ESTIMATES FOR KERNELS OF INTERTWINING OPERATORS ON SL(n, \mathbb{R})

MICHAEL COWLING ${ }^{\curvearrowleft}$ and STEFANO MEDA

(Received 24 November 2004; revised 3 May 2005)

Communicated by G. Willis

Abstract

In this paper we study the kernels and the $L^{p}-L^{q}$ boundedness properties of some intertwining operators associated to representations of $\operatorname{SL}(n, \mathbb{R})$.

2000 Mathematics subject classification: primary 22E30, 42B20.
Keywords and phrases: semisimple Lie groups, intertwining operators, multiparameter potential operators.

1. Introduction

In this paper, we estimate the size of the kernels and study the $L^{p}-L^{q}$ mapping properties of certain 'potential' operators on the group V of all lower triangular unipotent $n \times n$ matrices. These operators arise naturally in studying the analytic continuation of the unitary principal series of the group $\operatorname{SL}(n, \mathbb{R})$, or its extension G, defined to be the group of all real $n \times n$ matrices of determinant ± 1. They may be described as follows.

The noncompact semisimple Lie group G has finite centre and real rank $n-1$. We write Θ for the standard Cartan involution of G, that is,

$$
\Theta(x)=\left(x^{-1}\right)^{t} \quad \text { for all } x \in G
$$

where ${ }^{t}$ denotes transpose. The fixed point set of Θ is the orthogonal group $\mathrm{O}(n)$, which we denote by K; it is a maximal compact subgroup of G. We denote by A

[^0](c) 2006 Australian Mathematical Society $1446-7887 / 06 \$$ A $2.00+0.00$
the abelian subgroup of diagonal matrices in G with positive entries and by N the nilpotent group of all upper triangular unipotent matrices. Then KAN is an Iwasawa decomposition of G. The group ΘN, which we denote by V, is then the group of lower triangular unipotent matrices.

The centraliser and normaliser of A in K are denoted by M and M^{\prime}. Then M consists of all diagonal matrices in K and is normal in M^{\prime}. We denote by P the minimal parabolic subgroup $M A N$ of G.

The group M^{\prime} / M, denoted by W, is finite; we denote a typical element by w_{i}. Choose a representative \bar{w}_{i} of w_{i} in M^{\prime}, that is, an element of the appropriate coset of M in M^{\prime}. The Bruhat decomposition asserts that G is the disjoint union of the sets MAN \bar{w}_{i} MAN, all but one of which, MAN \bar{w}^{*} MAN say, are of dimension less than $n^{2}-1$, the dimension of G. We may take the representative \bar{w}^{*} in M^{\prime} of the 'longest element' w^{*} in W to be

$$
\begin{equation*}
E_{1, n}+E_{2, n-1}+\cdots+E_{n, 1} \tag{1.1}
\end{equation*}
$$

where $E_{i, j}$ is the matrix whose (i, j) th entry is 1 and whose other entries are 0 . Further, MAN $\bar{w}^{*} M A N=\bar{w}^{*} V M A N$, so that $\bar{w}^{*} V M A N$ is a dense open subset of G whose complement is a finite union of submanifolds of lower dimension. The mapping $(v, m, a, n) \mapsto v m a n$ is a diffeomorphism from $V \times M \times A \times N$ onto the Zariski open subset VMAN of G. For almost all x in G, we may write

$$
x=V(x) M(x) A(x) N(x)
$$

where $V(x) \in V, M(x) \in M, A(x) \in A$, and $N(x) \in N$.
Denote by \mathfrak{a} the Lie algebra of A, that is, the set of diagonal matrices of trace 0 ; we write $\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)$ for the diagonal matrix with diagonal entries x_{1}, \ldots, x_{n}. Define ρ to be the linear functional

$$
\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right) \mapsto \sum_{1 \leq i<j \leq n} \frac{x_{i}-x_{j}}{2}
$$

on \mathfrak{a} (then ρ is the usual half-sum of the positive roots with multiplicities).
Suppose that λ is in $\mathfrak{a}_{\mathrm{C}}^{\prime}$. Define the character χ_{λ} of P by

$$
\chi_{\lambda}(m a n)=a^{\lambda+\rho}
$$

for all $m \in M, a \in A$, and $n \in N$, where a^{λ} is short for $\exp (\lambda(\log a))$. We induce the corresponding character of P to G. Explicitly, let B_{λ}^{∞} denote the space of all C^{∞} functions ξ on G with the property that

$$
\xi(x p)=\xi(x) \chi_{\lambda}\left(p^{-1}\right)
$$

for all $x \in G$ and $p \in P$. We denote by π_{λ} the left translation representation of G on B_{λ}^{x}. A common notation for π_{λ} is

$$
\operatorname{ind}_{M A N}^{G}\left(1 \otimes \chi_{\lambda} \otimes 1\right)
$$

Since $V M A N$ is Zariski open in G, every function in B_{λ}^{∞} is determined by its restriction to the nilpotent group V. The representation π_{λ} may be realised in the so-called noncompact picture thus:

$$
\left[\pi_{\lambda}(x) \xi\right](v)=\xi\left(V\left(x^{-1} v\right)\right) A\left(x^{-1} v\right)^{-\lambda-\rho} \quad \text { for all } x \in G, v \in V,
$$

for all ξ in B_{λ}^{∞}. For p in $[1, \infty)$, define $\delta(p)$ to be $2 / p-1$. Then $-1<\delta(p) \leq 1$. For λ in $\delta(p) \rho+i a^{\prime}$, we endow B_{λ}^{∞} with the norm

$$
\|\xi\|_{p}=\left[\int_{V}|\xi(v)|^{p} \mathrm{~d} v\right]^{1 / p}
$$

Then π_{λ} extends to an isometric representation (unitary if $p=2$) on the completion of B_{λ}^{∞} in this norm. For ξ in B_{λ}^{∞}, we define $I_{\lambda} \xi$ by

$$
I_{\star} \xi(x)=\int_{V} \xi\left(x \bar{w}^{*} v\right) \mathrm{d} v \quad \text { for all } x \in G .
$$

At least formally, if this integral makes sense, then

$$
I_{\lambda} \xi(x m a n)=I_{\lambda} \xi(x) a^{-\lambda-\rho}
$$

for all $x \in G, m \in M, a \in A$, and $n \in N$, so that $I_{\lambda} \xi$ ought to lie in $B_{-\lambda}^{\infty}$, and further, I_{λ} commutes with left translations, so that $I_{\lambda} \pi_{\lambda}=\pi_{-\lambda} I_{\lambda}$. In particular, $I_{\lambda} \xi$ is fixed by K if ξ is.

Knapp and Stein [7] (developing earlier work of Kunze and Stein [9, 10], of Schiffmann [11], and of Gindikin and Karpelevič [2]) showed that, if $\operatorname{Re}(\lambda)>0$ (in an appropriate sense), then I_{z} does indeed make sense, and that I_{λ} continues meromorphically into $\mathfrak{a}_{\mathrm{f}}^{\prime}$. Furthermore, they showed that if z is a purely imaginary complex number, then $I_{s p}$ extends to a bounded operator on $L^{2}(V)$. It is easy to show that if $\operatorname{Re}(z)=1$, then $I_{z \rho}$ extends to a bounded operator from $L^{1}(V)$ to $L^{\infty}(V)$. Also, the operator norms of $I_{z \rho}$ grow admissibly when $\operatorname{Im}(z)$ tends to infinity. Hence Stein's complex interpolation theorem applies to the analytic family of operators $\left\{I_{z p}: \operatorname{Re}(z) \in[0,1]\right\}$, and it follows that $I_{\delta(p) \rho}$ is bounded from $L^{p}(V)$ to $L^{p^{\prime}}(V)$, where p^{\prime} denotes the conjugate index $p /(p-1)$ of p.

