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Lower bounds on zonal enstrophy
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An analytic estimate of the lower bounds on zonal enstrophy has been studied for the
beta-plane model of two-dimensional barotropic flow. The estimate provides exact lower
bounds on the zonal enstrophy, which hence must be satisfied regardless of the dynamics.
The energy, impulse, circulation as well as the total enstrophy are invoked as constraints
for the minimization of the zonal enstrophy. The corresponding variational principle
has an unusual mathematical structure (primarily because the target functional is not a
coercive form), by which the constraints work out in an interesting way. A discrete set of
zonal enstrophy levels is generated by the energy constraint; each level is specified by an
eigenvalue that represents the meridional mode number of zonal flow. However, the value
itself of the zonal enstrophy level is a function of only impulse and circulation, being
independent of the energy (and total enstrophy). Instead, the energy works in selecting
the ‘level’ (eigenvalue) of the relaxed state. The relaxation occurs by emitting small-scale
wavy enstrophy, and continues as far as the nonlinear effect, scaled by the energy, can
create wavy enstrophy. Comparison to numerical simulations shows that the theory gives
a consistent estimate of the zonal enstrophy in the relaxed state.
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1. Introduction

The creation of zonal flow in the planetary atmosphere is a spectacular example of
the self-organization in physical systems (Charney 1971; Hasegawa 1985). There is a
strong analogy between the geostrophic turbulence and the electrostatic turbulence of a
magnetized plasma in the plane perpendicular to an ambient magnetic field. Because the
generation of zonal flow (coherent structure) affects the turbulent transport in magnetized
plasmas, how strong it can be is of great interest in the context of plasma confinement
(Diamond et al. 2005). The aim of this work is to estimate exact lower bounds on the
‘zonal enstrophy’, which hence must be satisfied regardless of the dynamics, and elucidate
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how the lower bounds are determined; lower bounds on the zonal enstrophy indicate that
the zonal flow must be stronger than the given value.

The inverse-cascade model explains the essence of the self-organization process.
Because of the approximate two-dimensional geometry (due to the scale separation
between the shallow vertical direction and wide horizontal directions), the vortex
dynamics is free from the stretching effect. Then, the energy of flow velocity tends to
accumulate into large-scale vortices, while the enstrophy (the norm of vorticity) cascades
to small scales (Kraichnan 1967). On a rotating sphere, the gradient of the Coriolis
force yields the Rossby-wave term in the vortex dynamics equation, which brings about
latitude/longitude anisotropy, and the large-scale vorticity forms zonal flow (Charney
1971). The nonlinear term driving the inverse cascade becomes comparable to the linear
Rossby-wave term at the Rhines scale, which gives a crude estimate of the latitudinal size
of the zonal flow (Rhines 1975).

While the inverse-cascade model illustrates the general tendency of a nonlinear process,
the underlying mechanism requires more detailed analysis. The modulational instability
plays an essential role in exciting the energy transfer in the wavenumber space (Lorentz
1972; Gill 1974; Connaughton et al. 2010). In addition to the energy and enstrophy,
another quadratic integral is known to be an adiabatic invariant (only changes by fourth
order of perturbations) in the zonal-flow domain of wavenumber space, restricting the
energy transfer there (Balk, Nazarenko & Zakharov 1991; Balk 1991, 2005). Various
numerical simulations have been done to demonstrate the creation of zonal flow. Two
different categories of models must be distinguished; one is the unforced, free decaying
turbulence, and the other is the forced, quasi-stationary turbulence. In the latter case,
the interaction between the mean flow and the turbulence (Farrell & Ioannou 2007;
Bakas & Ioannou 2011; Srinivasan & Young 2012) or inhomogeneous vorticity mixing
(Dritschel & McIntyre 2008; Scott & Dritschel 2012) has been found to be a causal
mechanism of zonal-flow generation. For these forced, quasi-stationary cases, one has to
include some dissipation mechanism for large-scale flows in order to remove the energy
accumulating in the large-scale regime by the inverse cascade. The usual viscosity only
works for short-scale flows, so something like ‘friction’ is added to the model (however,
which mechanism works in a realistic planetary system is still controversial). For the free
decaying case, early simulation results (Vallis & Maltrud 1993; Yoden & Yamada 1993;
Yoden et al. 1999) demonstrated the self-organization of zonal flow, and found that the
scale of the zonal flow is similar to that of Rhines’ estimate. However, the quantitative
comparison between the Rhines scale and the zonal-flow scale was left unclear. On the
other hand, in the forced turbulence case, a more complex relation has been found, because
of the influence of the dissipation mechanism for large-scale flows (see Williams 1978;
Danilov & Gurarie 2002; Sukoriansky, Dikovskaya & Galperin 2007).

In parallel with simulation studies, there have been theoretical attempts to nail down
the ‘target’ of the spontaneous process, i.e. formulating a variational principle that reveals
what the dynamics tends to reach. This can be done by identifying the target functional to
be minimized (or maximized) as well as the constraints that restrict admissible candidates.
A well-known example is the entropy maximization in a microcanonical ensemble (the
constraints are total particle number and total energy), which gives the Gibbs distribution.
In the application to field theories, where we have to deal with infinite-dimensional phase
spaces, we encounter the problem of ultraviolet catastrophe (which must be removed by
appropriate quantization, see Ito & Yoshida (1996)). Suspending such subtle problems,
formal calculations have been made to obtain the thermal equilibrium distribution of flow
fields. In the context of the planetary atmosphere, the statistical equilibrium state in the
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two-dimensional incompressible Euler system was studied in Miller (1990) and Robert &
Sommeria (1991). In Turkington et al. (2001), the maximum entropy distribution over the
ensemble constrained by total energy and circulation was compared with the large-scale
vortex structures observed on Jupiter. However, because of the essential non-equilibrium
property of turbulence (as the cascade model is based on ‘dissipation’ in the Kolmogorov
micro-scales, one has to assume a ‘driving force’ to maintain the (quasi-) stationary state,
or consider a transient process of free decay), the entropy may not be an effective tool to
dictate the self-organization.

