{A) DLN =

Therefore, by Case (i), we have

Let z e i N f l f){Gx : x £ LN <~\ D}. It z E LN f\ K, then

z € K C ( J (JT\G«)

and hence z ^ Gx for some z 6 N C Z/N H X), which is a contradiction. Therefore, we
have z £ Lft\K. This implies z £ n { ^ x : x ^ ^N •"• •"} ^y (")• which leads another
contradiction. Therefore, we must have K fl Pli^* : x ^ D} ^ 0. This completes our
proof. D

REMARKS: 1. If A" is a convex space with FA = co A, then (i) implies (ii). In
fact, we can choose LN = co(M U N). However, in general, we cannot say (i) =^> (ii)
for .ff-spaces.

2. For particular forms or related results to Theorem 1, see the remarks on [16,
Theorem 1 and 4].

3. As in the generalisation of the KKM theorem due to Ky Fan [7, Lemma 1], (i)
can be replaced by

(i)' Gxo is compact for some XQ G D.
However, (i) ^=> (i)'. For example, let X = R, D = Z, TA = co A, and define

G : Z -> 2R by G(0) = R, G[n) = (-oo,n], and G(-n) = [-n,+oo » for n G N.

The following form of argument is used in [4]. Let — denote the closure.
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COROLLARY 1 . Let (X;T) be an H-space and F,G : X -> 2X two multifunc-

tions such that

(1) for each x £ X, Fx C Gx and Gx is closed; and

(2) F is H-KKM.

Suppose that either

(i) Fxo is compact for some xo 6 X; or

(ii) there exist a nonempty compact subset K of X and, for each N € F(X), a

compact H -subspace LN of X containing N such that LN 0 f]{Fx : x £ LN} C K.

Then

(]{Gx :xeX}^9.

PROOF: Since Flc C Gx and (2) implies that F is J7-KKM, by Theorem 1, we

have

This completes our proof. D

Since T-KKM implies H-KKM, from Theorem 1, we have the following:

THEOREM 2 . Let (X,D;T) be an H-space and G : D -» 2X a multifunction

such that

(1) for each x £ D, Gx is compactly closed; and
(2) G is T-KKM.

Suppose that there exists a nonempty compact subset K of X such that either (i)

or (ii) of Theorem 1 holds. Then

K n f]{Gx : x G D} / 0.

Theorem 2 has some equivalent formulations. The following is a whole intersection
theorem.

THEOREM 3 . Let (X,D;T) be an H-space and F : X -> 2X, G : D -* 2X

multifunction such that

(1) for each x £ D, Fx C Gx and Gx is compactly closed;

(2) for each y € X, X\F~ly is H-convex; and

(3) for each x £ X, x 6 Fx.

Suppose that there exists a nonempty compact subset K of X such that either (i)
or (ii) of Theorem 1 holds. Then

K n f]{Gx : x e D} ^ 0.
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PROOF: We show that (2) and (3) imply that G is T-KKM. Suppose that there
exists an A G !F{D) such that H- co A (f_ G{A); that is, there exists a y G H- co A
such that y $ Gx for all x G A. In other words, A C X\G~ly C X\F-*y. Since
X\F-1y is ff-convex by (2) and contains A, we have y G H-co A C X\F-1y, which
contradicts (3). Therefore, by Theorem 2, we have the conclusion. U

REMARK: For related results to Theorem 3, see [16, Theorem 7].

From Theorem 3 we obtain the following Fan-Browder type fixed point theorem or
a maximal element theorem.

THEOREM 4 . Let (X,D;T) be an H-space and 5 : D -» 2X, T : X -» 2X

multifunctions such that

(1) for each x £ D, Sx C Tx and Sx is compactly open; and

(2) for each y € X, T~ly is H-convex.

Suppose that there exists a nonempty compact subset K of X such that either

(i) X\K C S(M) for some M G f(D); or

(ii) for each N G F(D), there exists a compact H-subspace LN of X con-

taining N such that LN\K C S(LN D D).

Then either there exists a y0 G K such that 5-1i/o = 0 or there exists an x0 G X

such that x0 G Tx0 .