In the case where $n=2$, this result has been known for a long time. Indeed, in this case the operator $I_{\delta(p) \rho}$ may be realised as the convolution operator on the real line with kernel $v \mapsto|v|^{-2 / p^{\prime}}$ (see [8] or the proof of our main result). This is the kernel of the
classical Riesz potential operator of homogeneous degree $-2 / p^{\prime}$, which is bounded from $L^{r}(\mathbb{R})$ to $L^{q}(\mathbb{R})$ whenever $1 / r-1 / q=2 / p^{\prime}$; in particular, it is bounded from $L^{p}(\mathbb{R})$ to $L^{p^{\prime}}(\mathbb{R})$. To prove this result, one first shows that the kernel of $I_{\delta(p) \rho}$ is in the Lorentz space $L^{p^{\prime} / 2 . \infty}(\mathbb{R})$, and then uses Hunt's convolution theorem [5]. A similar result holds for all real rank one simple groups. This fact was crucial to the improved version of the Kunze-Stein phenomenon proved by the authors of this paper and Setti (described in [1]).

For groups of higher rank, however, the situation is more complicated. To illustrate the problems which may arise, consider the case of $\operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})$. The intertwining operator $I_{\delta(p) \rho}$ may be realised as convolution on \mathbb{R}^{2} with the kernel

$$
k_{s}(x, y)=\frac{1}{|x y|^{1 / s}}
$$

where $s=p^{\prime} / 2$. This kernel is singular on the union of two one-dimensional submanifolds of \mathbb{R}^{2}. It is straightforward to check that

$$
\left|\left\{(x, y) \in \mathbb{R}^{2}:\left|k_{s}(x, y)\right|>t\right\}\right|=\infty \quad \text { for all } t \in \mathbb{R}^{+}
$$

Hence k_{s} is not in the Lorentz space $L^{s, \infty}\left(\mathbb{R}^{2}\right)$, and Hunt's convolution theorem does not apply. However,

$$
\left|\left\{y \in \mathbb{R}: k_{s}(x, y)>t\right\}\right|=\left|\left\{y \in \mathbb{R}: \frac{1}{|x||y|}>t^{s}\right\}\right|=\frac{2}{|x| t^{s}}
$$

so that $k_{s}(x, \cdot)$ is in $L^{s, \infty}(\mathbb{R})$ when $x \neq 0$. Furthermore,

$$
\left\|k_{s}(x, \cdot)\right\|_{L^{s, x}(\mathbb{R})}=\sup _{t>0} t\left|\left\{y \in \mathbb{R}:\left|k_{s}(x, y)\right|>t\right\}\right|^{1 / s}=\left(\frac{2}{|x|}\right)^{1 / s}
$$

thus, the function $x \mapsto\left\|k_{s}(x, \cdot)\right\|_{L^{s, x}(\mathbb{R})}$ is in $L^{s, \infty}(\mathbb{R})$. We say that k is in the iterated Lorentz space $L^{s, \infty}\left(\mathbb{R}_{(1)} ; L^{s, \infty}\left(\mathbb{R}_{(2)}\right)\right)$. By applying Hunt's convolution theorem on \mathbb{R} twice, we conclude that convolution with k_{s} is bounded from $L^{p}\left(\mathbb{R}^{2}\right)$ to $L^{q}\left(\mathbb{R}^{2}\right)$.

The point of this paper is that the convolution kernels of the intertwining operators for $\operatorname{SL}(n, \mathbb{R})$ in the noncompact picture have a 'product structure' similar to that of k_{s}, and belong to 'iterated Lorentz spaces'. Consequently, certain intertwining operators are $L^{p}-L^{q}$ bounded. This can also be proved by extending the results of Knapp and Stein [7] to show that the intertwining operators between the unitary principal series representations are L^{r} bounded whenever $1<r<\infty$ (this involves writing the operators as a composition of rank-one operators and showing that each of these is L^{r} bounded), and then using interpolation. However our approach also yields information about the sizes of the kernels of the intertwining operators.

The same idea applies, mutatis mutandis, to the group $\operatorname{SL}(n, \mathbb{C})$ and can be extended to $\operatorname{SL}(n, \mathbb{H})$. We are also able to deal with other semisimple Lie groups on a case-bycase basis. This will appear elsewhere.

2. Convolution operators on nilpotent groups

We say that a Lie group H is the unimodular semidirect product of subgroups H_{1} and H_{2}, and we write $H=H_{1} \ltimes H_{2}$, if H, H_{1}, and H_{2} are unimodular, H_{2} is normal in H, and the map $\left(h_{1}, h_{2}\right) \mapsto h_{1} h_{2}$ is a homeomorphism from $H_{1} \times H_{2}$ onto H. Thus H_{1} and H_{2} are closed, $H_{1} \cap H_{2}=\{I\}$ and $H_{1} H_{2}=H$, and conjugation on H_{2} by elements of H preserves measure.

Suppose that H is a unimodular Lie group and that p and q are in $[1, \infty)$. Denote by $C v_{p}^{q}(H)$ the Banach space of all distributions k on H such that the operator $f \mapsto f * k$, initially defined from $C_{c}^{\infty}(H)$ to $C^{\infty}(H)$, extends continuously to a bounded operator from $L^{p}(H)$ to $L^{q}(H)$; we endow $C v_{p}^{q}(H)$ with the operator norm. If $H=H_{1} \ltimes H_{2}$, we say that f is in $C v_{p}^{q}\left(H_{1} ; C v_{p}^{q}\left(H_{2}\right)\right)$ if for all fixed h_{1} in H_{1}, the function $h_{2} \mapsto f\left(h_{1} h_{2}\right)$ is in $C v_{p}^{q}\left(H_{2}\right)$ and $h_{1} \mapsto\left\|f\left(h_{1} \cdot\right)\right\|_{C_{v_{p}^{q}\left(H_{2}\right)}}$ is in $C v_{p}^{q}\left(H_{1}\right)$.

PROPOSITION 2.1. Suppose that H is a unimodular semidirect product $H_{1} \ltimes H_{2}$ and that $1 \leq p, q<\infty$. If k is in $C v_{p}^{q}\left(H_{1} ; C v_{p}^{q}\left(H_{2}\right)\right)$, then k is in $C v_{p}^{q}(H)$, and

$$
\|k\|_{C_{v^{2}}^{q}(H)} \leq\|k\|_{C_{v_{p}^{q}\left(H_{2} ; C v_{p}^{q}\left(H_{1}\right)\right)}} .
$$

Proof. Suppose that f is a continuous function with compact support. By a standard result about integration on groups (see, for example, [6, Proposition 5.26]),

$$
\int_{H} f(u) \mathrm{d} u=\int_{H_{1}} \int_{H_{2}} f\left(u_{1} u_{2}\right) \mathrm{d} u_{2} \mathrm{~d} u_{1}=\int_{H_{1}} \int_{H_{2}} f\left(u_{2} u_{1}\right) \mathrm{d} u_{2} \mathrm{~d} u_{1} .
$$

Write u^{v} for $v^{-1} u v$, and define the function $g_{u_{1}, v_{1}}$ on H_{2} by

$$
g_{u_{1}, v_{1}}\left(s_{2}\right)=f\left(u_{1} v_{1} s_{2}^{v_{1}}\right) \quad \text { for all } s_{2} \in H_{2}
$$

Then

$$
\begin{aligned}
&\left(\int_{H}|(f * k)(u)|^{q} \mathrm{~d} u\right)^{1 / q} \\
&=\left(\int_{H_{1}} \int_{H_{2}}\left|\int_{H_{1}} \int_{H_{2}} f\left(u_{1} u_{2} v_{2} v_{1}\right) k\left(\left(v_{2} v_{1}\right)^{-1}\right) \mathrm{d} v_{2} \mathrm{~d} v_{1}\right|^{q} \mathrm{~d} u_{2} \mathrm{~d} u_{1}\right)^{1 / q} \\
&=\left(\int_{H_{1}} \int_{H_{2}}\left|\int_{H_{1}} \int_{H_{2}} f\left(u_{1} v_{1}\left(u_{2} v_{2}\right)^{v_{1}}\right) k\left(v_{1}^{-1} v_{2}^{-1}\right) \mathrm{d} v_{2} \mathrm{~d} v_{1}\right|^{q} \mathrm{~d} u_{2} \mathrm{~d} u_{1}\right)^{1 / q} \\
&=\left(\int_{H_{1}}\left[\int_{H_{2}}\left|\int_{H_{1}}\left[g_{u_{1} \cdot v_{1}} *_{H_{2}} k\left(v_{1}^{-1} \cdot\right)\right]\left(u_{2}\right) \mathrm{d} v_{1}\right|^{q} \mathrm{~d} u_{2}\right]^{q / q} \mathrm{~d} u_{1}\right)^{1 / q}
\end{aligned}
$$