There is a different type of approach guided by the notion of selective dissipation
(Hasegawa 1985). The Taylor state of a magneto-fluid (Taylor 1974, 1986) is the prototype
of such a model of self-organization, which minimizes the magnetic field energy (E =
(1/2)

∫ |B|2 d3x = (1/2)
∫ |∇ × A|2 d3x, where B = ∇ × A is the magnetic field and A is

the vector potential) under the constraint on the magnetic helicity (H = (1/2)
∫

A · B d3x).
The reason why E is more fragile than H is because E includes another differential operator
curl in the integrand. This model explains the relaxed states of magnetized plasmas in
various systems, ranging from laboratory experiments to astronomical objects. Regarding
the two-dimensional turbulence in the planetary atmosphere, the minimization of the
generalized enstrophy (see Proposition 2.1) under the constraint on the energy has been
studied to show that the solution of the minimization problem predicts a steady state
with streamlines parallel to contours of the topography (Bretherton & Haidvogel 1976).
Although these two stories, i.e. the energy–helicity relation in the magneto-fluid and the
enstrophy–energy relation in the two-dimensional (2-D) fluid appear to be parallel (as
Hasegawa (1985) describes in the unified vision), there is a fundamental difference when
viewed from their Hamiltonian structures, and the latter needs a careful interpretation.
In both systems, the ideal constants (the helicity in magneto-fluids and the enstrophy in
2-D fluids) are Casimirs, by which the orbits are constrained on the level sets of these
constants (Morrison 1998). In the magneto-fluid phase space, the orbits converge into the
equilibrium point as the energy diminishes; the minimum energy (Hamiltonian) state, on
each level set of the helicity, gives an equilibrium point. In the 2-D fluid system, however,
the level set of the enstrophy is not embedded as a smooth submanifold in the topology of
the energy norm (because the enstrophy is a fragile quantity, its level set looks like a fractal
set; see Appendix A). Hence, we have to reverse the role of the Hamiltonian (energy) and
the Casimir (enstrophy), and minimize the enstrophy for a given energy. Then, the critical
point is not necessarily an equilibrium point. In this specific problem, however, it happens
to be so, because it is the ‘maximum point’ of the energy. Notice that the minimization of
the enstrophy under a constrained energy is equivalent to the maximization of the energy
under a constrained enstrophy (see Appendix A). The maximization of the energy appears
to be consistent with the inverse-cascade story. However, the simultaneous process, i.e. the
forward cascade of the enstrophy, violates the constancy of the enstrophy. The dual aspects
of the 2-D turbulence pose a paradox in the mechanical interpretation of the selective
dissipation.

The target of this study is totally different. Whereas we formulate a variational principle
using the list of ideal constants of motion, the target functional is not selected from them.
We estimate the minimum of the enstrophy possibly given to the zonal component (which
we call the zonal enstrophy). Knowing how strong the zonal flow must be and how it
is controlled is an important issue in the study of turbulent transport. While the total
enstrophy is an ideal constant of motion, the zonal part alone is not. We are not proposing
that the zonal enstrophy is selectively dissipated; we never provide the target functional
with the role of dictating dissipation process. Our target functional is simply what we
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want to estimate. We derive an a priori estimate of the zonal enstrophy, which must apply
to every possible dynamics under a set of prescribed conditions; the ideal invariants are
used as such constraints (we do not include the adiabatic invariant, because it needs the
wavenumber information that is not amenable to our formulation). The actual dynamics is
the second subject to be explored, which will be the task of § 5. The analogy of quantum
mechanical energy levels may be helpful to explain our perspective. When we want to
estimate the energy of an orbital electron, the variational principle to find the critical
values of energy, for a fixed total probability, leads us to the eigenvalue problem for the
Hamiltonian. The actual energy level that a particular electron will take is determined, for
example, by the de-excitation process of emitting photons. We will find a similar picture
for the 2-D-fluid turbulence; the zonal enstrophy has discrete levels of critical values (local
minima); by emitting wavy enstrophy, the zonal enstrophy relaxes into lower levels.

If there is no constraint on partitioning, the zonal enstrophy can be minimized to zero
(even if the total enstrophy is kept at a non-zero constant). But some constraints prevent
this occurring. We will identify the ‘key constraints’ that determine a reasonable estimate
of the zonal enstrophy.

The reciprocal problem, which maximizes the complementary wavy enstrophy (= total
enstrophy − zonal enstrophy), was first studied by Shepherd (Shepherd 1988) with
a different motivation, i.e. to estimate upper bounds on instabilities in the nonlinear
regime. This is seemingly equivalent to the minimization of the zonal component,
however, the effective ‘constraints’ may differ (see Appendix A). The conservation of
the pseudo-momentum was invoked as the essential constraint. Improved estimates have
been proposed by taking into account more general set of invariants which are known
as Casimirs (Ishioka & Yoden 1996). In the present study of the minimization of the
zonal component, however, we invoke a different constant of motion, the energy, as the
principal constraint (in addition to other ones such as the impulse). The physical reason
is clear because the self-organization is a spontaneous process in which the redistribution
of the enstrophy between the zonal and wavy components can occur only if the energetics
admits. Moreover, the energy constraint imparts a mathematically peculiar property to the
variational principle, which is the other incentive of this study.

In the next section, we will start by reviewing the basic formulation and preliminaries.
Section 4 describes the main result. We will derive discrete levels of the minimum zonal
enstrophy. We will propose the notion of de-excitation to lower enstrophy levels (in analogy
to energy levels of quantum states); the relaxation into lower levels corresponds to the
inverse cascade. According to the conjecture of the Rhines scale (Rhines 1975), the inverse
cascade continues until the linear Rossby-wave term overcomes the nonlinear term. In § 5,
we will study the relaxation process by numerical simulation. The conventional Rhines
scale will be revisited to give an improved estimate of the relaxed zonal enstrophy level.
Section 6 concludes this paper.

2. Governing equations

2.1. Vortex dynamics on a beta plane
We consider a barotropic fluid on a beta-plane

M = {ξ = (x, y)T; x ∈ [0, 1), y ∈ (0, 1)}. (2.1)

Here, ξ is the coordinate while x is the azimuthal coordinate (longitude) and y is the
meridional coordinate (latitude). The aspect ratio of the domain does not influence
the results of Theorems 4.1 and 4.2 (see § 5.1), so we consider a unit square domain.
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We are using the standard single-layer beta-channel model of geophysical fluid dynamics
on the unit square, with periodic boundary conditions in the zonal x-direction and no-flux
boundary conditions in the meridional y-direction. Without loss of generality, we work in
a reference frame in which the net zonal mass flux vanishes. We will denote the standard
L2 inner product by 〈f , g〉

〈f , g〉 =
∫

M
f (ξ)g(ξ) d2ξ, (2.2)

and the L2 norm by ‖f ‖ = 〈f , f 〉1/2. Here, f and g are arbitrary functions.
The state vector is the fluid vorticity ω ∈ L2(M). We define the streamfunction (or Gauss

potential) ψ by
−Δψ = ω, (2.3)

where Δ = ∂2
x + ∂2

y . The flow velocity is given by

v =
(
vx
vy

)
= ∇⊥ψ =

(
∂yψ

−∂xψ

)
. (2.4)

Taking into account the Coriolis force, the governing equation of ω is
∂tω + {ω + βy, ψ} = 0, (2.5)

where {f , g} = (∂x f )(∂yg)− (∂xg)(∂y f ), and β is a real constant number measuring the
meridional variation of the Coriolis force. When β = 0, (2.5) reduces into the standard
vorticity equation. A finite β introduces anisotropy to the system, resulting in the creation
of zonal flow. The Rhines scale (Rhines 1975) speaks of the balance of the two terms
{ω,ψ} and {βy, ψ}, by which we obtain the typical scale length of the zonal flow (see
§ 4.5).

