Vol. 66 (2002) [33-41]

A REMARK ON LITTLEWOOD-PALEY g-FUNCTION

Lixin Yan

We prove L^{p}-estimates for the Littlewood-Paley g-function associated with a complex elliptic operator $L=-\operatorname{div} A \nabla$ with bounded measurable coefficients in \mathbb{R}^{n}.

1. Introduction

Let $A=A(x)$ be an $n \times n$ matrix of complex, L^{∞} coefficients, defined on \mathbb{R}^{n}, and satisfying the ellipticity (or "accretivity") condition

$$
\begin{equation*}
\lambda|\xi|^{2} \leqslant \operatorname{Re}\langle A \xi, \xi\rangle \quad \text { and } \quad|\langle A \xi, \zeta\rangle| \leqslant \Lambda|\xi||\zeta|, \tag{1.1}
\end{equation*}
$$

for $\xi, \zeta \in \mathbb{C}^{n}$ and for some λ, Λ such that $0<\lambda \leqslant \Lambda<\infty$. Here $\langle A \xi, \zeta\rangle=\sum_{i, j} a_{i j}(x) \xi_{i} \overline{\zeta_{j}}$ denotes the usual inner product in \mathbb{C}^{n}. We define a divergence form operator

$$
\begin{equation*}
L f \equiv-\operatorname{div}(A \nabla f) \tag{1.2}
\end{equation*}
$$

which we interpret in the usual weak sense via a sesquilinear form.
By the holomorphic functional calculus theory ([10]), $\psi(L)$ is well-defined for any function $\psi \in \Psi\left(S_{\mu}\right)$ (see (2.1) below). We consider the Littlewood-Paley g-function

$$
\begin{equation*}
g_{L}(f)(x)=g_{\psi, L}(f)(x)=\left(\int_{0}^{\infty}\left|\psi_{s}(L) f(x)\right|^{2} \frac{d s}{s}\right)^{1 / 2} \tag{1.3}
\end{equation*}
$$

where $\psi_{s}(z)=\psi(s z)$.
Note that if $L=-\triangle$ is the Laplacian on \mathbb{R}^{n} and $\psi(z)=z^{1 / 2} e^{-z^{1 / 2}}$, then $g_{L}(f)(x)$ is the classical Littlewood-Paley g-function $g_{1}(f)(x)$, which is also given by

$$
g_{1}(f)(x)=\left(\int_{0}^{\infty}\left|\frac{\partial}{\partial y}\left(P_{y} * f\right)(x)\right|^{2} y d y\right)^{1 / 2}
$$

where $P_{y}(x)=c_{n} y\left(y^{2}+|x|^{2}\right)^{-(n+1) / 2}$ is the Poisson kernel. It is well-known that $g_{1}(f)(x)$ is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for all $1<p<\infty$. See [11, Chapter 4].

The main result of this paper is the following theorem.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 SA2.00+0.00.

Theorem 1.1. Let L be as in (1.2). We assume that $n \geqslant 3$ and ($2 n / n+2$) $<p<(2 n /(n-2))$. If $f \in L^{p}\left(\mathbb{R}^{n}\right)$, then

$$
\begin{equation*}
c\|f\|_{p} \leqslant\left\|g_{L}(f)\right\|_{p} \leqslant c^{-1}\|f\|_{p} \tag{1.4}
\end{equation*}
$$

where $c=c(\psi)$ is a positive constant independent of f.
We remark that when A has real entries, or when $n=1,2$ in the case of complex entries, the analytic semigroup $e^{-t L}$ generated by L has a kernel $p_{t}(x, y)$ which satisfies Gaussian upper bounds, that is,

$$
\begin{equation*}
\left|p_{t}(x, y)\right| \leqslant C t^{-n / 2} \exp \left(-\frac{\beta|x-y|^{2}}{t}\right) \text { for some } \beta>0 \tag{1.5}
\end{equation*}
$$