By Minkowski's inequality,

$$
\begin{aligned}
\|f * k\|_{q} & \leq\left(\int_{H_{1}}\left[\int_{H_{1}}\left\|g_{u_{1}, v_{1}} *_{H_{2}} k\left(v_{1}^{-1} \cdot\right)\right\|_{L^{q}\left(H_{2}\right)} \mathrm{d} v_{1}\right]^{q} \mathrm{~d} u_{1}\right)^{1 / q} \\
& \leq\left(\int_{H_{1}}\left[\int_{H_{1}}\left\|g_{u_{1}, v_{1}}\right\|_{L^{p}\left(H_{2}\right)}\left\|k\left(v_{1}^{-1} \cdot\right)\right\|_{C v_{p}^{q}\left(H_{2}\right)} \mathrm{d} v_{1}\right]^{q} \mathrm{~d} u_{1}\right)^{1 / q} .
\end{aligned}
$$

Since conjugations by elements of H_{1} are measure-preserving on H_{2},

$$
\begin{aligned}
\left\|g_{u_{1}, v_{1}}\right\|_{L^{p}\left(H_{2}\right)} & =\left(\int_{H_{2}}\left|f\left(u_{1} v_{1} s_{2}^{v_{1}}\right)\right|^{p} \mathrm{~d} s_{2}\right)^{1 / p}=\left(\int_{H_{2}}\left|f\left(u_{1} v_{1} s_{2}^{\prime}\right)\right|^{p} \mathrm{~d} s_{2}^{\prime}\right)^{1 / p} \\
& =\left\|f\left(u_{1} v_{1} \cdot\right)\right\|_{L^{p}\left(H_{2}\right)}
\end{aligned}
$$

Therefore,

$$
\|f * k\|_{q} \leq\left(\int_{H_{1}}\left[\int_{H_{1}}\left\|f\left(u_{1} v_{1} \cdot\right)\right\|_{L^{p}\left(H_{2}\right)}\left\|k\left(v_{1}^{-1} \cdot\right)\right\|_{C_{v_{p}^{q}\left(H_{2}\right)}} \mathrm{d} v_{1}\right]^{q} \mathrm{~d} u_{1}\right)^{1 / q}
$$

Now the inner integral is the convolution on H_{1} of the functions

$$
v_{1} \mapsto\left\|f\left(v_{1} \cdot\right)\right\|_{L^{p}\left(H_{2}\right)} \quad \text { and } \quad v_{1} \mapsto\left\|k\left(v_{1} \cdot\right)\right\|_{C v_{p}^{q}\left(H_{2}\right)}
$$

evaluated at u_{1}. Since $v_{1} \mapsto\left\|k\left(v_{1}\right)\right\|_{\mathcal{V}_{p}^{q}\left(H_{2}\right)}$ is in $C v_{p}^{q}\left(H_{1}\right)$ by assumption,

$$
\begin{aligned}
\|f * k\|_{q} & \leq\left(\int_{H_{1}}\left\|f\left(u_{1} v_{1} \cdot\right)\right\|_{L^{p}\left(H_{2}\right)}^{p} \mathrm{~d} u_{1}\right)^{1 / p}\|k\|_{C v_{p}^{q}\left(H_{1} ; C v_{p}^{q}\left(H_{2}\right)\right)} \\
& =\|f\|_{p}\|k\|_{C_{v}^{q}\left(H_{1} ; C_{p}^{q}\left(H_{2}\right)\right)}
\end{aligned}
$$

The required conclusion follows.
Suppose that H is a unimodular Lie group and that $H_{1}, H_{2}, \ldots, H_{d}$ are closed unimodular subgroups of H, whose dimensions sum to that of H. Suppose (backward recursively) that H_{i-1} normalises $H_{i} H_{i+1} \cdots H_{d}$, the conjugation action of H_{i-1} on $H_{i} H_{i+1} \cdots H_{d}$ is unimodular, and $H_{i-1} \cap H_{i} H_{i+1} \cdots H_{d}=\{I\}$ when $i=d, \ldots, 2$. Then $H_{i-1} H_{i} \cdots H_{d}=H_{i-1} \ltimes H_{i} \cdots H_{d}$ when $i=d, \ldots, 2$. We say (again) that H is a unimodular semidirect product, and, abusing notation a little (forgetting significant parentheses), we write

$$
\begin{equation*}
H=H_{1} \ltimes H_{2} \ltimes \cdots \ltimes H_{d} . \tag{2.1}
\end{equation*}
$$

We now define recursively an iterated version of the Lorentz space $L^{5, \infty}$, which will be important for our main result (Theorem 3.4). Suppose that (2.1) holds.

When $d=1$, we define $L^{s, \infty}\left(H_{1}\right)$ to be the usual Lorentz space, that is, the set of all measurable functions f on H_{1} such that, for some (f-dependent) number C,

$$
\mid\left\{h \in H_{1}:|f(h)|>\lambda| |^{1 / s} \leq C / \lambda \quad \text { for all } \lambda \in \mathbb{R}^{+} .\right.
$$

We define the 'norm' of f to be the minimum possible value of C. When $d>1$, we define $L^{s, \infty}\left(H_{1} ; L^{s, x}\left(H_{2} ; \ldots L^{s, \infty}\left(H_{d}\right) \ldots\right)\right.$) to be the space of all measurable functions f on H such that, for almost all h_{1} in $H_{1},\left(h_{2}, \ldots, h_{d}\right) \mapsto f\left(h_{1} h_{2} \cdots h_{d}\right)$ is in $L^{s, \infty}\left(H_{2} ; \ldots L^{s, \infty}\left(H_{d}\right) \ldots\right.$), and the function $h_{1} \mapsto\left\|f\left(h_{1} \cdot\right)\right\|_{L^{n \times}\left(H_{2} \ldots L^{\prime, x}\left(H_{d}\right) \ldots\right)}$ is in $L^{s, \infty}\left(H_{1}\right)$. The 'norm' of f is defined to be the $L^{s . \infty}\left(H_{1}\right)$ 'norm' of this last function. We have written 'norm' because, in general, the triangle inequality does not hold, and we do not have a true norm.

We write $\mathbb{R}_{(i)}$ for the range of the one-parameter subgroup $t \mapsto t \mathbf{e}_{i}$ of the group \mathbb{R}^{2}, where $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ is the standard basis of \mathbb{R}^{2}. Then

$$
\mathbb{R}^{2}=\mathbb{R}_{(1)} \ltimes \mathbb{R}_{(2)}=\mathbb{R}_{(2)} \ltimes \mathbb{R}_{(1)} .
$$

We now show that, for this example, the order of the variables in the iterated space matters and that the iterated spaces are different to the Lorentz space $L^{s, \infty}\left(\mathbb{R}^{2}\right)$. We observe that f is in $L^{s, \infty}\left(\mathbb{R}^{2}\right)$ if and only if $|f|^{s}$ is in $L^{1, \infty}\left(\mathbb{R}^{2}\right)$, and similarly, f is in $L^{s, \infty}\left(\mathbb{R}_{(i)} ; L^{s, \infty}\left(\mathbb{R}_{(j)}\right)\right)$ if and only if $|f|^{s}$ is in $L^{1, \infty}\left(\mathbb{R}_{(i)} ; L^{1, \infty}\left(\mathbb{R}_{(j)}\right)\right.$. Thus it suffices to consider the case where $s=1$.