Inverting (2.3) by K = (−Δ)−1, we may rewrite (2.5) as
∂tω + {ω + βy,Kω} = 0. (2.6)

We call
ωt := ω + βy (2.7)

the total vorticity, which is the sum of the fluid part ω and the ambient part βy (the latter
is due to the rotation of the system).

The following identity will be useful in the later calculations:
〈f , {g, h}〉 = 〈g, {h, f }〉, (2.8)

where f , g and h are C1-class functions in M, and either f or g satisfy the boundary
conditions.

2.2. Conservation laws and symmetries
PROPOSITION 2.1 (CONSTANTS OF MOTION). The following functionals are constants of
motion of the evolution equation (2.6):

(i) Energy

E(ω) := 1
2 〈ω,Kω〉. (2.9)

By rewriting

E = 1
2 〈(−Δψ),ψ〉 = 1

2

∫
M

|∇ψ |2 d2ξ = 1
2

∫
M

|∇⊥ψ |2 d2ξ = 1
2

∫
M

|v|2 d2ξ,

(2.10)
we find that E evaluates the kinetic energy of the flow v.
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(ii) Longitudinal momentum

P(ω) :=
∫

M
∂y(Kω) d2ξ. (2.11)

We may rewrite

P =
∫

M
∂yψ d2ξ =

∫
M
vx d2ξ, (2.12)

to see that P is the integral of the longitudinal momentum. Considering the boundary
conditions, P must be constantly zero.

(iii) Circulation
F(ω) := 〈1, ω〉. (2.13)

Integrating by parts, we may write

F =
∫ 1

0
[vx]y=1

y=0 dx, (2.14)

which evaluates the circulation of the flow v along the boundary ∂M.
(iv) Impulse

L(ω) := 〈y, ω〉. (2.15)

Integrating by parts and using the boundary conditions, we may rewrite

L =
∫

M
y(∂xvy − ∂yvx) d2ξ =

∫
M
vx d2ξ −

∫ 1

0

[
yvx

]y=1
y=0 dx. (2.16)

The first term on the right-hand side is P, which vanishes by the boundary condition.
Hence, L corresponds to the angular momentum ξ × v averaged over the boundary.

(v) Generalized enstrophy

Gβ(ω) :=
∫

M
f (ω + βy) d2ξ, (2.17)

where f is an arbitrary C1-class function, and the argument ω + βy is the total
vorticity including the ambient term βy. For f (u) = u2/2, Gβ(ω) is the conventional
enstrophy of the total vorticity.

(vi) Fluid enstrophy

Q(ω) := 1
2‖ω‖2. (2.18)

3. Zonal and wavy components

The phase space of the vorticity ω is

V = L2(M). (3.1)

We say that ω is zonal when ∂xω ≡ 0 in M. The totality of zonal flows defines a closed
subspace Vz ⊂ V . The zonal average

Pzω :=
∫ 1

0
ω(x, y) dx (3.2)

may be regarded as a projection from V onto Vz. By the orthogonal decomposition
V = Vz ⊕ Vw, we define the orthogonal complement Vw, i.e. ωw ∈ Vw, iff 〈ωw, ωz〉 = 0
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for all ωz ∈ Vz. We call ωw ∈ Vw a wavy component, which has zero zonal average:
Pzωw = 0. We will denote

Pw = I − Pz, (3.3)

which is the projector onto Vw. Now we may write

V = Vz ⊕ Vw = (PzV)⊕ (PwV). (3.4)

The following basic properties may be known to the reader, but we summarize them as
Lemmas for the convenience of the analysis in § 4:

LEMMA 3.1 (PARTITION LAWS). Let us decompose ω = ωz + ωw(ωz = Pzω ∈ Vz, ωw =
Pwω ∈ Vw).

(i) The circulation and the impulse are occupied by the zonal component ωz, i.e.

F(ω) = F(ωz), (3.5)

L(ω) = L(ωz). (3.6)

(ii) Quadratic invariants such as the fluid enstrophy and the energy are separated
without any mixture terms as

Q(ω) = Q(ωz)+ Q(ωw), (3.7)

E(ω) = E(ωz)+ E(ωw). (3.8)

4. Estimate of zonal enstrophy

4.1. Zonal enstrophy versus wavy enstrophy
The aim of this work is to find the minimum of the zonal enstrophy defined by

Z(ω) := 1
2‖Pzω‖2. (4.1)

The complementary wavy enstrophy is W(ω) = (1/2)‖Pwω‖2. By (3.7), the total
enstrophy is

Q(ω) = Q(Pzω)+ Q(Pwω) = Z(ω)+ W(ω). (4.2)

When the total enstrophy Q(ω) is conserved (see Proposition 2.1(v)), the minimum of
Z(ω) gives the maximum of W(ω).

The simplest version of the minimization problem is to find the minimum Z(ω) under
the constraint of Q(ω) = CQ( /= 0). Introducing a Lagrange multiplier ν, we minimize

Z(ω)− νQ(ω). (4.3)

Using the self-adjointness of Pz, we obtain the Euler–Lagrange equation

Pzω − νω = 0. (4.4)

Operating Pz on (4.4) yields
(1 − ν)Pzω = 0. (4.5)

On the other hand, operating Pw yields

νPwω = 0. (4.6)

There are two possibilities for solving these simultaneous equations.
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(i) If ν = 0 then, Pzω = ωz = 0 and Pwω = ωw is an arbitrary function satisfying
Q(ωw) = CQ; hence, min Z(ω) = 0. (This simple exercise reveals an unusual aspect
of the present variational principle, which is caused by the non-coerciveness of the
functional Z(ω) to be minimized. Notice that the minimizer is not unique, because
Pz has non-trivial kernel, i.e. Ker(Pz) = Vw).

(ii) If ν = 1 then, Pwω = ωw = 0 and Pzω = ωz is an arbitrary function satisfying
Q(ωz) = Z(ω) = CQ; hence, this solution gives the ‘maximum’ of Z(ω).

As we mentioned above, the minimizer is not unique here. To obtain a non-trivial
estimate of the minimum Z(ω), we have to take into account ‘constraints’ posed on the
dynamics of redistributing enstrophy. Guided by Proposition 2.1, we start with some
simple ones.