and for all $t>0$, and all $x, y \in \mathbb{R}^{n}$ (see [4, pp. 30-31]). By [2, Theorem 4], the estimate (1.4) is true for all $1<p<\infty$. Unfortunately, in the case of complex entries, (1.5) is no longer true if $n \geqslant 3$. It was proved in [1] that there is a complex elliptic operator $L=-\operatorname{div} A \nabla$ which does not have Gaussian upper bounds (1.5) in dimensions $n \geqslant 5$. And then we can not follow the technique in [2] to obtain Theorem 1.1. Instead, we need to use some weighted norm estimates for the semigroup $e^{-t L}$ (Lemma 2.2 below). See $[\mathbf{3}, \mathbf{5}, \mathbf{8}, \mathbf{9}]$.

The paper is organised as follows. In Section 2, we state some known results to be used throughout this paper. In Section 3, we prove a lemma, which plays a key role in the proof of Theorem 1.1. The proof of Theorem 1.1 will be given in Section 4 by using the technique already employed in [7] and [5].

2. Preliminaries

For $\nu \in(0, \pi]$, we denote by S_{ν} the open sector $S_{\nu}=\{z \in \mathbb{C}:|\arg z|<\nu\}$ and by $H_{\infty}\left(S_{\nu}\right)$ the set of all bounded holomorphic functions on S_{ν}. If $\mu \in(\pi / 2, \pi)$, we define

$$
\begin{equation*}
\Psi\left(S_{\mu}\right):=\left\{g \in H_{\infty}\left(S_{\mu}\right): \exists s>0, \exists c \geqslant 0:|g(z)| \leqslant \frac{c|z|^{s}}{1+|z|^{2 s}}\right\} \tag{2.1}
\end{equation*}
$$

We are given an elliptic operator as in (1.2) with ellipticity constants λ and Λ in (1.1). By the holomorphic functional calculus theory, for any $g \in \Psi\left(S_{\mu}\right), g(L)$ can be computed by the absolutely convergent Cauchy integral

$$
\begin{equation*}
g(L)=-\frac{1}{2 \pi i} \int_{\gamma}(\eta I-L)^{-1} g(\eta) d \eta \tag{2.2}
\end{equation*}
$$

where $\mu \in(\pi / 2, \pi)$ and the path γ consists of two rays $r e^{ \pm i \theta}, r \geqslant 0$ and $\pi / 2<\theta<\mu$, described counter-clockwise. We refer to [10] for the details.

Now, we denote by $B(x, r)$ balls in \mathbb{R}^{n}, let $A(x, \sqrt{t}, k)$ be the following annulus in \mathbb{R}^{n} :

$$
A(x, \sqrt{t}, k)=B(x,(k+1) \sqrt{t}) \backslash B(x, k \sqrt{t})
$$

Moreover, we write P_{E} for the projection obtained by multiplying by the characteristic function of a set E. We consider the Hardy-Littlewood p-maximal operator M_{p}, defined by $M_{p} f(x)=\sup _{r>0} N_{p, r} f(x)$, where

$$
N_{p, r} f(x)=\left(|B(x, r)|^{-1} \int_{B(x, r)}|f(y)|^{p} d y\right)^{1 / p}
$$

If $n \geqslant 3$, we denote

$$
p_{\min }=2 n /(n+2) \quad \text { and } \quad p_{\max }=2 n /(n-2)
$$

First, Theorem 1.1 is true for $p=2$ (see [10]).
Lemma 2.1. Let L be as in (1.2) and $n \geqslant 3$. Then, there exists a positive constant $c=c(\psi)$ independent of f such that

$$
c\|f\|_{2} \leqslant\left\|g_{L}(f)\right\|_{2} \leqslant c^{-1}\|f\|_{2}
$$

Lemma 2.2. Let L be as in (1.2). Then for all p and q such that $p_{\min }<p$ $<q<p_{\text {max }}$ there exist positive constants b and C such that

