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A REMARK ON LITTLEWOOD-PALEY g-FUNCTION

LIXIN YAN

We prove Lp-estimates for the Littlewood-Paley ^-function associated with a com-
plex elliptic operator L = — div AV with bounded measurable coefficients in K" .

1. INTRODUCTION

Let A = A(x) be an n x n matrix of complex, L°° coefficients, defined on K",
and satisfying the ellipticity (or "accretivity") condition

(1.1) A | £ | 2 < R e ( ^ , 0 and \(A£,0\4 A|£||C|,

for f, ( € Cn and for some A, A such that 0 < A ^ A < oo. Here {A£, C) = £ aij (x)€iCj

denotes the usual inner product in C". We define a divergence form operator

(1.2) Lf = -div (AVf),

which we interpret in the usual weak sense via a sesquilinear form.

By the holomorphic functional calculus theory ([10]), tp(L) is well-defined for any
function ip € ^(5M) (see (2.1) below). We consider the Littlewood-Paley g-function

aoo j \ 1/2

\rP3(L)f(x)\2-) ,
s /

where tps(z) = ijj(sz).
Note that if L = - A is the Laplacian on R" and ip(z) = zl/2e~z1'2 , then c//,(/)(a;)

is the classical Littlewood-Paley ^-function gi{f)(x), which is also given by

1/2

where Py(x) — cny(y2 + \x\2) " is the Poisson kernel. It is well-known that

gi(f)(x) is bounded on Lp(Rn) for all 1 < p < oo. See [11, Chapter 4].

The main result of this paper is the following theorem.
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THEOREM 1 . 1 . Let L be as in (1.2). We assume that n ^ 3 and (2n/n + 2)

< p < (2n/(n - 2)). If f € £ p ( R n ) , then

(1-4) cll/II^H^/Jll^c-Ml/ll,,,

where c = c(rp) is a positive constant independent of f.

We remark that when A has real entries, or when n = 1, 2 in the case of complex
entries, the analytic semigroup e~tL generated by L has a kernel pt{x, y) which satisfies
Gaussian upper bounds, that is,

(1.5) \Pt(x,y)\ ̂ Ct-n/2exp(-®X~y\ ) for some 0 > 0,

and for all t > 0, and all x, y € E" (see [4, pp. 30-31]). By [2, Theorem 4], the estimate
(1.4) is true for all 1 < p < oo. Unfortunately, in the case of complex entries, (1.5) is
no longer true if n ^ 3. It was proved in [1] that there is a complex elliptic operator
L = — div AV which does not have Gaussian upper bounds (1.5) in dimensions n ^ 5.
And then we can not follow the technique in [2] to obtain Theorem 1.1. Instead, we
need to use some weighted norm estimates for the semigroup e~tL (Lemma 2.2 below).
See [3, 5, 8, 9].

The paper is organised as follows. In Section 2, we state some known results to be
used throughout this paper. In Section 3, we prove a lemma, which plays a key role in
the proof of Theorem 1.1. The proof of Theorem 1.1 will be given in Section 4 by using
the technique already employed in [7] and [5].

2. PRELIMINARIES

For v e (0, TT], we denote by Sv the open sector Sv = {z e C : \ argz| < v} and
by Hoo{Sv) the set of all bounded holomorphic functions on Sv. If fj. e (ir/2,n), we
define

(2.1) '

We are given an elliptic operator as in (1.2) with ellipticity constants A and A in
(1.1). By the holomorphic functional calculus theory, for any g e ^(S^), g{L) can be
computed by the absolutely convergent Cauchy integral

(2-2)

where fx 6 (TT/2,TT) and the path 7 consists of two rays re±tB,r ^ 0 and TT/2 < 6 <

described counter-clockwise. We refer to [10] for the details.
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Now, we denote by B(x,r) balls in R n , let A(x, y/i, k) be the following annulus

in Rn:

A(x,Vi,k) = B(x,(k + l)y/i)\B(x,ky/i).

Moreover, we write PE for the projection obtained by multiplying by the characteris-
tic function of a set E. We consider the Hardy-Littlewood p-maximal operator Mp,
denned by Mpf(x) = supNprf(x), where

r>0

Np,rf(x)=(\B(x,r)\-1 f \f(y)\P

v JB(x,r)

If n > 3, we denote

Pmin = 2n/(n + 2) and pm a x = 2n/(n - 2).