4.2. Constraints by circulation and impulse
Let us consider the circulation and impulse as constraints.

THEOREM 4.1. The minimizer of the zonal enstrophy Z(ω) under the constraints on the
circulation F(ω) = CF, the impulse L(ω) = CL, as well as the total enstrophy Q(ω) = CQ
is a vorticity ω such that

Pzω = a + by, (a = 4CF − 6CL, b = 12CL − 6CF), (4.7)

which gives
Z0 := min Z(ω) = 2C2

F − 6CFCL + 6C2
L. (4.8)

Proof . Let us minimize

Z(ω)− νQ(ω)− μ0F(ω)− μ1L(ω). (4.9)

The Euler–Lagrange equation is

Pzω − νω = μ0 + μ1y. (4.10)

Operating Pz on both sides of (4.10) yields

(1 − ν)Pzω = μ0 + μ1y. (4.11)

On the other hand, operating Pw yields

νPwω = 0. (4.12)

First, assume that 1 − ν /= 0. Inserting Pzω of (4.11) into the definition of F(ω) = F(Pzω)
and L(ω) = L(Pzω) (see Lemma 3.1(i) and (ii)), we determine μ0 and μ1 to match
the constraint 〈1, ω〉 = CF and 〈y, ω〉 = CL; we obtain a := μ0/(1 − ν) = 4CF − 6CL,
and b := μ1/(1 − ν) = 12CL − 6CF. Inserting this ωz = a + by into Z(ω), we obtain the
minimum (4.8). On the other hand, (4.12) is satisfied by ν = 0 (consistent with the forgoing
assumption 1 − ν /= 0) and an arbitrary ωw = Pwω such that

1
2‖ωw‖2 = CQ − (2C2

F − 6CFCL + 6C2
L). (4.13)

The right-hand side is non-negative, if the constraints F(ω) = CF, L(ω) = CL and Q(ω) =
CQ are consistent. It is only when the constants CF, CL and CQ are given so that the
right-hand side of (4.13) is zero, that the other assumption 1 − ν = 0 applies; then, the
unique solution Pwω = 0 (hence, ω = Pzω) is obtained. �

Notice that the minimizer is still non-unique (excepting the special case mentioned in
the proof); every a + by + ωw (∀ωw ∈ Vw such that (4.13) holds) satisfies (4.7). However,
the minimum value (4.8) is uniquely determined.
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4.3. Constraint by energy
The situation changes dramatically when we include the energy constraint E(ω) = CE;
a laminated vorticity distribution, epitomizing the structure of zonal flow, is created by
the energy constraint. The meridional mode number of the zonal flow is identified by
the ‘eigenvalue’ of the Euler–Lagrange equation, which specifies the ‘level’ of the zonal
enstrophy (in analogy to the quantum number of discrete energy in quantum mechanics).
To highlight the role of the energy constraint, we first omit the constraints on the
circulation and impulse.

Taking into account the energy and total enstrophy constraint, we seek the critical points
of

Z(ω)− νQ(ω)− μ2E(ω). (4.14)

The Euler–Lagrange equation is

Pzω − νω − μ2Kω = 0. (4.15)

Operating Pz yields (denoting ωz = Pzω)

ωz − νωz − μ2Kωz = 0. (4.16)

On the other hand, ωw = Pwω must satisfy

νωw + μ2Kωw = 0. (4.17)

Putting ωz = −∂2
yψz( y) in (4.16), we obtain

∂2
yψz + λ2ψz = 0, λ2 = μ2

1 − ν
. (4.18a,b)

The solution satisfying the boundary conditions ψz(0) = ψz(1) = 0 is

ψz = A sin λy, (4.19)

with eigenvalues
λ = n1π (n1 ∈ Z). (4.20)

The corresponding zonal vorticity is

ωz = Aλ2 sin λy. (4.21)

On the other hand, putting ωw = −Δψw, (4.17) reads

Δψw + k2ψw = 0, k2 = −μ2

ν
. (4.22a,b)

The solution satisfying the boundary conditions ψw(x, 0) = ψw(x, 1) = 0, as well as the
periodicity in x, is given by

ψw = B sin kxx sin kyy, k2 = k2
x + k2

y (4.23a,b)

with eigenvalues
kx = 2n2π, ky = n3π (n2, n3 ∈ Z). (4.24a,b)

The corresponding wavy vorticity is

ωw = Bk2 sin kxx sin kyy. (4.25)
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Figure 1. The graph of Z(ω) and W(ω) given in (4.30) and (4.31).

Summing the zonal and wavy components, we obtain

ψ = A sin λy + B sin kxx sin kyy, (4.26)

ω = Aλ2 sin λy + Bk2 sin kxx sin kyy. (4.27)

The two amplitudes A and B are determined by the constraints E(ω) = CE and Q(ω) =
CQ; inserting (4.26) and (4.27) into the definitions of E(ω) and Q(ω), we obtain

CE = A2λ2

4
+ B2k2

8
, (4.28)

CQ = A2λ4

4
+ B2k4

8
. (4.29)

Solving (4.28) and (4.29) for A and B, and inserting the solution into the zonal enstrophy
Z(ω) and wavy enstrophy W(ω), we obtain the critical values

Zλ,ε = λ
2CE − εCQ

1 − ε
, (4.30)

Wλ,ε = CQ − λ2CE

1 − ε
, (4.31)

where ε = λ2/k2, scaling the ratio of the wavelength of the zonal components to that
of the wavy components. For Zλ,ε ≥ 0 and Wλ,ε ≥ 0, there are two possibilities: ε ≤
(λ2CE)/CQ ≤ 1 or ε ≥ (λ2CE)/CQ ≥ 1. Here, the former regime of ε is relevant, because
we assume that the wavy components have smaller scales in comparison with the zonal
component (i.e. ε < 1). Then, Zλ,ε of (4.30) increases monotonically as ε decreases (or k2

increases; see figure 1), and we have

lim
ε→0

Zλ,ε = λ2CE. (4.32)

Notice that this limit gives the upper bound for Z(ω) of the corresponding eigenvalue λ,
which is achieved when the wavy component has the smallest scale ε → 0. For actual
wavy components, Z(ω) takes a smaller value than λ2CE, i.e.

Z(ω) ≤ λ2CE. (4.33)
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Lower bounds on zonal enstrophy

4.4. Constraints by energy, circulation, impulse and total enstrophy
Now we study the minimum of the zonal enstrophy Z(ω) under all constraints of energy,
circulation, impulse and total enstrophy. In contrast to the observation of § 4.3 (where the
minimum of Z(ω) is not determined by the energy CE), we will find that the minimum of
Z(ω) is determined by the circulation CF and impulse CL. In comparison with the result
of § 4.2, however, we have a discrete set of enstrophy levels (each of which corresponds to
a different mode number). Whereas they are due to the energy constraint, Z(ω) itself does
not depend on the values of the energy CE.