Define the functions g, h and k on \mathbb{R}^{2} by

$$
g(x, y)=e^{-y} \chi_{E}(x, y), \quad h(x, y)=g(y, x), \quad \text { and } \quad k(x, y)=\frac{1}{|x y|},
$$

where $E=\left\{(x, y) \in \mathbb{R}^{+} \times \mathbb{R}^{+}: x<e^{v}\right\}$.
If $\lambda>0$ and $x>0$, then

$$
\begin{aligned}
\{y \in \mathbb{R}: g(x, y)>\lambda\} & =\left\{y \in \mathbb{R}: e^{-y}>\lambda\right\} \cap\left\{y \in \mathbb{R}: \chi_{E}(x, y)>0\right\} \\
& =\{y \in \mathbb{R}: y>0, y>\log x, y<-\log \lambda\},
\end{aligned}
$$

which is empty if $\lambda \geq 1$ or if $\lambda \leq 1 / x$, and nonempty otherwise. Thus

$$
\|g(x, \cdot)\|_{L \cdot \cdots(\mathbb{R})}=\sup _{\lambda>0} \lambda|\{y \in \mathbb{R}: g(x, y)>\lambda\}|=\sup _{0<\lambda<1} \lambda \log \left(\lambda^{-1}\right)=e^{-1},
$$

if $0<x \leq 1$, while if $x>1$, then

$$
\|g(x, \cdot)\|_{L^{1} \sim(\mathbb{R})}=\sup _{0<\lambda<1 / x} \lambda\left[\log \left(\lambda^{-1}\right)-\log x\right]=\sup _{0<\lambda i<1} \lambda \log \left((x \lambda)^{-1}\right)=(e x)^{-1} .
$$

Now $x \mapsto\|g(x, \cdot)\|_{L^{1 \cdot \sim}(\mathbb{R})}$ is in $L^{1 . \infty}(\mathbb{R})$, and g is in $L^{1, \infty}\left(\mathbb{R}_{(1)} ; L^{1 . \infty}\left(\mathbb{R}_{(2)}\right)\right)$. It is easy to check that $\|g(\cdot, y)\|_{L^{1 \cdot \times(\mathbb{R})}}=\chi_{\mathbb{R}^{+}}(y)$, which is not in $L^{1 \cdot \infty}(\mathbb{R})$. Thus g does not belong to $L^{1 . \infty}\left(\mathbb{R}_{(2)} ; L^{1 . \infty}\left(\mathbb{R}_{(1)}\right)\right)$.

Similarly, h is in $L^{1, \infty}\left(\mathbb{R}_{(2)} ; L^{1, \infty}\left(\mathbb{R}_{(1)}\right)\right)$, but not $L^{1, \infty}\left(\mathbb{R}_{(1)} ; L^{1, \infty}\left(\mathbb{R}_{(2)}\right)\right)$.
If $\lambda \geq 1$, then the set $\left\{(x, y) \in \mathbb{R}^{2}: g(x, y)>\lambda\right\}$ is empty, while if $0<\lambda<1$, then the set is $\{(x, y) \in E: y<-\log \lambda\}$. Therefore,

$$
\left|\left\{(x, y) \in \mathbb{R}^{2}: g(x, y)>\lambda\right\}\right|=\left(\frac{1}{\lambda}-1\right) \chi_{(0.1)}(\lambda)
$$

whence $\|g\|_{L^{1, x}\left(\mathbb{R}^{2}\right)}=\sup _{\lambda>0} \lambda\left|\left\{(x, y) \in \mathbb{R}^{2}: g(x, y)>\lambda\right\}\right|=1$, and g is in the standard Lorentz space $L^{1, \infty}\left(\mathbb{R}^{2}\right)$. Similarly, h also belongs to this space. As already remarked, k belongs to the iterated space (with either ordering of the variables), but not to the Lorentz space $L^{1, \infty}\left(\mathbb{R}^{2}\right)$, so the iterated space (with either ordering of the variables) is not contained in the standard Lorentz space. Consideration of the functions g and h shows that the standard Lorentz space is not included in the iterated space (with either ordering of the variables).

Proposition 2.2. Suppose that H is a unimodular semidirect product

$$
H=H_{1} \ltimes H_{2} \ltimes \cdots \ltimes H_{d}
$$

in the sense of (2.1), where $1<p, q, s<\infty$, and that $1 / p+1 / s=1 / q+1$. Then the iterated space $L^{s, \infty}\left(H_{1} ; \ldots L^{s, \infty}\left(H_{d}\right) \ldots\right)$ is contained in $C v_{p}^{q}(H)$ and there exists a constant C_{d} such that $\|k\|_{C v_{p}^{q}(H)} \leq C_{d}\|k\|_{L^{s, x}\left(H_{1} ; \ldots L^{r, x}\left(H_{d}\right) \ldots\right)}$.

Proof. We argue by induction on the number of factors. If there is only one factor, the result is Hunt's well known convolution theorem [5].

Suppose that the result holds when the number of factors is less than d. The subgroup $H_{2} H_{3} \cdots H_{d}$ is normal in H. By definition of the iterated Lorentz space, for almost all h_{1} in $H_{1},\left(h_{2}, \ldots, h_{d}\right) \mapsto f\left(h_{1} h_{2} \cdots h_{d}\right)$ is in $L^{s, \infty}\left(H_{2} ; \ldots L^{s, \infty}\left(H_{d}\right) \ldots\right)$, and the function $h_{1} \mapsto\left\|f\left(h_{1} \cdot\right)\right\|_{L^{s, x}\left(H_{2} ; \ldots L^{s, x}\left(H_{d}\right) \ldots\right)}$ is in $L^{s, \infty}\left(H_{1}\right)$. By the inductive hypothesis, $L^{s, \infty}\left(H_{2} ; \ldots L^{s, \infty}\left(H_{d}\right) \ldots\right)$ is contained in $C v_{p}^{q}\left(H_{2} \cdots H_{d}\right)$ and

$$
\left\|k^{\prime}\right\|_{c_{v_{p}}^{q}\left(H_{2} \ldots H_{d}\right)} \leq C_{d-1}\left\|k^{\prime}\right\|_{L^{s, x}\left(H_{2} ; \ldots L^{s, x}\left(H_{d}\right) \ldots\right)}
$$

for all k^{\prime} in $L^{s, \infty}\left(H_{2} ; \ldots L^{s, \infty}\left(H_{d}\right) \ldots\right)$. In particular,

$$
\left\|f\left(h_{1}\right)\right\|_{c_{p}^{q}\left(H_{2} \ldots H_{d}\right)} \leq C_{d-1}\left\|f\left(h_{1} \cdot\right)\right\|_{L^{s, x}\left(H_{2} \ldots L^{s, 2}\left(H_{d}\right) \ldots\right)},
$$

so $h_{1} \mapsto\left\|f\left(h_{1} \cdot\right)\right\|_{\mathcal{C}_{p}^{q}\left(H_{2} \ldots H_{d}\right)}$ is in $L^{s, \infty}\left(H_{1}\right)$, and hence in $C v_{p}^{q}\left(H_{1}\right)$, by Hunt's convolution theorem applied to H_{1}. The required result now follows from Proposition 2.1, with $H_{2} \cdots H_{d}$ in place of H_{2}.

3. Structural properties of intertwining operators

Let V^{*} denote the set of all $v \in V$ such that $\bar{w}^{*} v$ is in VMAN. Then V^{*} is Zariski open in V, and in particular is of full measure in V. The next lemma describes some properties of the map $v \mapsto V\left(\bar{w}^{*} v\right)$ from V^{*} to V. These properties are essentially known (see, for instance, [7] or $[9,10]$).