PROOF: Suppose that x £ Tx for each x G X. Let Fx = X\Tx for x G X
and Gx = X\Sx for x G D. Then all the requirements of Theorem 3 are satisfied.
Therefore there exists a y0 G K (1 f]{Gx :x£D}; that is, y0 $ Sx for all x G D. In
other words, S~1yo = 0. This completes our proof. D

REMARKS: 1. The j/o in the conclusion of Theorem 4 is called a maximal element

in the sense that x ^ y if and only if x G Sy.

2. The equivalency of less general versions of Theorems 2 and 4 was given by

Tarafdar [18].

3. For related results to Theorem 4, see the remarks on [16, Theorem 6].

From Theorem 4, we obtain the following Ky Fan type matching theorem for open

coverings of an 27-space.

THEOREM 5 . Let (X,D;T) be an H-space and S : D -» 2X a multifunction

such that

(1) for each x G D, Sx is compactly open.

Suppose that there exists a nonempty compact subset K of X such that

(2) K C S(D)

and that either (i) or (ii) of Theorem 4 holds.
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Then there exists an A G F{D) such that

PROOF: For each y G X, put T~*y = H- co {S~xy) . This defines a multifunction
T : X —* 2X. Then all the requirements of Theorem 4 are satisfied. In fact, for each
x G D, x G S~xy for some y £ X implies x 6 T - 1 y ; that is, Sx C Tx. Moreover,
T - 1 y is IT-convex for each y G X. Further, S~xy ± 0 for each y G K by (2).
Therefore, by Theorem 4, there exists an x0 G Jf such that xo G Txo or x0 £ T~xzo-
By the definition of T~1XQ, we have an A G ^"(5-1xo) such that xo G H-co A. Note
that S ^ z o C D and hence A G ^"(i?). Since z0 € 5z for all z E i , we have
Xo G (IT-co A) n n{^>z : x G -A}- This completes our proof. D

In fact, Theorems 2-5 are equivalent.

PROOF OF THEOREM 2 USING THEOREM 5: Let Sx = X\Gx for each x £ D.
Suppose that Knf\{Gx : x G D} = 0, or equivalently, 5(2?) D K. Then, by Theorem
5, there exists an A G ^(D) such that

(J7-co A) D f | { 5 x : x G A} ^ 0 or H-co A ^ G(A).

This contradicts the fact that G is T-KKM. This completes our proof. D

REMARKS: 1. If the conclusion of Theorem 5 is replaced by the existence of A G
T{D) satisfying YA 0 PK^2 '• x E A} ^ ft), then we obtain an equivalent form of
Theorem 1. Therefore, for a convex space X with TA = B- co A = co A, Theorem 1
is also equivalent to any of Theorems 2-5.

2. For related results to Theorem 5, see [16, Theorem 5].

4. MINIMAX INEQUALITIES

In this section, we show that the KKM theorem and the whole intersection theorem
are equivalent to minimax inequalities.

The following is equivalent to Theorem 1.

THEOREM 6 . Let (X, D; V) be an E-space, <j> : D x X —» R an extended real-
vaiued function, and 7 G R suci that

(1) for each x G D, {y € X : (j>{x,y) ^ 7} is compactly closed; and

(2) for each N G F{D) and each y G TN, miniejv<^>(x,y) ^ 7 .

Suppose that there exists a nonempty compact subset K of X such that either

(i) there exists an M G f{D) such that

: <j>{x,y) ^ 7 for all x G M} C K; or
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(ii) for each N £ ^(D), there exists a compact H-subspa.ee Ls of X con-
taining N such that for each y £ LN\K there exists an x £ LN n D
satisfying <j>(x,y) > 7 .

Then there exists a y £ K such that

sup <f>{x,y) ^ 7 .

P R O O F OF T H E O R E M 6 USING THEOREM 1: Let Gx = {y e X : <f>{x,y) < 7} for

each x £ D. Then G has compactly closed values and the coercivity condition (i) or (ii)
of Theorem 1 holds. It remains to show that G is H-KKM. Suppose that there exists
an N £ ^(D) such that Fyv 't- G(N); that is, there exists a y G I V such that y £ Gx
or equivalently <j>(x,y) > 7 for all x £ N. Then minX£N <j>(x,y) > 7 , which contradicts
(2). By Theorem 1, there exists a. y E K C\ f\{Gx : x € D}; that is, </>{x,y) < 7 for all
x £ D. This completes our proof. U