Introducing Lagrange multipliers, we seek the minimizer of

Z(ω)− νQ(ω)− μ0F(ω)− μ1L(ω)− μ2E(ω). (4.34)

The Euler–Lagrange equation is

Pzω − νω − μ0 − μ1y − μ2Kω = 0. (4.35)

The solution satisfying the boundary conditions ψ(x, 0) = ψ(x, 1) = 0, as well as the
periodicity in x, is ψ = ψz + ψw with

ψz = A1 cos λy + A2 sin λy − μ0 + μ1y
μ2

, (4.36)

ψw = B sin kxx sin kyy, (4.37)

where

λ =
√

μ2

1 − ν
, k2 = k2

x + k2
y = −μ2

ν
, (4.38a,b)

and

kx = 2n2π, ky = n3π (n2, n3 ∈ Z). (4.39a,b)

The corresponding vorticities are

ωz = A1λ
2 cos λy + A2λ

2 sin λy. (4.40)

ωw = Bk2 sin kxx sin kyy. (4.41)

The zonal enstrophy Z(ω) of the minimizer is

Z(ω) = A2
1λ

3

8
(2λ+ sin 2λ)+ A2

2λ
3

8
(2λ− sin 2λ)

+A1A2λ
3

4
(1 − cos 2λ). (4.42)

We have yet to determine the eigenvalue λ and the coefficients A1, A2 and B. Inserting
ψ = ψz + ψw and ω = ωz + ωw into the constraints F(ω) = CF, L(ω) = CL, E(ω) = CE,
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and Q(ω) = CQ, we obtain

CF = A1λ sin λ+ A2λ(1 − cos λ), (4.43)

CL = A1(λ sin λ+ cos λ− 1)+ A2(sin λ− λ cos λ), (4.44)

CE = A2
1λ

8
(2λ+ sin 2λ)+ A2

2λ

8
(2λ− sin 2λ)

+ A1A2λ

4
(1 − cos 2λ)− A1CF

2

− [A1(cos λ− 1)+ A2 sin λ]CL

2
+ B2k2

8
, (4.45)

CQ = A2
1λ

3

8
(2λ+ sin 2λ)+ A2

2λ
3

8
(2λ− sin 2λ)

+ A1A2λ
3

4
(1 − cos 2λ)+ B2k4

8
. (4.46)

We may write (4.43) and (4.44) as

(
CF
CL

)
= D(λ)

(
A1
A2

)
. (4.47)

with

D(λ) :=
(

λ sin λ λ(1 − cos λ)
λ sin λ+ cos λ− 1 sin λ− λ cos λ

)
. (4.48)

For given CF and CL, we solve (4.47) to determine the amplitudes of zonal vorticity

A1 = CF(sin λ− λ cos λ)+ CL(−λ+ λ cos λ)
detD(λ)

, (4.49)

A2 = CF(−λ sin λ− cos λ+ 1)+ CLλ sin λ
detD(λ)

, (4.50)

where detD(λ) = λ(2 − λ sin λ− 2 cos λ). Inserting (4.49) and (4.50) into (4.42), we
obtain the zonal enstrophy evaluated as a function of λ, which we denote by Zλ. The
critical points (local minima) of Z(ω), given by

d
dλ

Zλ = 0, (4.51)

determine the eigenvalues λ characterizing the enstrophy levels.
Instead of displaying the lengthy expression of Zλ, we will show its graphs for typical

choices of the parameters CF and CL. Notice that Zλ depends only on CF (circulation) and
CL (impulse); it does not contain CE (energy) and CQ (enstrophy) as parameters. First,
we pay attention to the singularities given by detD(λ) = 0, where A1 → ∞ and A0 → ∞,
hence Zλ → ∞ (there is an exception, as discussed later). We show the graph of detD(λ)
in figure 2.
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Figure 2. The graph of detD.
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Figure 3. The graph of the critical zonal enstrophy Zλ as a function of λ. The minima of Zλ determine the
eigenvalues of λ. The points on the curve indicate the eigenvalues. We assume (a) CF = 0.21 and CL = 0.0525,
and (b) CF = 0.21 and CL = 0.105.

There are two types of solutions

λ =
{
Λ2n = 2nπ,

Λ2n+1 = (2n + 1)π − δn,
(n = 0, 1, . . .), (4.52)

where each δn is a small positive number such that δn → 0 as n → ∞. The minima of
Zλ appear in every interval (Λ2n,Λ2n+1). However, if CF = 2CL, Zλ remains finite at
λ = Λ2n+1. In this special case, the minima of Zλ appear in intervals (Λ2n,Λ2n+2).

In figure 3, we show examples of Zλ calculated for (3a) CF = 0.28 and CL = 0.07, (3b)
CF = 0.28 and CL = 0.14 (CF = 2CL).

At λ = 0, Zλ reproduces the result of Theorem 4.1, i.e.

lim
λ→0

Zλ = Z0 = 2C2
F − 6CFCL + 6C2

L, (4.53)

which is the absolute minimum of the zonal enstrophy under the constraints on the
circulation F(ω) = CF, the impulse L(ω) = CL and the total enstrophy Q(ω) = CQ.

The role of the energy constraint E(ω) = CE is to create eigenvalues of λ at which Zλ
takes local minimum values. However, the value of CE does not influence the value of Zλ
directly. As we have seen in (4.33), it poses a constraint on the maximum

Z(ω) ≤ λ2CE, (4.54)

in addition to the other implicit constraint Z(ω) ≤ CQ. Instead of the zonal component
ωz of (4.40), CE and CQ work for determining the complementary wavy component ωw
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of (4.41). By (4.45) and (4.46), we obtain

k2 = CQ − Zλ
CE − Ez,λ

, (4.55)

B2 = 8(CE − Ez,λ)
2

CQ − Zλ
, (4.56)

where Ez,λ is the energy of the zonal component ωz evaluated at the eigenvalue λ. Notice
that k2B2 (∼ energy of the wavy component) is determined only by CE and Ez,λ. So,
the role of the total enstrophy constraint is to determine the wavenumber k of the wavy
component.