Lemma 3.1. The following hold:

(i) $V\left(\bar{w}^{*} V\left(\bar{w}^{*} v\right)\right)=v$ and $A\left(\bar{w}^{*} V\left(\bar{w}^{*} v\right)\right)=A\left(\bar{w}^{*} v\right)^{-1}$ for every v in V^{*};
(ii) the Jacobian of the mapping $v \mapsto V\left(\bar{w}^{*} v\right)$ is $A\left(\bar{w}^{*} v\right)^{-2 \rho}$ for every v in V^{*};
(iii) $A\left(\bar{w}^{*} v^{-1}\right)=A\left(\bar{w}^{*} v\right)^{-\bar{u}^{*}}$ for every v in V^{*};
(iv) $A\left(\bar{w}^{*} v^{u}\right)=a^{-\bar{u}^{*}} A\left(\bar{w}^{*} v\right)$ a for every v in V^{*} and a in A;
(v) the intertwining operator I_{λ} may be realised as a convolution operator in the noncompact picture:

$$
I_{\lambda} \xi=\xi * r_{\lambda},
$$

where $r_{\lambda}: V^{*} \rightarrow \mathbb{R}^{+}$is defined by $r_{\lambda}(v)=A\left(\bar{w}^{*} v^{-1}\right)^{\lambda-\rho}$.
Proof. To prove (i), we write $\bar{w}^{*} v=V\left(\bar{w}^{*} v\right) M\left(\bar{w}^{*} v\right) A\left(\bar{w}^{*} v\right) N\left(\bar{w}^{*} v\right)$. Multiplying both sides by \bar{w}^{*}, and observing that $\bar{w}^{* 2}=e$, we see that

$$
v=\bar{w}^{*} V\left(\bar{w}^{*} v\right) M\left(\bar{w}^{*} v\right) A\left(\bar{w}^{*} v\right) N\left(\bar{w}^{*} v\right),
$$

so that

$$
\bar{w}^{*} V\left(\bar{w}^{*} v\right)=v M\left(\bar{w}^{*} v\right)^{-1} A\left(\bar{w}^{*} v\right)^{-1} n^{\prime} .
$$

This implies that $A\left(\bar{w}^{*} V\left(\bar{w}^{*} v\right)\right)=A\left(\bar{w}^{*} v\right)^{-1}$ and $V\left(\bar{w}^{*} V\left(\bar{w}^{*} v\right)\right)=v$, as required.
To prove (ii), recall that the Haar measures on G, V, M, A and N may be normalised so that

$$
\int_{G} u(g) \mathrm{d} g=\int_{V} \int_{M} \int_{A} \int_{N} u(v m a n) \mathrm{d} n a^{2 \rho} \mathrm{~d} a \mathrm{~d} m \mathrm{~d} v \quad \text { for all } u \in C_{r}(G),
$$

by [6, Proposition 5.26]. We will express the invariance of the Haar measure on G in terms of this 'Bruhat decomposition for the Haar measure'. To do so, we first observe that if $\bar{w}^{*} v=V\left(\bar{w}^{*} v\right) M\left(\bar{w}^{*} v\right) A\left(\bar{w}^{*} v\right) N\left(\bar{w}^{*} v\right)$, then

$$
\bar{w}^{*} v m a n=V\left(\bar{w}^{*} v\right)\left[M\left(\bar{w}^{*} v\right) m\right]\left[A\left(\bar{w}^{*} v\right) a\right]\left[(m a)^{-1} N\left(\bar{w}^{*} v\right)(m a) n\right] .
$$

Next, we take u on G such that $u(v m a n)=u_{1}(v) u_{2}(a) u_{3}(n)$, where

$$
\int_{A} u_{2}(a) a^{2 \rho} \mathrm{~d} a=1 \quad \text { and } \quad \int_{N} u_{3}(n) \mathrm{d} n=1
$$

Then

$$
\begin{aligned}
\int_{V} u_{1}(v) \mathrm{d} v & =\int_{V} \int_{M} \int_{A} \int_{N} u_{1}(v) u_{2}(a) u_{3}(n) \mathrm{d} n a^{2 \rho} \mathrm{~d} a \mathrm{~d} m \mathrm{~d} v \\
& =\int_{G} u(g) \mathrm{d} g=\int_{G} u\left(\bar{w}^{*} g\right) \mathrm{d} g \\
& =\int_{V} \int_{M} \int_{A} \int_{N} u_{1}\left(V\left(\bar{w}^{*} v\right)\right) u_{2}\left(A\left(\bar{w}^{*} v\right) a\right) u_{3}\left(N\left(\bar{w}^{*} v\right)^{m a} n\right) \mathrm{d} n a^{2 \rho} \mathrm{~d} a \mathrm{~d} m \mathrm{~d} v \\
& =\int_{V} \int_{A} u_{1}\left(V\left(\bar{w}^{*} v\right)\right) u_{2}(a) A\left(\bar{w}^{*} v\right)^{-2 \rho} a^{2 \rho} \mathrm{~d} a \mathrm{~d} v \\
& =\int_{V} u_{1}\left(V\left(\bar{w}^{*} v\right)\right) A\left(\bar{w}^{*} v\right)^{-2 \rho} \mathrm{~d} v
\end{aligned}
$$

so that the Jacobian of the transformation $v \mapsto V\left(\bar{w}^{*} v\right)$ is $A\left(\bar{w}^{*} v\right)^{-2 f}$, as required.
To prove (iii), note that $\bar{w}^{*} v=V\left(\bar{w}^{*} v\right) M\left(\bar{w}^{*} v\right) A\left(\bar{w}^{*} v\right) N\left(\bar{w}^{*} v\right)$, whence

$$
v^{-1} \bar{w}^{*-1}=N\left(\bar{w}^{*} v\right)^{-1} A\left(\bar{w}^{*} v\right)^{-1} M\left(\bar{w}^{*} v\right)^{-1} V\left(\bar{w}^{*} v\right)^{-1}
$$

Now $\bar{w}^{*}=\bar{w}^{*-1}$, so $\bar{w}^{*} v^{-1}$ is equal to

$$
\begin{aligned}
& \bar{w}^{*} N\left(\bar{w}^{*} v\right)^{-1} \bar{w}^{*-1} \bar{w}^{*} M\left(\bar{w}^{*} v\right)^{-1} \bar{w}^{*-1} \bar{w}^{*} A\left(\bar{w}^{*} v\right)^{-1} \bar{w}^{*-1} \bar{w}^{*} V\left(\bar{w}^{*} v\right)^{-1} \bar{w}^{*-1} \\
& \quad=v_{1} m_{1} \bar{w}^{*} A\left(\bar{w}^{*} v\right)^{-1} \bar{w}^{*-1} n_{1}
\end{aligned}
$$

say, where $v_{1} \in V, m_{1} \in M$ and $n_{1} \in N$, since $N^{\bar{w}^{*}}=V, V^{\bar{w}^{*}}=N$, and M is a normal subgroup of M^{\prime}. Then $A\left(\bar{w}^{*} v^{-1}\right)=\bar{w}^{*} A\left(\bar{w}^{*} v\right)^{-1} \bar{w}^{*-1}$, as required.

To prove (iv), suppose that $\bar{w}^{*} v=v^{\prime} m^{\prime} a^{\prime} n^{\prime}$. Then for $a \in A$,

$$
\bar{w}^{*} v^{a}=\bar{w}^{*} a^{-1} v a=a^{-\bar{w}^{*}} \bar{w}^{*} v a=a^{-\bar{w}^{*}} v^{\prime} m^{\prime} a^{\prime} n^{\prime} a=\left(v^{\prime}\right)^{a^{i^{*}}} m^{\prime} a^{-\bar{w}^{*}} a^{\prime} a\left(n^{\prime}\right)^{a},
$$

so $A\left(\bar{w}^{*} v^{a}\right)=a^{-\bar{w}^{*}} A\left(\bar{w}^{*} v\right) a$, as required.
Finally we give a nonrigorous proof of (v), and refer the reader to [7] for more details. Recall that

$$
I_{\lambda} \xi\left(v^{\prime}\right)=\int_{V} \xi\left(v^{\prime} \bar{w}^{*} v\right) \mathrm{d} v=\int_{V} \xi\left(v^{\prime} V\left(\bar{w}^{*} v\right)\right) A\left(\bar{w}^{*} v\right)^{-(\rho+\lambda)} \mathrm{d} v
$$

By virtue of (i) and (ii), the change of variables $v^{\prime \prime}=V\left(\bar{w}^{*} v\right)$ transforms the last integral into

$$
\begin{aligned}
\int_{V} \xi & \left(v^{\prime} v^{\prime \prime}\right) A\left(\bar{w}^{*} V\left(\bar{w}^{*} v^{\prime \prime}\right)\right)^{-(\rho+\lambda)} A\left(\bar{w}^{*} v^{\prime \prime}\right)^{-2 \rho} \mathrm{~d} v^{\prime \prime} \\
& =\int_{V} \xi\left(v^{\prime} v^{\prime \prime}\right) A\left(\bar{w}^{*} v^{\prime \prime}\right)^{\rho+\lambda} A\left(\bar{w}^{*} v^{\prime \prime}\right)^{-2 \rho} \mathrm{~d} v^{\prime \prime} \\
& =\xi * r_{\lambda}\left(v^{\prime}\right)
\end{aligned}
$$

as required.