$$
\begin{equation*}
\left\|P_{B(x, \sqrt{t})} e^{-t L} P_{A(x, \sqrt{t}, k)}\right\|_{L^{p} \rightarrow L^{q}} \leqslant C|B(x, \sqrt{t})|^{1 / q-1 / p} e^{-b k^{2}} \tag{2.3}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}, t>0$, and $k \in \mathbb{N}$.
Proof: We refer to [8, Section 2] and [5, Remark 2.2].
Lemma 2.3. Suppose that $p_{\min }<p<q<p_{\max }$. Then we have
(i) for all $r, s, t>0$ and $x, z \in \mathbb{R}^{n}$, there exists $\rho>n+1$ such that
$N_{q, \sqrt{t}}\left(P_{B(z, r)} e^{-t L} P_{B(z, s)^{c}} f\right)(x) \leqslant C\left(\sum_{k>(s-r)(\sqrt{t})^{-1}} k^{n-1-\rho} N_{p, k \sqrt{t}} f(x)^{p}\right)^{1 / p} ;$
(ii) for all $r, t>0, f \in L^{p}\left(\mathbb{R}^{n}\right), z \in \mathbb{R}^{n}, x \in B(z, \sqrt{t} / 2)$, there exist $0<\gamma<\beta$ such that

$$
N_{q, 2 r}\left(P_{B(z, r)} e^{-t L} P_{B(z, 8 r)^{c} f}\right)(x) \leqslant C\left(1+\frac{r}{\sqrt{t}}\right)^{-\beta}\left(1+\frac{\sqrt{t}}{r}\right)^{\gamma} M_{p} f(x)
$$

Proof: For any fixed $b>0$ as in Lemma 2.2, there exists a constant $\rho>n$ $+1+(n p / q)$ such that $\left|e^{-b(k-1)^{2}}-e^{-b k^{2}}\right| \leqslant C k^{-\rho-1}$ for some positive constant C. Let $\beta=(\rho-n) / p$, and $\gamma=n / q$. By [5, Lemma 3.3], Lemma 2.3 is proved.

Remark.
(i) The paper [8] shows the optimality of the interval $\left(p_{\min }, p_{\max }\right)$ of the semigroup $e^{-t L}$ in Lemma 2.2 when L is defined as in (1.2);
(ii) when $(p, q)=(1, \infty)$, the weighted norm estimate (2.3) characterises the fact that the operators $e^{-t L}$ have integral kernels $p_{t}(x, y)$ satisfies certain Poisson upper bounds ([5, Proposition 3.7]).
PROPOSITION 2.4. Let $g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a decreasing function. Then the following are equivalent:
(a) For all $x, y \in \mathbb{R}^{n}, t>0$ we have

$$
\left|p_{t}(x, y)\right| \leqslant C|B(x, \sqrt{t})|^{-1} g\left(|x-y|^{2} / t\right)
$$

(b) For all $x \in \mathbb{R}^{n}, t>0, k \in \mathbb{R}^{+}$we have

$$
\left\|P_{B(x, \sqrt{t})} e^{-t L} P_{A(x, \sqrt{t}, k)}\right\|_{L^{1} \rightarrow L^{\infty}} \leqslant C|B(x, \sqrt{t})|^{-1} g\left(k^{2}\right)
$$

3. A KEy Lemma

Denote $S_{0}=I$ and $S_{t}=e^{-t L}$. For any $m \in \mathbb{N}$, we let $D^{m} S_{t}=\left(I-S_{t}\right)^{m}$ $=\sum_{k=0}^{m} C_{m}^{k}(-1)^{k} S_{k t}$. Let $\delta>2 \beta=2(\rho-n) / p>0$. We define

$$
\begin{equation*}
C_{\gamma, \delta, s}^{t, \beta}=\int_{0}^{\infty} \int_{0}^{\infty}\left(1+\frac{t}{\mu}\right)^{-2 \beta}\left(1+\frac{\mu}{t}\right)^{2 \gamma} e^{-b \nu \mu} \min \left(1,(t \nu)^{\delta}\right)\left|\psi_{s}(\nu)\right| d \nu d \mu \tag{3.1}
\end{equation*}
$$