For the special case of CF = 0 and CL = 0, a laminated zonal flow (A1 /= 0 and/or
A2 /= 0) can occur only if

detD(λ) = λ(2 − λ sin λ− 2 cos λ) = 0. (4.57)

Then, the eigenvalues are λ = Λ2n and Λ2n+1 (n = 0, 1, 2, . . .), the previous singular
points; see figure 2. For λ = Λ2n (λ = 0 gives the trivial solution ωz = 0),

D(λ) =
(

0 0
0 −λ

)
, (4.58)

hence, A2 = 0. On the other hand, for λ = Λ2n+1,

D(λ) = 1
4
λ sin λ

(
4 2λ
2 λ

)
, (4.59)

and then A2 = −2A1/Λ2n. In both cases, A1 is arbitrary, so we cannot determine the
amplitude of the zonal vorticity ωz. Therefore, the trivial conditions CF = 0 and CL = 0
reproduce the situation of ‘no constraint’ discussed in § 4.3. We only have the estimate of
the maximum (4.33).

The forgoing results are summarized as:

THEOREM 4.2. For a given set of constants F(ω) = CF, L(ω) = CL, E(ω) = CE and
Q(ω) = CQ, the zonal enstrophy Z(ω) has a discrete set of critical (local minimum) values
quantized by the eigenvalue λ measuring the mode number of the zonal vorticity.

(i) When CF /= 0 or CL /= 0, the eigenvalue λ is given by (4.51) as a function of CF
and CL. The corresponding eigenfunction ωz, and the critical value of Z(ω) are
determined by CF and CL; see (4.40), (4.42), (4.49) and (4.50). The other constants
CE and CQ determine upper bounds CEλ

2 ≥ Z(ω) and CQ ≥ Z(ω).
(ii) For the special values CF = CL = 0, additional eigenvalues λ = 2nπ and λ = Λn

(n = 1, 2, . . .) occur. However, the eigenfunctions ωz and the critical values of Z(ω)
are no longer determined by such CF and CL; we only have estimates of upper
bounds CEλ

2 ≥ Z(ω) and CQ ≥ Z(ω).

4.5. Determination of the zonal enstrophy level
To apply Theorem 4.2 to the estimation of attainable zonal enstrophy, we have to determine
the eigenvalue λ that identifies the zonal enstrophy level. Here, we suggest the following
method (which we will examine and improve in § 5).

The self-organization of zonal flow can be seen as a relaxation process of the zonal
enstrophy level, which parallels the inverse cascade in the meridional wavenumber space.
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Lower bounds on zonal enstrophy

Just as the transition of the quantum energy level is caused by photon emission, the
relaxation of the zonal enstrophy level is due to the emission of wavy vorticity, which
is driven by the nonlinear coupling of the zonal and wavy components. Therefore, the
relaxation can proceed as far as the nonlinear term {ω,ψ} dominates the evolution
equation (2.5). Relative to the concomitant linear term β{y, ψ}, the nonlinear term
becomes weaker as the length scale increases (i.e. the inverse cascade proceeds). On the
Rhines scale (Rhines 1975)

LR =
√

2U
β
, (4.60)

the linear and nonlinear terms have comparable magnitudes, where U is the representative
magnitude of the zonal-flow velocity.

Since the energy is conserved, we may estimate U = √
2CE. Hence, we have an a priori

estimate

λ ∼ π

LR
= π

√
β

2
√

2CE
. (4.61)

Notice the influence of the energy CE on the eigenvalue λ. Although each value of the
zonal enstrophy level is independent of CE, the selection of the level is made by CE.

In the next section, we will examine the theoretical estimates by comparing numerical
simulation results.

5. Comparison with numerical simulations

5.1. Simulation model
In this section, we compare the forgoing theoretical estimates with numerical simulation
results. Here, we consider a square domain as with § 4. With a system size L and a rotation
period T , we normalize the variables as

x̌ = x
L
, y̌ = y

L
, ť = t

T
, ω̌ = ωT, ψ̌ = ψT

L2 , (5.1a–e)

by which the vorticity equation reads

∂ťω̌ + {ω̌ + β y̌, ψ̌} = νΔω̌, (5.2)

where ν represents the viscosity (reciprocal Reynolds number). We remark that, although
the dynamics of the system changes under rescaling of the coordinates with a general
aspect ratio of the domain, the statements of Theorems 4.1 and 4.2 remain unchanged.

For simplicity, we will omit the normalization symbol ˇ in the following description.
Whereas our theoretical analysis is based on the dissipation-free model (2.5), we add
a finite viscosity ν for numerical stability (typically, we put ν = 1.0 × 10−6). A finite
viscosity is also indispensable for the self-organization process, because the ideal (zero
viscosity) dynamics is constrained by infinite number of Casimirs (local circulations),
preventing changes in streamline topology. The theoretical model, however, ignores the
dissipation by assuming the robustness of the invariants that are used as constraints (see
Proposition 2.1). The influence of dissipation will be examined carefully when we compare
the theory and numerical simulation.
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Figure 4. (a) The evolution of the ‘ideal’ constants in the simulation. Each value is normalized by the
corresponding initial value. (b) The partition of total enstrophy between zonal and wavy components.

In the following simulation, we assume parameters comparable to the Jovian
atmosphere, where L = 4.4 × 108 m, T = 8.6 × 105 s. The parameter β is determined
as

β = 2Ω
R
(cos θ)LT, (5.3)

where Ω is the angular vorticity of rotating frame, R is the radius and θ is the latitude.
For L ∼ 2πR and θ ∼ 0, we obtain β ∼ 102. The jet velocity reaches U ∼ 1 × 102 m s−1,
which yields CF ∼ 4 × 10−1 and CL ∼ 2 × 10−1 if the jet achieves the maximum opposite
velocities on both north and south boundaries. Here, we assume moderate values CF ∼
10−1 and CL ∼ 10−1.

5.2. Self-organized zonal flow
As we have seen, the theoretical estimate of the minimum Z(ω) changes dramatically
depending on whether CF and CL are finite or not (§ 4.4). Here, we study the general case
where both CF and CL are finite. We assume an initial condition such that

ω|t=0 = 5.0 sin 15πy +
∑
m,n

αmneimx sin nπy, (5.4)

with random αmn(|αmn| ∈ [0, 50) for 5 ≤ m, n ≤ 10), which yields CE = 3.6 ×
10−2, CF = 0.21 and CL = 0.105.
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Figure 5. Self-organization of zonal flow (grey level represents to the local value of ω). (a) Initial condition
with finite circulation CF = 0.21 and impulse CL = 0.11. (b) Creation of zonal flow observed at t = 20.