In view of Lemma $3.1(\mathrm{v})$, when $\operatorname{Re} \lambda=\delta(p) \rho$, the intertwining operator I_{λ} reduces to the (right) convolution operator on V whose kernel is $A\left(\bar{w}^{*} \cdot\right)^{(\delta(p)-1) \rho}$. Thus, it may be useful to compute $A\left(\bar{w}^{*} \cdot\right)^{\rho}$.

For x in $\operatorname{SL}(n, \mathbb{R})$, denote by $D_{k}(x)$ the determinant of the submatrix $\left(x_{i j}\right)_{1 \leq i, j \leq k}$.
Lemma 3.2. For any x in VMAN, $A(x)^{\rho}=\prod_{k=1}^{n-1}\left|D_{k}(x)\right|$.
Proof. It is well known [3, page 434] that

$$
\operatorname{VMAN}=\left\{x \in \operatorname{SL}(n, \mathbb{R}): D_{1}(x) \neq 0, \ldots, D_{n-1}(x) \neq 0\right\}
$$

Moreover,

$$
M(x) A(x)=\operatorname{diag}\left(D_{1}(x), \frac{D_{2}(x)}{D_{1}(x)}, \ldots, \frac{D_{n}(x)}{D_{n-1}(x)}\right)
$$

and

$$
A(x)=\operatorname{diag}\left(\left|D_{1}(x)\right|, \frac{\left|D_{2}(x)\right|}{\left|D_{1}(x)\right|}, \ldots, \frac{\left|D_{n}(x)\right|}{\left|D_{n-1}(x)\right|}\right)
$$

Recall that

$$
\rho\left(\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)\right)=\sum_{1 \leq i<j \leq n} \frac{x_{i}-x_{j}}{2}=\sum_{j=1}^{n} \frac{n+1-2 j}{2} x_{j}
$$

Then

$$
\begin{aligned}
A(x)^{2 \rho} & =\left|D_{1}(x)\right|^{n-1}\left|\frac{D_{2}(x)}{D_{1}(x)}\right|^{n-3} \ldots\left|\frac{D_{n-1}(x)}{D_{n-2}(x)}\right|^{3-n}\left|\frac{1}{D_{n-1}(x)}\right|^{1-n} \\
& =\left|D_{1}(x)\right|^{2}\left|D_{2}(x)\right|^{2} \cdots\left|D_{n-2}(x)\right|^{2}\left|D_{n-1}(x)\right|^{2}
\end{aligned}
$$

and the lemma follows.
Before we can use this information, we need some structural information about V. For $k \in\{1,2, \ldots, n(n-1) / 2\}$, let $m(k)$ be the integer part of $\left((8 k-7)^{1 / 2}+1\right) / 2$. Let ϕ_{k} be the one-parameter subgroup $t \mapsto I+t E_{i, j}$ of V, where

$$
i=m(k)+1 \quad \text { and } \quad j=k-m(k)(m(k)-1) / 2
$$

and let H_{k} denote the range of ϕ_{k}. We refer to the (i, j) th place in the matrix as the place indexed by k. For the case where $n=5$, the number k is written in the place indexed by k in the following matrix:

$$
\left(\begin{array}{ccccc}
\cdot & \cdot & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot \\
2 & 3 & \cdot & \cdot & \cdot \\
4 & 5 & 6 & \cdot & \cdot \\
7 & 8 & 9 & 10 & \cdot
\end{array}\right)
$$

Then (backward recursively) H_{k-1} normalises $H_{k} \cdots H_{n(n-1) / 2}$, and

$$
V=H_{1} \ltimes H_{2} \ltimes \cdots \ltimes H_{n(n-1) / 2},
$$

in the sense of (2.1). Indeed, $H_{k} \cdots H_{n(n-1) / 2}$ is the subgroup of all v in V whose only nonzero, nondiagonal entries are in the places in the matrix indexed by k, \ldots, $n(n-1) / 2$, and H_{k-1} is the subgroup of all v in V whose only nonzero, nondiagonal entries are in the place in the matrix indexed by $k-1$, which lies to the right of, or above, the places indexed by $i, \ldots, n(n-1) / 2$. It is easy to see that H_{k-1} normalises the subgroup of all v in V whose only nonzero, nondiagonal entries are in the rows below the place in the matrix indexed by $k-1$, and centralises the subgroup of all v in V whose only nonzero, nondiagonal entries are in the same row as the place in the matrix indexed by $k-1$.

Note that $H_{i} \ltimes H_{i+1} \ltimes \cdots \ltimes H_{n(n-1) / 2}$ may be identified with the subgroup of lower unipotent matrices in $\mathrm{SL}(n, \mathbb{R})$ with zero entries in the places indexed by $1, \ldots, i-1$, and that $H_{1} \ltimes H_{2} \ltimes \cdots \ltimes H_{(n-1)(n-2) / 2}$ (which has zero entries in the places indexed by $(n-1)(n-2) / 2+1, \ldots, n(n-1) / 2)$ is isomorphic to the group of lower unipotent matrices in $\operatorname{SL}(n-1, \mathbb{R})$.

The crucial result is the following proposition, which provides a sharp estimate for the size of the intertwining kernel r_{λ} when $\operatorname{Re} \lambda$ is a multiple of ρ.

Proposition 3.3. Let V be the group of lower triangular real unipotent $n \times n$ matrices. For k in $\{1, \ldots, n-1\}$, define $\tilde{D}_{k}(v)$ by

$$
\tilde{D}_{k}(v)=\operatorname{det}\left(v_{i j}\right)_{n-k \leq i \leq n}^{1 \leq j \leq k}<\text { for all } v \in V .
$$

(i) If v is in V, then v is in V^{*} if and only if $D_{k}(v) \neq 0$ when $k=1, \ldots, k-1$.
(ii) For every v in V^{*},

$$
A\left(\bar{w}^{*} v\right)^{-\rho}=\prod_{k=1}^{n-1} \frac{1}{\left|\tilde{D}_{k}(v)\right|} .
$$

(iii) The function $v \mapsto A\left(\bar{w}^{*} v\right)^{-\rho}$ is in $L^{1, \infty}\left(H_{1} ; \ldots L^{1, \infty}\left(H_{n(n-1) / 2}\right) \ldots\right)$, and

$$
\left\|A\left(\bar{w}^{*} \cdot\right)^{-\rho}\right\|_{L^{1 \cdot x}\left(H_{1} ; \ldots L^{1 \cdot x}\left(H_{n n-1 / 1 / 2)}\right)\right.}=2^{n(n-1) / 2} .
$$

Proof. First, an element v of V is in V^{*} if and only if $\bar{w}^{*} v$ is in VMAN, and this holds if and only if $D_{k}\left(\bar{w}^{*} v\right) \neq 0$ when $k=1, \ldots, n-1$, by [3, page 434]. Multiplying the lower triangular unipotent matrix v on the left by \bar{w}^{*}, as defined in (1.1), just reverses the order of the rows of v. Therefore $D_{k}\left(\bar{w}^{*} v\right)= \pm \tilde{D}_{k}(v)$, and (i) follows.