First, Theorem 1.1 is true for p = 2 (see [10]).

LEMMA 2 . 1 . Let L be as in (1.2) and n ̂  3. Then, there exists a positive
constant c = c{ip) independent of f such that

LEMMA 2 . 2 . Let L be as in (1.2). Then for all p and q such that pm[n < p
< Q < Pmax there exist positive constants b and C such that

(2.3) ||PB/X rf)e-tLPA,

for all x € Rn, t > 0, and k € N.

PROOF: We refer to [8, Section 2] and [5, Remark 2.2]. D

LEMMA 2 . 3 . Suppose that pmin <p < q < pm a x . Then we have

(i) for all r, s, t > 0 and x, z € Rn, there exists p > n + 1 such that

\ 1 / p

*n-X-p;W/(*)P i
k>(s-r)(y/t)

(ii) for aii r, t> 0, / e LP(En), z e l " , i 6 5(^, v^/2), there exist 0 < 7 <
such that

Nq,2r(PB{Zir)e-tLPB(Zi8r)cf)(x) <

PROOF: For any fixed b > 0 as in Lemma 2.2, there exists a constant p > n
+ 1 + (np/q) such that le"6^"1) - e~bk | ̂  Ck~p~l for some positive constant C.
Let /3 = (p - n)/p, and 7 — n/q. By [5, Lemma 3.3], Lemma 2.3 is proved. D
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REMARK.

(i) The paper [8] shows the optimality of the interval (pmin,Pmax) of the
semigroup e~tL in Lemma 2.2 when L is denned as in (1.2);

(ii) when (p, q) = ( l ,oo) , the weighted norm estimate (2.3) characterises the
fact that the operators e~tL have integral kernels pt{x, y) satisfies certain
Poisson upper bounds ([5, Proposition 3.7]).

PROPOSITION 2 . 4 . Let g : R+ -» K+ be a decreasing function. Then the

following are equivalent:

(a) For all x, y € K", t > 0 we have

\Pt(x,y)\ ^ C B(x,Vt) ~\{\x - y\2/t).

(b) For all x € En, t > 0, k € K+ we have

lip \e~tLP i " " ^
|| s(x,N/t) >H

3. A KEY LEMMA

Denote 5 0 = / and 5 t - e~ t L . For any m € N, we let D m 5 t = (/ - St)
T

m

J ] C^( - l ) Skt- Let 5 > 2/3 = 2(p - n)/p > 0. We define
fc=0

(3.1)
" ' Jo Jo

In order to prove Theorem 1.1, we need the following lemma.

LEMMA 3 . 1 . Suppose that pmin < p < 2 < q < pmax and m > 2/3. Then, for all

t > 0, / S Lp(Rn), z e R", and x 6 B(z, x/f/2),

PROOF: Let /(L) - ips(L)DmSt where /(A) = ^,(A)(l - e-tx)m. We first repre-
sent the operator f(L) by using the semigroup e~>iL. As in (2.2), we have

where the contour 7 = 7+U7_ is given by 7+(s) = selv for s ^ 0 and 7-(s) = — se~lv

for s ^ 0, and v > TT/2 .

For A 6 7, substitute:
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Changing the order of integration gives

f(L)=
/o

where

n(fj.) = — :

Consequently, by (ii) of Lemma 2.3 we have

r
which completes the proof of Lemma 3.1. D

COROLLARY 3 . 2 . Let C ^ s be as in (3.1). Then, there exists a constant C
independent of t, ft, 7 and 8 such that

Jo {C^°J T

P R O O F : We denote

noo / j. \ —20

\ A1

< 00.

Since

the Minkowski inequality implies that

f°° (ct,0 y^i < cfc1^
Jo \ J S \ "

Noting that 0 < 27 < 20 < 8, we have CM < 00 for any t > 0 (see [5, Lemma 3.6] or
[7, page 259] where the case 7 = 0). So, the proof of Corollary 3.2 is complete.
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4. P R O O F OF THEOREM 1.1

We first state a Calderon-Zygmund decomposition. For its proof, (see [6, Theorem

1.1, Chapter 8]).