In order to prove Theorem 1.1, we need the following lemma.
Lemma 3.1. Suppose that $p_{\min }<p<2<q<p_{\max }$ and $m>2 \beta$. Then, for all $t>0, f \in L^{p}\left(\mathbb{R}^{n}\right), z \in \mathbb{R}^{n}$, and $x \in B(z, \sqrt{t} / 2)$,

$$
N_{q, \sqrt{t}}\left(P_{B(z, \sqrt{t} / 2)}\left(\psi_{s}(L) D^{m} S_{t}\right) P_{B(z, 4 \sqrt{t})}{ }^{c} f\right)(x) \leqslant C C_{\gamma, \delta, s}^{t, \beta} M_{p} f(x)
$$

Proof: Let $f(L)=\psi_{s}(L) D^{m} S_{t}$ where $f(\lambda)=\psi_{s}(\lambda)\left(1-e^{-t \lambda}\right)^{m}$. We first represent the operator $f(L)$ by using the semigroup $e^{-\mu L}$. As in (2.2), we have

$$
f(L)=\frac{1}{2 \pi i} \int_{\gamma}(L-\lambda I)^{-1} f(\lambda) d \lambda
$$

where the contour $\gamma=\gamma_{+} \cup \gamma_{-}$is given by $\gamma_{+}(s)=s e^{i v}$ for $s \geqslant 0$ and $\gamma_{-}(s)=-s e^{-i v}$ for $s \leqslant 0$, and $v>\pi / 2$.

For $\lambda \in \gamma$, substitute:

$$
(L-\lambda I)^{-1}=\int_{0}^{\infty} e^{\lambda \mu} e^{-\mu L} d \mu
$$

Changing the order of integration gives

$$
f(L)=\int_{0}^{\infty} e^{-\mu L} n(\mu) d \mu
$$

where

$$
n(\mu)=\frac{1}{2 \pi i} \int_{\gamma} e^{\lambda \mu} f(\lambda) d \lambda
$$

Consequently, by (ii) of Lemma 2.3 we have

$$
\left.\begin{array}{l}
N_{q, \sqrt{t}}\left(P_{B(z, \sqrt{t} / 2)}\left(\psi_{s}(L) D^{m} S_{t}\right) P_{\left.B(z, 4 \sqrt{t})^{c} f\right)(x)}\right. \\
\\
\leqslant \int_{0}^{\infty} N_{q, \sqrt{t}}\left(P_{B(z, \sqrt{t} / 2} e^{-\mu L} P_{\left.B(z, 4 \sqrt{t})^{c} f\right)}\right)(x)|n(\mu)| d \mu \\
\end{array} \leqslant C \int_{0}^{\infty} \int_{0}^{\infty}\left|e^{\lambda \mu} \psi_{s}(\lambda)\left(1-e^{-t \lambda}\right)^{m}\right| N_{q, \sqrt{t}}\left(P_{B(z, \sqrt{t} / 2)} e^{-\mu L} P_{B(z, 4 \sqrt{t})^{c} f}\right)(x) d|\lambda| d \mu\right)
$$

which completes the proof of Lemma 3.1.
Corollary 3.2. Let $C_{\gamma, \delta, s}^{t, \beta}$ be as in (3.1). Then, there exists a constant C independent of t, β, γ and δ such that

$$
\int_{0}^{\infty}\left(C_{\gamma, \delta, s}^{t, \beta}\right)^{2} \frac{d s}{s} \leqslant C<\infty
$$

Proof: We denote

$$
C_{\gamma, \delta}^{t, \beta}=\int_{0}^{\infty} \int_{0}^{\infty}\left(1+\frac{t}{\mu}\right)^{-2 \beta}\left(1+\frac{\mu}{t}\right)^{2 \gamma} e^{-b \nu \mu} \min \left(1,(t \nu)^{\delta}\right) d \nu d \mu
$$

Since

$$
\left(\int_{0}^{\infty}\left|\psi_{s}(\nu)\right|^{2} \frac{d s}{s}\right)^{1 / 2} \leqslant C<\infty
$$

the Minkowski inequality implies that

$$
\int_{0}^{\infty}\left(C_{\gamma, \delta, s}^{t, \beta}\right)^{2} \frac{d s}{s} \leqslant C\left(C_{\gamma, \delta}^{t, \beta}\right)^{2}
$$

Noting that $0<2 \gamma<2 \beta<\delta$, we have $C_{\gamma, \delta}^{t, \beta}<\infty$ for any $t>0$ (see [5, Lemma 3.6] or [7, page 259] where the case $\gamma=0$). So, the proof of Corollary 3.2 is complete.