P R O O F OF T H E O R E M 1 USING THEOREM 6: Define <j> -. D x X -* R by

Mxy) = { ° if y£ Gx

[ 1 otherwise
for (x,y) € D x X. Put 7 = 0 in Theorem 6. Then (1) holds since G has compactly
closed values. Moreover, the coercivity condition (i) or (ii) of Theorem 6 holds. Further,
(2) holds since G is J7-KKM. In fact, suppose that there exist an N £ T{D) and y £ TN
such that minl€jv <j>(x,y) > 0. Then <f>(x,y) > 0 for all x £ N; that is, y $ G(N),
which is a contradiction. Therefore, by Theorem 6, there exists a y £ K such that
<j>(x,y) = 0 for all x £ D; that is, y £ H i ^ 1 : x £ &}• This completes our proof. D

REMARKS: 1. Condition (1) is implied by the following:

(1)' for each x £ D, y t—» cj>(x,y) is l.s.c. on any compact subset of X.

2. It is shown that, in [4], (2) is equivalent to the condition that G is H-KKM as
in the above proofs. For a convex space X with TA = co A and X = D, (2) is called
the ~f-diagonal quasi-convexity (simply, 7-DQCV) of <p(x,y) in x, by Zhou and Chen
[19].

3. The coercivity condition (i) is implied by the following:

(i) ' for some XQ £ D, y *-> <f>(xo,y) is inf-compact.

4. Theorem 6 is a correct version of Ding and Tan [6, Theorem 16].

5. If X = K itself is compact, then Theorem 6 holds without assuming the
coercivity conditions (i) and (ii). For a compact convex space X, Theorem 6 with
D = X extends Zhou and Chen [19, Theorem 2.11], whose proof is based on the
partition of unity argument and the Brouwer fixed point theorem.
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COROLLARY 6 . 1 . Under the hypothesis of Theorem 6, if y = 6up,.€D <f>(x,x),
then there exists ay £ K such that

sup (j>{x,y)

REMARK: For a compact convex space X, Corollary 6.1 with D = X extends
Zhou and Chen [19, Corollary 2.12].

COROLLARY 6 . 2 . Let {X\T) be an H-space, and <f>,ij> : X x X -» R multi-
functions satisfying

(1) <j>(x,y) < r/>(x,y) for each (x,y) £ X X X;
(2) for each x £ X, J / M <j>(x,y) is l.s.c. on X; and
(3) the map x H-» FX = {y £ X : i/>{x,y) < 0} is H-KKM.

Suppose that either (i) or (ii) of Corollary 1 holds. Then there exists a y £ X such
that

sup <t>{x,y) ^ 0.

PROOF: Let Gx = {y e X : <j>{x,y) ^ 0} for each x £ X. Note that Fx C Gx for
each x £ X by (1), and Gx is closed by (2). This shows that F has closed values and
(3) implies that F is H-KKM. Therefore, from Corollary 1 or Theorem 6, we have the
conclusion. D

REMARKS: 1. The coercivity condition (i) of Corollary 1 can be replaced by the
following:

(i)' there exist a nonempty closed compact subset K oi X and an x0 £ X

such that 4>(xo,y) > 0 for all y £ X\K.

In fact, from ( i ) ' , we have FXQ C K SO that FXQ C K = K, and hence FXQ is compact.

2. Ding, Kim, and Tan [4, Theorems 1 and 2] obtained Corollary 6.2 for Case

(i)' under an additional condition that ip(x,x) ^ 0 for each x £ X. This assumption

is superfluous. Influenced by this, many of the other results in [4, 5] are incorrectly

stated. For example, the correct form of [4, Theorem 5] is our Theorem 3. Moreover,

the hypothesis of [4, Theorem 5] is self-contradictory.

3. A generalisation of Corollary 6.2 for Case (ii) is given by Park [16, Theorem
10].

Theorem 3 also can be reformulated as a minimax inequality.