LEMMA 4 . 1 . Let X > 0. Then for any f{x) € Lp(Rn),p > 1, there exist a
constant C independent of f and A, and a decomposition

so that

(i) \h(x)\ ^ CX for all almost x G R" ;
(ii). there exists a sequence of balls Qj so that the support of each bj is

contained in Qj and

f \bj(x)\pdx^CX"\Qj\;

(iii) Ej\Qj\^CX-pfRn \f\Pdx;
(iv) each point of R" is contained in at most a finite number N of the balls

Qi-

PROOF OF THEOREM 1.1: We first consider the second inequality of (1.4) us-
ing an idea of [7, Theorem 1] (or [5, Theorem 1.1]). For any p such that pmin

= 2n/(n + 2) < p ^ 2, we shall prove that <7L(/) satisfies weak type (p,p) estimate.
And then the boundedness of gL(f) from LP(R") (pmin < p < 2) to itself follows from
the Marcinkiewicz interpolation theorem. Using a standard duality argument, <?£,(/) is
proved to be a bounded operator on Lp(Rn) for all 2 < p < pm a x = 2n/(n - 2).

For any A > 0, there exist a decomposition / = h + b = h + Y2j bj, and a sequence
of balls Qj as in Lemma 4.1. Denote Qj = QJ{XJ,TJ) and tj = (2r,)2. Choosing
m > 2/3 as in Lemma 3.1, we then decompose YL • bj = h\ + h2, where

I — D Stj)bj, and h2 = / \DmSt )bj.

We have,

\{x: \gLf(x)\>X}\4\{x: \gc(h)(x)\ > A/3}| + f^Ux : \gL(hk)(x)\ > A/3}|,
k=\

and we shall estimate the three terms separately, where we write A instead of A/3.
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We start with the first term. Using Lemma 2.1, we obtain

\{x: \9L(h)(x)\>\}\^\-2 [ \gL(h)(x)\2 dx

\h(x)\2dx[ \

We estimate the second term, that is, the term involving hi = £_•(/ — DmSt)bj.
We claim that

Since

IMIa =
i|2

2j XQj ^ C( II/IL /^Y by iy) of Lemma 4.1, we obtain

x: \gL(hi){x)\>X}\^X-iJ\gL(h1)(x)\2dx

\hx\
2dx

We now prove the claim (4.1). Recall that t, = (2rj)2, and let 1/p' + 1/p = 1. Note
that for any ^

^. {I - DmStjYcj>{xj)

1 f Np,ir. (I - DmStjY<t>dx.

m

Observing that 50 = / , and I-DmSt = - £ C^{-l)kSkt for all t > 0. Applying (i)
fc=i

of Lemma 2.3 (q — p' and p — p), we obtain

NplVi(I - DmSt)'f{x) ^ CMpf(x).

So, for any 4> 6 L2(Rn) we have | |MP0||2 < C | |^ | | 2 , and then
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which completes the proof of the claim (4.1).
We now turn to estimate the third term, that is, the term which involves h,2 •

Denoting Qj = Qj(xj,8rj) we have

/ .e\9L(h2)(x)\2 dx

dx.

Denote GjtS = X(Q.y^s{L){DmStj)xQjbj. Observe that

We shall estimate

and can then argue as with the term hi(x) to obtain

\{x:

Now we prove (4.2). Choosing r such that p m i n < r < 2. Using (ii) of Lemma 2.3
(q = p' and p = r), we have

X ^ G ^ X ^ \\xQjG;<s4pl\\bj\\, $ cA-1|gJ-i^,ri(G;,.0)(xJ-)

< C A - X C M , f MT(j>dx.

Noting that ||Mr0||2 ^ C||</>||2, by Corollary 3.2 we obtain -
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which completes the proof of (4.2), and then the second inequality in (1.4) when

Pmin < P < Pmax •

The first inequality of (1.4), that is, the reverse square function estimates when

Pmin < p ^ 2 and 2 ^ p < p m a x are consequences of the second inequality (that is, the

square function estimates) when 2 ^ p < pmax and pmin < p < 2, respectively.
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