In figure 4, we show the evolution of the ‘ideal’ constants. The total energy CE is well
conserved. The changes in CF and CL are also tolerable. Because of a finite viscosity (ν =
1.0 × 10−6), however, the total enstrophy CQ changes significantly. But it is not essential
for the present purpose of comparison, because the theoretical estimate of minimum Z(ω)
is independent of the CQ. As noted after (4.55)–(4.56), the total enstrophy Q(ω) = CQ only
contributes to estimating the wavenumber k of the wavy component ωw. As the simulation
shows, the ‘dissipation’ of the total enstrophy is the signature of the relaxation, when we
consider a finite viscosity. We may interpret the dissipation as the scale separation between
the visible scale and micro-scale; the latter is separated from the vortex dynamics model
by suppressing the amplitudes of micro-scale vortices. This scenario is consistent with
the local interaction model; the nonlinear dynamics is dominated by interactions among
similarly sized vortices (i.e. local in the Fourier space) within the inertial range, so it is not
influenced by vortices of far smaller scales.

Figure 5 shows the self-organized state (t = 20), where an appreciable zonal component
manifests. In figure 6, we compare the Fourier spectrum of the zonal component ωz = Pzω
in the initial and self-organized states. We find the redistribution of the spectrum into lower
λmodes (i.e. inverse cascade). A comparison with the Rhines scale will be described later.

To make a comparison with the theoretical estimate of zonal enstrophy, we plot Zλ
(the theoretical minimum of zonal enstrophy) and CEλ

2 (the theoretical maximum of
zonal enstrophy), evaluated for the parameters determined by the given initial condition,
in figure 7. As λ = 5π is the dominant mode (figure 6), we obtain Zλ = 0.69 and
CEλ

2 = 8.8. In figure 8, we compare the simulation results and the theoretical estimates,
demonstrating that the actual zonal enstrophy Z(ω) stays between the theoretical minimum
and maximum; the estimate of the lower bound is reasonably accurate.
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Figure 6. The Fourier spectrum of the zonal vorticity ωz = Pzω in the self-organized state (t = 20). The
eigenvalue λ ∼ 5π is dominant.
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Figure 7. The graphs of Zλ and CEλ
2, evaluated for the parameters corresponding to the simulation of

figure 5. The points on the curve indicate the eigenvalues.

10

8

6

4

2

0 5 10

Time

Z
o
n
al

 e
n
st

ro
p
h
y

15

Z5

Z7

Z9

Z11

Z (ω)
CE (5π)2

20

Figure 8. Evolution of the zonal enstrophy Z(ω), and its comparison with the theoretical minimum Zλ and the
maximum CEλ

2 evaluated for the self-organized state λ ∼ 5π. To demonstrate the sensitivity of the minimum
value, we also show the theoretical minimum Zλ evaluated for λ ∼ 5π, 7π, 9π and 11π.

5.3. Improved Rhines scale
The forgoing discussion depends on the a posteriori estimate of the eigenvalue λ. As
discussed in § 4.5, however, we need an a priori estimate of λ to make the theory useful.
While the Rhines scale LR has been proposed to estimate λ ∼ π/LR, it turns out to be
too crude. Here, we propose an improved Rhines scale to make more accurate estimates.
Figure 9 compares the dominant scale in the final state obtained by simulation and the
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Figure 9. The comparison between the dominant scale in the self-organized state and the Rhines scale for
different values of β.

Rhines scale for different values of β. It is shown that the dominant scale is approximately
3 times of the Rhines scale.

The Rhines scale (4.60) is the length scale LR at which the magnitudes of the nonlinear
term {ω,ψ} and the linear term β{y, ψ} become comparable. However, it seems that the
function of the nonlinear term, that derives the relaxation of the enstrophy level λ, does
not end immediately at LR; the numerical experiment shows that the relaxation continues
up to ∼ 3 × LR, where the magnitude of the nonlinear term becomes approximately one
eighth of the linear term. Therefore, we propose to use L∗

R = 3LR for the a priori estimate
λ = π/L∗

R; modifying (4.61), we estimate

λ ∼ π

3

√
β

2
√

2CE
. (5.5)

6. Conclusion

We have found a discrete set of zonal enstrophy levels that are quantized by the eigenvalue
λmeasuring the mode number (= system size in the latitude direction/lamination number).
As shown in figure 3, a finite circulation CF and/or impulse CL brings about symmetry
breaking in the eigenstates (minimizers), inhibiting even mode numbers. In the actual
situation, however, the mixed state may include spectra of even mode numbers (see
figure 6). By comparing to simulation results, we verified that the theoretical value
Zλ gives a reasonable estimate of the zonal enstrophy, if we choose the relevant mode
number. We note that the enstrophy levels are determined independently of the selection
mechanism. Just as the quantum energy level of an orbital electron is lowered by photon
emission (see figure 10), the relaxation of the zonal enstrophy level proceeds by the
emission of short-scale wavy vorticity. The relaxation process can be viewed as the forward
cascade of enstrophy (creation of short-scale wavy vortices) and the simultaneous inverse
cascade of the energy spectrum (de-excitation to lower zonal enstrophy states). The energy
constraint plays an essential role in selecting the level; the relaxation continues as far
as the nonlinear term, measured by the energy, dominates the evolution. The Rhines
scale estimates the balance point of the magnitudes of the nonlinear term and the linear
Rossby-wave term, but we found that the nonlinear effect continues to work until it
becomes approximately one order of magnitude smaller than the linear term, so we propose
an improved Rhines scale.

Comparing Theorems 4.1 and 4.2, we find that the energy constraint E(ω) = CE plays
an essential role in creating the discrete zonal enstrophy levels Zλ. Interestingly, the value
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λ = π/LR
∗

ωw

Figure 10. Analogy of quantum energy levels and ‘de-excitation’ by emitting small-scale wavy enstrophy,
which parallels the forward cascade of enstrophy.

of CE does not influence the value of each zonal enstrophy Zλ, which is determined only
by the other constants CF (circulation) and CL (impulse). However, in the absence of the
energy constraint, we only have the ‘ground state’ λ = 0 as given in Theorem 4.1. In the
eigenstate of ωz (belonging to the eigenvalue λ), the zonal enstrophy Z(ωz) and the zonal
energy E(ωz) are related by Z(ωz) = λ2E(ωz). Under the energy constraint (and a fixed λ),
therefore, Z(ωz) may take a smaller value when the wavy component ωw shares a larger
energy E(ωw). The simultaneous total enstrophy constraint contributes to determining the
wavenumber k of the wavy component ωw. Without the symmetry breaking constraints by
the circulation F(ω) and the impulse L(ω), E(ωz) can minimize to zero (see figure 1), and
then, k → ∞ (independently of the specific value of CQ). Finite symmetry breaking by
CF and/or CL brings about a non-trivial minimum E(ωz) (and the corresponding Z(ωz) =
λ2E(ωz)). Then, the partition of the energy to the wavy component is determined as
E(ωw) = CE − E(ωz), and the wavenumber k is determined by k2E(ωw) = CQ − Z(ωz).
Interestingly, we may not remove the total enstrophy constraint from the variational
principle, in order to retain a finite wavy component as the complementary to the zonal
component, while its role is limited to characterizing only the wavy component. This
unusual phenomenon in the variational principle is caused by the non-coerciveness of
the target functional Z(ω) with respect to the norm ‖ω‖.