4. Proof of Theorem 1.1

We first state a Calderón-Zygmund decomposition. For its proof, (see [6, Theorem 1.1, Chapter 8]).

Lemma 4.1. Let $\lambda>0$. Then for any $f(x) \in L^{p}\left(\mathbb{R}^{n}\right), p \geqslant 1$, there exist a constant C independent of f and λ, and a decomposition

$$
f=h+b=h+\sum_{j} b_{j}
$$

so that
(i) $|h(x)| \leqslant C \lambda$ for all almost $x \in \mathbb{R}^{n}$;
(ii). there exists a sequence of balls Q_{j} so that the support of each b_{j} is contained in Q_{j} and

$$
\int_{\mathbb{R}^{n}}\left|b_{j}(x)\right|^{p} d x \leqslant C \lambda^{p}\left|Q_{j}\right|
$$

(iii) $\quad \sum_{j}\left|Q_{j}\right| \leqslant C \lambda^{-p} \int_{\mathbb{R}^{n}}|f|^{p} d x$;
(iv) each point of \mathbb{R}^{n} is contained in at most a finite number N of the balls Q_{i}.

Proof of Theorem 1.1: We first consider the second inequality of (1.4) using an idea of [7, Theorem 1] (or [5, Theorem 1.1]). For any p such that $p_{\text {min }}$ $=2 n /(n+2)<p \leqslant 2$, we shall prove that $g_{L}(f)$ satisfies weak type (p, p) estimate. And then the boundedness of $g_{L}(f)$ from $L^{p}\left(\mathbb{R}^{n}\right)\left(p_{\min }<p<2\right)$ to itself follows from the Marcinkiewicz interpolation theorem. Using a standard duality argument, $g_{L}(f)$ is proved to be a bounded operator on $L^{p}\left(\mathbb{R}^{n}\right)$ for all $2<p<p_{\max }=2 n /(n-2)$.

For any $\lambda>0$, there exist a decomposition $f=h+b=h+\sum_{j} b_{j}$, and a sequence of balls Q_{j} as in Lemma 4.1. Denote $Q_{j}=Q_{j}\left(x_{j}, r_{j}\right)$ and $t_{j}=\left(2 r_{j}\right)^{2}$. Choosing $m>2 \beta$ as in Lemma 3.1, we then decompose $\sum_{j} b_{j}=h_{1}+h_{2}$, where

$$
h_{1}=\sum_{j}\left(I-D^{m} S_{t_{j}}\right) b_{j}, \quad \text { and } \quad h_{2}=\sum_{j}\left(D^{m} S_{t_{j}}\right) b_{j}
$$

We have,

$$
\left|\left\{x:\left|g_{L} f(x)\right|>\lambda\right\}\right| \leqslant\left|\left\{x:\left|g_{L}(h)(x)\right|>\lambda / 3\right\}\right|+\sum_{k=1}^{2}\left|\left\{x:\left|g_{L}\left(h_{k}\right)(x)\right|>\lambda / 3\right\}\right|
$$

and we shall estimate the three terms separately, where we write λ instead of $\lambda / 3$.