Now we prove (ii). For convenience, we write $\Phi(v)$ for $A\left(\bar{w}^{*} v\right)^{-\rho}$. By Lemma 3.2 and part (i) of this proposition,

$$
\Phi(v)=\prod_{k=1}^{n-1} \frac{1}{\left|D_{k}\left(\bar{w}^{*} v\right)\right|}=\prod_{k=1}^{n-1} \frac{1}{\left|\tilde{D}_{k}(v)\right|} .
$$

Now we prove (iii), by induction on n. We write V_{n} for the group of lower unipotent real $n \times n$ matrices, and Φ_{n} rather than just Φ.

Suppose first that $n=2$. Write v_{x} for the lower unipotent 2×2 matrix whose lower left entry is x. Then $\Phi_{2}\left(v_{x}\right)=|x|^{-1}$, and the result is evident.

For the inductive step, we let $\pi_{n}: \operatorname{SL}(n, \mathbb{R}) \rightarrow \operatorname{SL}(n+1, \mathbb{R})$ be the injection

$$
\pi(g)_{i j}= \begin{cases}g_{i j} & \text { if } i \leq n \text { and } j \leq n \\ 0 & \text { if } i=n+1 \text { and } j \leq n \\ 0 & \text { if } i \leq n \text { and } j=n+1 \\ 1 & \text { if } i=n+1 \text { and } j=n+1\end{cases}
$$

To shorten the notation a little, we denote the subgroup $H_{n(n-1) / 2+m}$ by H_{m}^{\prime} where $m=1,2, \ldots, n$, and the corresponding one parameter subgroup by ϕ_{m}. Thus the only nonzero nondiagonal entries of elements of H_{m}^{\prime} are in the $(n+1, m)$ th place in the matrix. We will show that for all v in V_{n}^{*}, the function

$$
h_{1}^{\prime} \ldots h_{n}^{\prime} \mapsto \Phi\left(\pi_{n}(v) h_{1}^{\prime} \cdots h_{n}^{\prime}\right)
$$

is in $L^{1 . \infty}\left(H_{1}^{\prime}: \ldots L^{1 . \infty}\left(H_{n}^{\prime}\right) \ldots\right)$ and

$$
\begin{equation*}
\left\|\Phi_{n+1}\left(\pi_{n}(v) \cdot\right)\right\|_{L^{1 \cdot \times}\left(H_{1}^{\prime} \ldots L^{\left.1 . \times\left(H_{n}^{\prime}\right) \ldots\right)}\right.}=2^{n} \Phi_{n}(v) . \tag{3.1}
\end{equation*}
$$

The result then follows by induction.
To prove (3.1), we take v in V_{n}^{*}. The range of ϕ_{m} is H_{m}^{\prime}, and

$$
\pi_{n}(v) \phi_{1}\left(x_{1}\right) \cdots \phi_{n}\left(x_{n}\right)=\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
v_{2,1} & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
v_{n, 1} & v_{n, 2} & \cdots & 1 & 0 \\
x_{1} & x_{2} & \cdots & x_{n} & 1
\end{array}\right) .
$$

It is easy to check that, if $k<n$, then $\pi_{n}(v) \phi_{1}\left(x_{1}\right) \ldots \phi_{k}\left(x_{k}\right)$ is the matrix obtained by setting x_{k+1}, \ldots, x_{n} equal to 0 in the matrix above. Since \tilde{D}_{k} is the determinant of the bottom left $k \times k$ submatrix,

$$
\tilde{D}_{k}\left(\pi_{n}(v) \phi_{1}\left(x_{1}\right) \cdots \phi_{n}\left(x_{n}\right)\right)=\tilde{D}_{k}\left(\pi_{n}(v) \phi_{1}\left(x_{1}\right) \cdots \phi_{k}\left(x_{k}\right)\right),
$$

and

$$
\Phi_{n+1}\left(\pi_{n}(v) \phi_{1}\left(x_{1}\right) \cdots \phi_{n}\left(x_{n}\right)\right)=\prod_{k=1}^{n} \frac{1}{\left|\tilde{D}_{k}\left(\pi_{n}(v) \phi_{1}\left(x_{1}\right) \cdots \phi_{k}\left(x_{k}\right)\right)\right|}
$$

It is clear that $\Phi_{n+1}\left(\pi_{n}(v) \phi_{1}\left(x_{1}\right) \cdots \phi_{n}\left(x_{n}\right)\right)$ depends on x_{n} in only one determinant, namely $\tilde{D}_{n}\left(\pi_{n}(v) \phi_{1}\left(x_{1}\right) \cdots \phi_{n}\left(x_{n}\right)\right)$. By expanding this determinant along the bottom row, we see that

$$
\left|\tilde{D}_{n}\left(\pi_{n}(v) \phi_{1}\left(x_{1}\right) \cdots \phi_{n}\left(x_{n}\right)\right)\right|=\left|\tilde{D}_{n-1}^{\prime}(v)\right|\left|x_{n}+c_{n}\right|
$$

where c_{n} is a rational function of the coordinates $v_{i j}$ and x_{j} that does not depend on x_{n}. In this formula, \tilde{D}_{n} indicates the determinant of the bottom left $n \times n$ submatrix of the $(n+1) \times(n+1)$ matrix, while $\tilde{D}_{n-1}^{\prime}(v)$ is the determinant of the bottom left $(n-1) \times(n-1)$ submatrix of the $n \times n$ matrix v. Further, $\tilde{D}_{n-1}^{\prime}(v) \neq 0$, because $v \in V_{n}^{*}$. Now, for all positive λ and κ, and any real c,

$$
\left|\left\{x \in \mathbb{R}: \frac{1}{\kappa|x+c|}>\lambda\right\}\right|=\frac{2}{\kappa \lambda}
$$

and so

$$
\left\|\frac{1}{\kappa|\cdot+c|}\right\|_{L^{1 \cdot x}(\mathbb{R})}=\frac{2}{\kappa} .
$$

By applying this to the case at hand, we deduce that

$$
\begin{aligned}
& \left\|\Phi_{n+1}\left(v \phi_{1}\left(x_{1}\right) \ldots \phi_{n-1}\left(x_{n-1}\right) \cdot\right)\right\|_{L^{1 . x}\left(H_{n}^{\prime}\right)} \\
& \quad=\frac{2}{\left|\tilde{D}_{n-1}^{\prime}(v)\right| \prod_{k=1}^{n-1}\left|\tilde{D}_{k}\left(v \phi_{1}\left(x_{1}\right) \cdots \phi_{k}\left(x_{k}\right)\right)\right|}
\end{aligned}
$$

It is clear that $\left\|\Phi_{n+1}\left(v \phi_{1}\left(x_{1}\right) \cdots \phi_{n-1}\left(x_{n-1}\right) \cdot\right)\right\|_{L^{1, x}\left(H_{n}^{\prime}\right)}$ depends on x_{n-1} in only one determinant, namely $\tilde{D}_{n-1}\left(\pi_{n}(v) \phi_{1}\left(x_{1}\right) \cdots \phi_{n-1}\left(x_{n-1}\right)\right)$. By expanding this determinant along the bottom row much as before, we see that

$$
\begin{aligned}
& \left\|\Phi_{n+1}\left(v \phi_{1}\left(x_{1}\right) \cdots \phi_{n-2}\left(x_{n-2}\right) \cdot\right)\right\|_{L^{1 \cdot x}\left(H_{n-1}^{\prime} ; L^{1, x}\left(H_{n}^{\prime}\right)\right)} \\
& \quad=\frac{4}{\prod_{k=n-2}^{n-1}\left|\tilde{D}_{k}^{\prime}(v)\right| \cdot \prod_{k=1}^{n-2}\left|\tilde{D}_{k}\left(v \phi_{1}\left(x_{1}\right) \cdots \phi_{k}\left(x_{k}\right)\right)\right|}
\end{aligned}
$$

After n iterations of this argument, we end up with the estimate (3.1).
Our main convolution theorem is now easy to state and prove.
THEOREM 3.4. Let V be the group of lower triangular real unipotent $n \times n$ matrices.
(i) Suppose that λ is in $\mathfrak{a}_{\mathbb{C}}^{\prime}$ and I_{λ} is bounded from $L^{p}(V)$ to $L^{q}(V)$, where $1 \leq p, q \leq \infty$. Then $p \leq q$ and the projection $\operatorname{Proj}_{\rho} \operatorname{Re} \lambda$ of $\operatorname{Re} \lambda$ onto ρ is equal to $(1 / p-1 / q) \rho$.
(ii) Suppose that $1<p<q<\infty$ and $\operatorname{Re\lambda }=(1 / p-1 / q) \rho$. Then the convolution operator I_{λ} is bounded from $L^{p}(V)$ to $L^{q}(V)$.