Acknowledgements. The authors thank Y. Kawazura for his support in the simulation study. The suggestions
of the editor for improving the manuscript are appreciated.

Funding. This work was supported by JSPS KAKENHI (grant number 17H01177).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
H. Aibara https://orcid.org/0000-0002-0783-0838;
Z. Yoshida https://orcid.org/0000-0002-9165-6616.

Appendix A. The ABC of the variational principle

To see the mathematical non-triviality of the variational principle for the zonal enstrophy,
we review the standard relation between the target functional and constraint.
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Lower bounds on zonal enstrophy

A.1. Target functional and constraint
We start with a textbook example. The isoperimetric problem is to (i) maximize the surface
area S with a constraint on the periphery length L, or (ii) minimize the peripheral length
L with a constraint on the surface area S. Both problems have the same solution, i.e. a
circular disk or its periphery. Notice that reversing the target and constraint in each setting
results in an ill-posed problem; one can make L infinitely long without changing S, or
one can make S infinitely small without changing L. Let us concentrate on minimization
problems. For a variational principle to be well posed, the target (L) must be ‘fragile’ and
the constraint (S) must be robust. Here, the fragility speaks of the sensitivity to small-scale
perturbations. Suppose that we make pleats on a periphery; then L is increased, but S is not
necessarily changed. In analytical formalism, a fragile functional includes a larger number
of differentiations – derivatives are sensitive to small-scale perturbations. In the forgoing
example, we may formally write

S =
∫

R2
IMd2x, L =

∫
R2

|∇IM|d2x, IM(x) =
{

1 if x ∈ M
0 if x /∈ M, (A1a–c)

where M is a simply connected domain ⊂ R
2 that should be optimized to minimize L for

some given value of S. Including ∇ in the integrand, L is fragile.

A.2. Coerciveness and continuity
To make the argument more precise, we introduce the notion of coercive functionals; cf.
Yoshida & Mahajan (2002); Lions & Magenes (2012). Let u be a real-valued function
(state vector) belonging to a function space (phase space) V , which is a Banach space with
a norm ‖u‖. A real-valued functional G(u) is said to be coercive if

‖u‖2 ≤ c G(u), (A2)

where c is some positive constant. On the other hand, a real-valued functional H(u) is
continuous if

|H(u + δ)− H(u)| → 0 (‖δ‖ → 0). (A3)

We can formulate a well-posed minimization problem with a coercive target functional
G(u) and a continuous constraining functional H(u) (we may also consider multiple
constraints with continuous functionals).

To see how the coerciveness and continuity influence variational principles, let us
consider an example with two functionals

G(u) =
∫

M
|∇u(x)|2 dnx, H(u) =

∫
M

|u(x)|2dnx, (A4a,b)

where u is a scalar function defined in a smoothly bounded open set M ⊂ R
n. We assume

that u = 0 on the boundary ∂M. Notice that H(u)1/2 is the L2 norm ‖u‖. Therefore, H(u)
is a continuous functional on the function space V = L2(M). By the Poincaré inequality,
we have

‖u‖2 ≤ c‖∇u‖2 = cG(u), (A5)

with a positive constant c. Therefore, G(u) is a coercive functional.
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First, we seek a minimizer of G(u) with the constraint H(u) = 1. This is a well-posed
problem. The minimizer is found by the variational principle

δ[G(u)− λH(u)] = 0, (A6)

where λ is a Lagrange multiplier. The Euler–Lagrange equation

−Δu = λu, (A7)

together with the above-mentioned boundary condition, constitute an eigenvalue problem.
We can easily show that every eigenvalue λ is positive. Let λj be an eigenvalue and ϕj be
the corresponding normalized eigenfunction (‖ϕj‖2 = 1). Setting u = aϕj and demanding
H(u) = 1, we obtain a = 1 and G(u) = λj. The smallest λj, then, yields the minimum
G(u).

The reverse problem of finding a minimizer of H(u) with the restriction G(u) = 1 is
ill posed, because the constraint is posed by a functional G(u) that is not continuous
in the topology of L2(M). Let us elucidate the pathology. The variational principle
δ[H(u)− μG(u)] = 0 (μ is a Lagrange multiplier) yields the Euler–Lagrange equation
−Δu = μ−1u. Letμ−1 = λj (an eigenvalue of −Δ), and u = aϕj. The condition G(u) = 1
yields a = λ−1/2

j , and H(u) = 1/λj. Hence, the minimum of H(u) is achieved by the largest

eigenvalue that is unbounded, viz., infH(u) = 0 and the minimizer limλj→∞ λ
−1/2
j ϕj = 0

is nothing but the minimizer of H(u) without any restriction. The constraint G(u) = 1
plays no role in this minimization problem.

A.3. Non-coercive target functional
Let us modify the target functional of (A6) to a non-coercive functional. Let Vk =
span {ϕ1, . . . , ϕk}, which is a closed (finite-dimensional) subspace of V = L2(M). We
denote the orthogonal complement by V ′, i.e. we decompose V = Vk ⊕ V ′. Let P be the
orthogonal projector V → V ′. Consider

G′(u) = ‖∇(Pu)‖2 =
∫

M
(−ΔPu)(Pu) dnx =

∞∑
j>k

λj(u, ϕj)
2, (A8)

where ( f , g) = ∫
M f (x) g(x) dnx is the inner product of L2(M). Evidently, G′(u) is not

coercive. The modified variational principle

δ[G′(u)− λH(u)] = 0 (A9)

yields the Euler–Lagrange equation that reads, after expanding with eigenfunctions,

λ′j(u, ϕj) = λ(u, ϕj) (j = 1, 2, . . .), (A10)

where the ‘modified eigenvalues’ are

λ′j =
{

0, (j = 1, . . . , k),
λj, (j > k).

(A11)

The minimizer of G′(u) is a solution of (A10) such that λ = 0 and

u =
k∑

j=1

ajϕj, (A12)
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Lower bounds on zonal enstrophy

where constants a1, . . . , ak can be arbitrarily chosen provided that
∑k

j=1 |aj|2 = 1 in order
to satisfy the constraint H(u) = 1. We obtain min G′ = 0, but the minimizer is not a unique
function.

This prototypical example elucidates the essence of the pathology created in a
variational principle with non-coercive target functional. We encounter a similar
non-uniqueness (degeneracy) problem in § 4.1. Interestingly, however, the energy
constraint brings about a dramatical change in the mathematical structure, and removes
the degeneracy; § 4.3.
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