We start with the first term. Using Lemma 2.1, we obtain

$$
\begin{aligned}
\left|\left\{x:\left|g_{L}(h)(x)\right|>\lambda\right\}\right| & \leqslant \lambda^{-2} \int_{\mathbb{R}^{n}}\left|g_{L}(h)(x)\right|^{2} d x \\
& \leqslant C \lambda^{-2} \int_{\mathbb{R}^{n}}|h(x)|^{2} d x \\
& \leqslant C\left(\frac{\|f\|_{p}}{\lambda}\right)^{p} .
\end{aligned}
$$

We estimate the second term, that is, the term involving $h_{1}=\sum_{j}\left(I-D^{m} S_{t_{j}}\right) b_{j}$. We claim that

$$
\begin{equation*}
\left\|h_{1}\right\|_{2}=\left\|\sum_{j}\left(I-D^{m} S_{t_{j}}\right) b_{j}\right\|_{2} \leqslant C \lambda^{-1}\left\|\sum_{j} \chi_{Q_{j}}\right\|_{2} \tag{4.1}
\end{equation*}
$$

Since $\left\|\sum_{j} \chi_{Q_{j}}\right\|_{2}^{2} \leqslant C\left(\|f\|_{p} / \lambda\right)^{p}$ by iv) of Lemma 4.1, we obtain

$$
\begin{aligned}
\left|\left\{x:\left|g_{L}\left(h_{1}\right)(x)\right|>\lambda\right\}\right| & \leqslant \lambda^{-2} \int_{\mathbb{R}^{n}}\left|g_{L}\left(h_{1}\right)(x)\right|^{2} d x \\
& \leqslant C \lambda^{-2} \int_{\mathbb{R}^{n}}\left|h_{1}\right|^{2} d x \\
& \leqslant C\left(\frac{\|f\|_{p}}{\lambda}\right)^{p}
\end{aligned}
$$

We now prove the claim (4.1). Recall that $t_{j}=\left(2 r_{j}\right)^{2}$, and let $1 / p^{\prime}+1 / p=1$. Note that for any $\phi \in L^{2}\left(\mathbb{R}^{n}\right)$,

$$
\begin{aligned}
\left|\left\langle\phi,\left(I-D^{m} S_{t_{j}}\right) b_{j}\right\rangle\right| & =\left|\left\langle\left(I-D^{m} S_{t_{j}}\right)^{*} \phi, b_{j}\right\rangle\right| \leqslant\left\|\chi_{Q_{j}}\left(I-D^{m} S_{t_{j}}\right)^{*} \phi\right\|_{p^{\prime}}\left\|b_{j}\right\|_{p} \\
& \leqslant C \lambda^{-1}\left|Q_{j}\right| N_{p^{\prime}, r_{j}}\left(I-D^{m} S_{t_{j}}\right)^{*} \phi\left(x_{j}\right) \\
& \leqslant C \lambda^{-1} \int_{Q_{j}} N_{p^{\prime}, r_{j}}\left(I-D^{m} S_{t_{j}}\right)^{*} \phi d x
\end{aligned}
$$

Observing that $S_{0}=I$, and $I-D^{m} S_{t}=-\sum_{k=1}^{m} C_{m}^{k}(-1)^{k} S_{k t}$ for all $t>0$. Applying (i) of Lemma 2.3 ($q=p^{\prime}$ and $p=p$), we obtain

$$
N_{p^{\prime}, \sqrt{t}}\left(I-D^{m} S_{t}\right)^{*} f(x) \leqslant C M_{p} f(x)
$$

So, for any $\phi \in L^{2}\left(\mathbb{R}^{n}\right)$ we have $\left\|M_{p} \phi\right\|_{2} \leqslant C\|\phi\|_{2}$, and then

$$
\begin{aligned}
\sup _{\|\phi\|_{2} \leqslant 1}\left|\left\langle\phi, \sum_{j}\left(I-D^{m} S_{t_{j}}\right) b_{j}\right\rangle\right| & \leqslant C \lambda^{-1} \sup _{\|\phi\|_{2} \leqslant 1} \int\left(M_{p} \phi\right) \sum_{j} \chi_{Q_{j}}(x) d x \\
& \leqslant C \lambda^{-1}\left\|\sum_{j} \chi_{Q_{j}}\right\|_{2} \sup _{\|\phi\|_{2} \leqslant 1}\left\|M_{p} \phi\right\|_{2} \\
& \leqslant C \lambda^{-1}\left\|\sum_{j} \chi Q_{j}\right\|_{2}
\end{aligned}
$$