THEOREM 7 . Let {X,D; T) be an H-space, « £ : D x X - » R , rj> : X xX ->R
functions, and 7 £ R such that

(1) <f>(x,y) < ip(x,y) for all (x,y) £ D x X and r(>(x,x) ^-y for all x £ X;
(2) for each x £ D, {y £ X : <f>(x,y) ^ 7} is compactly closed; and
(3) for each y £ X, {x £ X : i}){x,y) > 7} is H-convex.
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Suppose that there exists a nonempty compact subset K of X such that either (i) or
(ii) of Theorem 6 holds. Then there exists a y £ K such that

sup <t>{x,y) s$ 7.
x€D

PROOF OF THEOREM 7 USING THEOREM 3: Put Fx = {y e X -. t(>(x,y) < 7} for

x £ X and Gx = {y £ X : (j>{x,y) ^ 7} for x £ D. Then Theorem 7 follows from
Theorem 3. Note that Theorem 7 also follows from Theorem 6 by following the proof
of Theorem 3 using Theorem 2. D

PROOF OF THEOREM 3 USING THEOREM 7: Define functions <f>: D x X —* R and
r/> : X x Y -> R by

JO if y 6 Gx

^ 1 otherwise

for (x,y) £ D x X and

V - ( * 2 / ) (
[_ 1 otherwise

for (as,y) £ X x X. Then <j>(x,y) < i>{x,y) for all (x,y) £ D x X since Fx C Gx for
x G D, and ij){x,x) — 0 for all x £ X since a; £ .Fa:. Other requirements of Theorem
7 are satisfied for 7 = 0. Therefore, there exists a y G K such that (j>{x,y) = 0 for all
i £ B ; that is, y 6 Gx for all x G I?. This completes our proof. D

REMARKS: 1. Since Theorem 1 generalises Theorem 3, we know that Theorem 6

generalises Theorem 7. However, for convex spaces those are all equivalent.

2. Ding, Kim, and Tan [4] gave examples of convex spaces showing that partic-

ular forms of Corollary 6.2 for Case (i) and Theorem 7 for Case (ii) are independent.

However, for convex spaces, those two results are included in Theorem 7 for Case (ii).

3. Theorem 7 for Case (ii) is a correct form of Ding and Tan [6, Theorem 17]. For

other related results to Theorem 7 for Case (ii), see the remarks on Park [16, Theorem

9].

4. Bardaro and Ceppitelli [2, Theorems 3 and 4] are equivalent to particular forms

of Theorem 7 for Case (ii) using a topological Riesz space instead of R.

COROLLARY 7 . Under the hypothesis of Theorem 7, if 7 = s\ipxex ij>(x, x), then

there exists ay £ K such that

y)< snpif>(x,x).
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REMARK: For a compact convex space X, Corollary 7 with D = X extends Ky
Fan's minimax inequality [8, Theorem 1].

Note that the minimax inequalities can be formulated equivalently to analytic alter-
natives, geometric forms, fixed point versions, or maximal element versions. Moreover,
such inequalities have applications to systems of convex inequalities, sets with .ff-convex
sections, the von Neumann type minimax theorems, and many others just following [4,
5] (of course, with some necessary corrections).

5. MINIMAX, QUASI-VARIATIONAL INEQUALITY, AND FIXED POINT THEOREMS

In this section, we first obtain a generalised von-Neumann-Sion minimax theorem
from Theorem 4, and then a generalisation of a saddle point theorem due to Zhou and
Chen [19, Theorem 2.14]. Moreover, we state an improved version of a quasi-variational
inequality [19, Theorem 3.1]. Finally, we note that the latter implies a general form of
the Kakutani fixed point theorem.

THEOREM 8 . Let X and Y be H-spaces and f,g,a,t:XxY—>R functions

such that

(1) f^s^t^gonXxY;

(2) fo r eaci i x E X, f{x,) is l.s.c. on Y;

( 3 ) for each y G Y, g{-,y) is u.s.c. on X ;
(4) for each y £Y and c G R , {x £ X : s(x,y) > c} is H-convex; and

(5) for each x € X and c £ R , {y G Y : t(x,y) < c} is H-convex.

Suppose that there exists a nonempty compact subset K of X xY such that for each
c £ R , either

(i) there exists an M 6 T(X x Y) satisfying

(XxY)\KC U {xeX:g(x,yi)<c}x{yeY:f(xi,y)>c};

(ii) for eacii N £ T{X x Y), there exists a compact H-subspa.ee LN of XXY
containing N such that

LN\KC | J {xeX:g(x,y)<c}x{yeY:f(x,y)>c}.