Proof. To prove (i), we first recall a result of Hörmander [4, Theorem 1.1]. It generalises immediately to the context here, and shows that $p \leq q$, because V is noncompact.

Now we adapt a classical dilation argument for Riesz potentials on Euclidean spaces. By Lemma 3.1 (iv), we see that

$$
r_{\lambda}\left(v^{a}\right)=A\left(\bar{w}^{*} v^{a}\right)^{\lambda-\rho}=\left[a^{-\bar{u}^{*}} A\left(\bar{w}^{*} v\right) a\right]^{\lambda-\rho}=\left[a^{-\bar{w}^{*}} a\right]^{\lambda-\rho} r_{\lambda}(v)
$$

and

$$
\begin{aligned}
{\left[a^{-\overline{w^{*}}} a\right]^{\lambda-\rho} } & =\exp \left((\lambda-\rho) \log a-(\lambda-\rho) \operatorname{Ad}\left(\bar{w}^{*}\right) \log (a)\right) \\
& =\exp \left((\lambda-\rho) \log a-\operatorname{Ad}\left(\bar{w}^{*}\right)^{t}(\lambda-\rho) \log (a)\right) \\
& =a^{\lambda-\operatorname{Ad}\left(\overline{w^{*}} \cdot\right)^{\prime \lambda} \lambda-2 \rho},
\end{aligned}
$$

since $\operatorname{Ad}\left(\bar{w}^{*}\right)^{t} \rho=-\rho$. Given a function f on V and $a \in A$, we write f^{a} for the function $v \mapsto f\left(v^{a}\right)$. A change of variables shows that

$$
\begin{aligned}
f * r_{\lambda}\left(v^{a}\right) & =\int_{V} f\left(v^{a} v^{\prime}\right) r_{\lambda}\left(v^{\prime-1}\right) \mathrm{d} v^{\prime} \\
& =a^{2 \rho} \int_{V} f\left(v^{a} v^{\prime a}\right) r_{\lambda}\left(v^{\prime-a}\right) \mathrm{d} v^{\prime} \\
& =a^{\lambda-\operatorname{Ad}\left(\bar{u}^{*}\right)^{\prime} \lambda} \int_{V} f^{a}\left(v v^{\prime}\right) r_{\lambda}\left(v^{\prime-1}\right) \mathrm{d} v^{\prime} \\
& =a^{\lambda-\operatorname{Ad}\left(\bar{u}^{*}\right)^{\prime} \lambda} f^{a} * r_{\lambda}(v)
\end{aligned}
$$

Another change of variables shows that $\left\|f^{a}\right\|_{q}=\left(a^{-2 \rho}\right)^{1 / q}\|f\|_{q}$.
Suppose now that the operator $f \mapsto f * r_{\lambda}$ is $L^{p}(V)-L^{q}(V)$ bounded. Then for all f in $L^{p}(V)$,

$$
\begin{aligned}
\left(a^{-2 \rho}\right)^{1 / q}\left\|f * r_{\lambda}\right\|_{q} & =\left\|\left(f * r_{\lambda}\right)^{a}\right\|_{q}=a^{\operatorname{Re} \lambda-\operatorname{Ad}\left(\bar{w}^{*}\right)^{\prime} \operatorname{Re} \lambda}\left\|f^{a} * r_{\lambda}\right\|_{q} \\
& \leq C a^{\operatorname{Re} \lambda-\operatorname{Ad}\left(\bar{u}^{*}\right)^{\prime} \operatorname{Re} \lambda}\left\|f^{a}\right\|_{p} \\
& =C a^{\operatorname{Re} \lambda-\operatorname{Ad}\left(\bar{u}^{*}\right)^{\prime} \operatorname{Re} \lambda}\left(a^{-2 \rho}\right)^{1 / p}\|f\|_{p} \quad \text { for all } a \in A
\end{aligned}
$$

So that $a^{\operatorname{Re} \lambda-\operatorname{Ad}\left(\overline{u^{*}}\right)^{\prime} \operatorname{Re} \lambda}=\left(a^{2 \rho}\right)^{1 / p-1 / q}$ for all a in A, whence

$$
\operatorname{Re} \lambda-\operatorname{Ad}\left(\bar{w}^{*}\right)^{t} \operatorname{Re} \lambda=2(1 / p-1 / q) \rho
$$

This implies that $\operatorname{Proj}_{\rho} \operatorname{Re} \lambda=(1 / p-1 / q) \rho$, as claimed.
To prove (ii), from Lemma 3.1 (v) and Proposition 3.3 (iii),

$$
\left|r_{\lambda}\right|=A\left(\bar{w}^{*} \cdot\right)^{-(1-1 / p+1 / q) \rho},
$$

which is in $L^{s, \infty}\left(H_{1} ; \ldots L^{s, \infty}\left(H_{n(n-1) / 2}\right) \ldots\right)$, where $1 / s=1-1 / p+1 / q$. The desired result now follows from Proposition 2.2.

References

[1] M. Cowling, 'Herz' "principe de majoration" and the Kunze-Stein phenomenon', CMS Conf. Proc. 21 (1997), 73-88.
[2] S. Gindikin and S. Karpelevič, 'Plancherel measure of Riemannian symmetric spaces of nonpositive curvature', Dokl. Akad. Nauk SSSR 145 (1962), 252-255.
[3] S. Helgason, Differential geometry, Lie groups and symmetric spaces (Academic Press, New York, 1978).
[4] L. Hörmander, 'Estimates for translation invariant operators in L^{p} spaces', Acta Math. 104 (1960), 93-140.
[5] R. A. Hunt, 'On $L(p, q)$ spaces', Enseign. Mat. 12 (1956), 249-276.
[6] A. W. Knapp, Representation theory of semisimple Lie groups (Princeton University Press. Princeton, 1986).
[7] A. W. Knapp and E. M. Stein, 'Intertwining operators on semisimple Lie groups', Ann. of Math. (2) 93 (1971), 489-578.
[8] R. A. Kunze and E. M. Stein, 'Uniformly bounded representations and harmonic analysis of the 2×2 real unimodular group', Amer. J. Math. 82 (1960), 1-62.
[9] ——, 'Uniformly bounded representations II. Analytic continuation of the principal series of representations of the $n \times n$ complex unimodular group', Amer. J. Math. 83 (1961), 723-786.
[10] _—, 'Uniformly bounded representations III. Intertwining operators for the principal series on semisimple groups', Amer. J. Math. 89 (1967), 385-442.
[11] G. Schiffmann, 'Intégrales d'entrelacement et fonctions de Whittaker'. Bull. Soc. Math. France 99 (1971), 3-72.

School of Mathematics
University of New South Wales
UNSW Sydney
NSW 2052
Australia
e-mail: M.Cowling@unsw.edu.au

Dipartimento di Matematica e Applicazioni
Università di Milano-Bicocca via Bicocca degli Arcimboldi 8

20126 Milano
Italy
e-mail: stefano.meda@unimib.it

[^0]: Work partially supported by the Australian Research Council Project "Iwasawa N groups", the University of New South Wales, the Italian G.N.A.M.P.A. and the Progetto Cofinanziato "Analisi Armonica".