which completes the proof of the claim (4.1).
We now turn to estimate the third term, that is, the term which involves h_{2}. Denoting $Q_{j}^{*}=Q_{j}\left(x_{j}, 8 r_{j}\right)$ we have

$$
\begin{aligned}
\left|\left\{x:\left|g_{L}\left(h_{2}\right)(x)\right|>\lambda\right\}\right| & \leqslant \sum_{j}\left|Q_{j}^{*}\right|+\lambda^{-2} \int_{\left(\cup_{j} Q_{j}^{*}\right)^{c}}\left|g_{L}\left(h_{2}\right)(x)\right|^{2} d x \\
& \leqslant C\left(\frac{\|f\|_{p}}{\lambda}\right)^{p}+\lambda^{-2} \int_{\left(\cup_{j} Q_{j}^{*}{ }^{c}\right.}\left|g_{L}\left(h_{2}\right)(x)\right|^{2} d x
\end{aligned}
$$

Denote $G_{j, s}=\chi_{\left(Q_{j}^{*}\right)}{ }^{c \psi_{s}(L)}\left(D^{m} S_{t_{j}}\right) \chi_{Q_{j}} b_{j}$. Observe that

$$
\begin{aligned}
& \int_{\left(\cup_{j} Q_{j}^{*}\right)^{c}}\left|g_{L}\left(h_{2}\right)(x)\right|^{2} d x=\int_{\left(\cup_{j} Q_{j}^{*}\right)^{c}} \int_{0}^{\infty}\left|\sum_{j} \psi_{s}(L)\left(D^{m} S_{t_{j}}\right) b_{j}\right|^{2} \frac{d x d s}{s} \\
& \leqslant \int_{0}^{\infty} \int_{\mathbb{R}^{n}} \left\lvert\, \sum_{j} \chi_{\left.\left(Q_{j}^{*}\right)^{c} \psi_{s}(L)\left(D^{m} S_{t_{j}}\right) \chi_{Q_{j}} b_{j}\right|^{2} d x \frac{d s}{s}}\right. \\
& \leqslant \int_{0}^{\infty}\left\|\sum_{j} G_{j, s} b_{j}\right\|_{2}^{2} \frac{d s}{s}
\end{aligned}
$$

We shall estimate

$$
\begin{equation*}
\int_{0}^{\infty}\left\|\sum_{j} G_{j, s} b_{j}\right\|_{2}^{2} \frac{d s}{s} \leqslant C \lambda^{-2}\left\|\sum_{j} \chi_{Q_{j}}\right\|_{2}^{2} \tag{4.2}
\end{equation*}
$$

and can then argue as with the term $h_{1}(x)$ to obtain

$$
\left|\left\{x:\left|g_{L}\left(h_{2}\right)(x)\right|>\lambda\right\}\right| \leqslant C\left(\frac{\|f\|_{p}}{\lambda}\right)^{p}
$$

Now we prove (4.2). Choosing r such that $p_{\min }<r<2$. Using (ii) of Lemma 2.3 ($q=p^{\prime}$ and $p=r$), we have

$$
\begin{aligned}
\left|\left\langle\phi, G_{j, s} b_{j}\right\rangle\right| \leqslant\left\|\chi Q_{j} G_{j, s}^{*} \phi\right\|_{p^{\prime}}\left\|b_{j}\right\|_{p} & \leqslant C \lambda^{-1}\left|Q_{j}\right| N_{p^{\prime}, r_{j}}\left(G_{j, s}^{*} \phi\right)\left(x_{j}\right) \\
& \leqslant C \lambda^{-1} \int_{Q_{j}} N_{p^{\prime}, r_{j}}\left(G_{j, s}^{*} \phi\right)(x) d x \\
& \leqslant C \lambda^{-1} C_{\gamma, \delta, s}^{t, \beta} \int_{Q_{j}} M_{r} \phi d x
\end{aligned}
$$