Then we have

inf sup/(a;,y) < sup inf g(x,y).
vtyx xver
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PROOF: Suppose that there exists a c G R such that

sup inf g(x,y) < c < inf sup f(x,y).

Define multifunctions S,T : X x Y -» 2XxY by

S{x,y) = {x e X : g(x,y) < c} x {y G Y : f(x,y) > c}

T(x,y) = {x G X : t(x,y) <c}x{yeY: s(x,y) > c}

for (x,y) e X x Y. Note that S(x,y) C T(x,y) by (1); and each S(x,y) is open by
(2) and (3). Moreover, each fiber

T~l{x,y) = {x G X : s(x,y) > c} x {y G Y : t(x,y) < c}

is i7-convex by (4) and (5). Further, the coercivity conditions (i) and (ii) can be written
as follows:

(i) {X x Y)\K C S(M) for some M £ T{X xY),
(ii) LN\K C S{LN) for each N G f(X x Y).

Therefore, by Theorem 4, either there exists an (xo,yo) & K such that S~1(xo,yo)

= 0 or there exists an (xoil/o) E X xY such that (xoij/o) G T(xo,yo).

However, 5-1(a;o)yo) = 0 implies f(x,yo) ^ c for all x G X or g(xo,y) ^ c for all
y & Y. This contradicts the assumption on c. On the other hand, (xo,yo) G ^"(xojj/o)
implies

c < s(xo,yo) ^ <(xo,I/o) < c,

another contradiction. This completes our proof. D

REMARKS: 1. If X and Y are .ff-spaces, so is XxY; and the product of H-convex
sets is ^-convex [18].

2. If / = g in Theorem 8, we have the conclusion

inf sup f(x,y) = sup inf f(x,y).

Further, if X and Y are compact, then we have the conclusion

minmax/(x,y) = maxmin/(x,j/),

and hence, Theorem 8 extends the von Neumann-Sion minimax theorem for convex

spaces [17].

3. Instead of any c G R in (4), (5) and (i), (ii) of Theorem 8, we may consider any

c G R satisfying c > supl 6 J f infyey g{x,y).

For convex spaces, we have the following
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COROLLARY 8 . Let X and Y be convex spaces and f,g,s,t : X x Y -> R
functions satisfying (l)-(5) of Theorem 8. If one of X and Y is compact, then we have

inf sup f{x,y) < sup inf g{x,y).

PROOF: (a) If both X and Y are compact, then the coercivity condition (i) or

(ii) holds automatically. Therefore, the conclusion follows,

(b) Suppose that X is compact and

sup inf g{x,y) < c < inf sup f{x,y)
xvev v£Y x

for some c 6 R . Then there exists an N 6 T{Y) such that for any x 6 X there exists
a y 6 N with g{x,y) < c. Taking g' - g | (X x co N), we get

sup ini g'(x,y) <c< inf sup f(x,y),
X V€c° N »GCO N x€X

which contradicts Case (a). D

REMARKS: 1. Sin

Corollary 8 is actually

REMARKS: 1. Since inf g(x,y) is u.s.c. on X, if X is compact, the conclusion of

inf sup f(x,y) ^ max inf g{x,y).
V€Y X xeX y€Y

Note that for f = s and t = g, Corollary 8 reduces to Liu [13, Theorem 1]. In [13],
Liu applied Corollary 8 to obtain systems of inequalities, a sup inf sup inequality, the
Browder variational inequality, and to prove the Tychonoff fixed point theorem.

2. For the case X and Y are compact, Corollary 8 is due to Ben-El-Mechaiekh,
Deguire, and Granas [3, Theoreme 5.4 and Corollaire 5.5]. For / = g, this case includes
the von Neumann minimax theorem due to Sion [17, Theorem 3.4 and Corollary 3.5].

The following consequence of Theorem 6 is a special form of saddle point theorem.