Noting that $\left\|M_{r} \phi\right\|_{2} \leqslant C\|\phi\|_{2}$, by Corollary 3.2 we obtain -

$$
\begin{aligned}
\int_{0}^{\infty}\left\|\sum_{j} G_{j, s} b_{j}\right\|_{2}^{2} \frac{d s}{s} & =\int_{0}^{\infty}\left(\sup _{\|\phi\|_{2} \leqslant 1}\left|\left\langle\phi, \sum_{j} G_{j, s} b_{j}\right\rangle\right|\right)^{2} \frac{d s}{s} \\
& \leqslant C \lambda^{-2}\left\|\sum_{j} \chi_{Q_{j}}\right\|_{2}^{2} \sup _{\|\phi\|_{2} \leqslant 1}\left\|M_{r} \phi\right\|_{2}^{2} \int_{0}^{\infty}\left(C_{\gamma, \delta, s}^{t, \beta}\right)^{2} \frac{d s}{s} \\
& \leqslant C \lambda^{-2}\left\|\sum_{j} \chi_{Q_{j}}\right\|_{2}^{2}
\end{aligned}
$$

which completes the proof of (4.2), and then the second inequality in (1.4) when $p_{\text {min }}<p<p_{\text {max }}$.

The first inequality of (1.4), that is, the reverse square function estimates when $p_{\text {min }}<p \leqslant 2$ and $2 \leqslant p<p_{\text {max }}$ are consequences of the second inequality (that is, the square function estimates) when $2 \leqslant p<p_{\max }$ and $p_{\min }<p \leqslant 2$, respectively.

References

[1] P. Auscher, T. Coulhon and Ph. Tchamitchian, 'Absence de principe du maximum pour certaines équations paraboliques complexes', Colloq. Math. 171 (1996), 87-95.
[2] P. Auscher, X.T. Duong and A. McIntosh, 'Boundedness of Banach space valued singular integral operators and Hardy spaces' (to appear).
[3] P. Auscher, S. Hofmann, M. Lacey, J. Lewis, A. McIntosh and Ph. Tchamitchian, 'The solution of Kato's conjectures', C.R. Acad. Sci. Paris Ser. I Math. 332 (2001), 601-606.
[4] P. Auscher and Ph. Tchamitchian, 'Square root problem for divergence operators and related topics', Astérisque 249 (1998), 577-623.
[5] S. Blunck and P.C. Kunstmann, 'Calderón-Zygmund theory for non-integral operators and H^{∞} functional calculus' (to appear).
[6] D.G. Deng and Y.S. Han, Theory of H^{p} spaces (Peking Univ. Press, China, 1992).
[7] X.T. Duong and A. McIntosh, 'Singular integral operators with non-smooth kernels on irregular domains', Rev. Mat. Iberoamericana 15 (1999), 233-265.
[8] V. Liskevich, Z. Sobol and H. Vogt, 'On L^{p}-theory of C_{0}-semigroups associated with second order elliptic operators II' (to appear).
[9] V. Liskevich and H. Vogt, 'On L^{p}-spectrum and essential spectra of second order elliptic operators', Proc. London Math. Soc. 80 (2000), 590-610.
[10] A. McIntosh, 'Operators which have an H_{∞}-calculus', in Miniconference on Operator Theory and Partial Differential Equations (Proceedings of the Centre for Mathematical Analysis, ANU, Canberra, 1986), pp. 210-231.
[11] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30 (Princeton University Press, Princeton N.J., 1970).

Department of Mathematics
Macquaire University
New South Wales 2109
Australia
e-mail: lixin@ics.mq.edu.au

Department of Mathematics
Zhongshan University
Guangzhou 510275
Peoples Republic of China

[^0]: Received 5th December, 2001
 The author is supported by a grant from the Australia Research Council, the NSF of China and NSF of Guangdong Province. I would like to thank Dr. X.T. Duong for his useful suggestions.