THEOREM 9 . Let (X; V) be an H-space, <j>: X x X -* R a function, and y e R
such that

(1) for each x £ X, <j>{x,-) is l.s.c. on compact subsets of X;

(2) for each A £ F{X) and each y eTA, minlGyi (j>(x,y) ^ 7 ;
(3) there exists a nonempty compact subset K of X satisfying (i) or (ii) of

Theorem 6;

(1)' for each y € X, <f>(-,y) is u.s.c. on compact subsets of X;

(2)1 for each B 6 F(X) and each x e T g , maXygB 4>(x,y) ^ 7 ; and
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(3) ' there exists a nonempty compact subset K' of X satisfying either
(i) ' there exists an M £ ^F{X) such that

{x £ X : ^(z,j/) £ 7 for al/ y G M} C A";

or
(ii)' for eacii N £ ^"(JC), t iere exists a compact H-subspace LN of X con-

taining N such that for each x £ LN\K' there exists a y £ LN n A"
satisfying <f>(x,y) < 7 .

TAen we Aave
m a x »?(, <̂ (a=,2/) = min sup <j>(x,y) = 7.
x€K'y€X y€K x€X

PROOF: Apply Theorem 6 to 4>{x,y) with 7 . Then (l)-(3) imply the existence of
some y G K such that

(j>(x,y) ^ 7 for all a; G X.

Apply Theorem 6 to ip(y,x) = —<f>(x,y) with —y. Then ( l ) ' - (3 ) ' imply the existence
of some x G K' such that

ip(y,x) ^ - 7 for all y £ X;

that is, 7 ^ ^(ic, y) for all y G X.

Therefore, (x,y) £ K' x K is a. saddle point satisfying

4>(x,y) ^ <f>(x,y) = 7 ^ <^(z,y)

for all (x,y) £ X x X. This completes our proof. D

REMARKS: 1. In view of Theorem 7, Condition (2) can be replaced by the following
without affecting the conclusion of Theorem 9:

(2)" <t>{x,x) ^ 7 for all x G X and, for each y £ X, {x £ X : <j>(x,y) > 7} is
H- convex.

2. If X is a compact convex space, Theorem 9 generalises Zhou and Chen [19,

Theorem 2.14], which has potential applications to TV person nonzero sum games.

From Theorem 6, we have the following existence theorem for a quasi-variational

inequality.

THEOREM 1 0 . Let K be a compact convex subset of a real topological vector

space E on which its topological dual E* separates points, and F : K —* 1K a
multifunction with nonempty closed convex values such that

(1) for eadi p £ E*, {x £ K : supp(Fx) > p{x)} is closed.
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Let / : K x K -* R satisfying

(2) for each y € K, x i-> /(as,y) is l.s.c; and

(3) / ( * , y ) is 0-DCV in y ; that is, for each { y i , y 2 , • • • , y m } G T{K) and
m / m \ TO

each yo = Z) ««!/» ( a» ^ °> £ a» = ! ) > we i a v e £ <*»/(yo,yi) ^ 0.

Suppose that F and f axe related by
(4) {x e K : s u p y 6 F l / (x ,y) < 0} is dosed.

Then there exists a solution x G K to the quasi-variational inequality:

x E Fx and sup /(x,y) < 0.
F

PROOF: Just follow the proof of [19, Theorem 3.1]. D

REMARKS: 1. Theorem 10 is essentially due to Zhou and Chen [19, Theorem 3.1],

which extends [1, Theorem 6.4.21].

2. The class of multifunctions F : K —» 2K satisfying Condition (1) properly

contains that of upper hemicontinuous ones. See [15].

3. If F = lx, the identity function of X, then Theorem 10 reduces to a particular

form of a minimax inequality.

Finally, by putting / = 0 in Theorem 10, we have the following Kakutani type
fixed point theorem.

THEOREM 1 1 . Let K be a compact convex subset of a real topological vector
space E on which E* separates points. Then any multifunction F : K —* 2K satisfying
Condition (1) of Theorem 10 with nonempty closed convex values has a fixed point.

REMARKS: 1. If F is single-valued, Theorem 11 extends earlier works of Brouwer

(1910), Schauder (1930), Tychonoff (1935), and Fan (1964), and for multifunctions,

Kakutani (1941), Bchnenblust and Karlin (1950), Fan (1952), Glicksberg (1952), and

Granas and Liu (1986). For the literature, see [15].

2. Recently, the author [15] established far-reaching generalisations of Theorem

11.

3. Since we obtained Theorem 1 with the aid of an equivalent form of the Brouwer

fixed point theorem, Theorems 1-8 and 10—11 are all equivalent, in a wide sense, to the

Brouwer theorem.
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