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Abstract

In this paper we study the kernels and the Lp-Lq boundedness properties of some intertwining operators
associated to representations of SL(/?, R).
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1. Introduction

In this paper, we estimate the size of the kernels and study the Lp-Lq mapping
properties of certain 'potential' operators on the group V of all lower triangular
unipotent n x n matrices. These operators arise naturally in studying the analytic
continuation of the unitary principal series of the group SL(n, (&), or its extension G,
defined to be the group of all real n x n matrices of determinant ± 1. They may be
described as follows.

The noncompact semisimple Lie group G has finite centre and real rank n — \. We
write 0 for the standard Cartan involution of G, that is,

&(x) = ( J T 1 ) ' for all x e G,

where ' denotes transpose. The fixed point set of 0 is the orthogonal group O(«),
which we denote by A"; it is a maximal compact subgroup of G. We denote by A
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106 Michael Cowling and Stefano Meda [2]

the abelian subgroup of diagonal matrices in G with positive entries and by N the
nilpotent group of all upper triangular unipotent matrices. Then KAN is an Iwasawa
decomposition of G. The group &N, which we denote by V, is then the group of
lower triangular unipotent matrices.

The centraliser and normaliser of A in A" are denoted by M and AT. Then M
consists of all diagonal matrices in K and is normal in M'. We denote by P the
minimal parabolic subgroup MAN of G.

The group M'/M, denoted by W, is finite; we denote a typical element by wh

Choose a representative u>, of wt in A/', that is, an element of the appropriate coset of
M in A/'. The Bruhat decomposition asserts that G is the disjoint union of the sets
MANwi MAN, all but one of which, MAN w* MAN say, are of dimension less than
n2 — 1, the dimension of G. We may take the representative w* in M' of the 'longest
element' w* in W to be

(1.1) Ei,H + „.,,
where Etj is the matrix whose (/, j)th entry is 1 and whose other entries are 0.
Further, MAN w* MAN = w* VMAN, so that w* VMAN is a dense open subset of G
whose complement is a finite union of submanifolds of lower dimension. The mapping
(v, m, a, n) M> vman is a diffeomorphism from V x M x A x N onto the Zariski
open subset VMAN of G. For almost all x in G, we may write

x = V(x)M(x)A(x)N(x),

where V(x) e V, M(x) e M, A(x) e A, and N(x) e N.
Denote by o the Lie algebra of A, that is, the set of diagonal matrices of trace 0;

we write diagC^i,. . . , xn) for the diagonal matrix with diagonal entries *,, . . . , xn.
Define p to be the linear functional

. . .
diag(*

on a (then p is the usual half-sum of the positive roots with multiplicities).
Suppose that A is in o'c. Define the character \\ °f P by

Xximan) = ak+p

for all m e M, a e A, and n e N, where ax is short for exp (A.(loga)). We induce
the corresponding character of P to G. Explicitly, let fi~ denote the space of all C
functions £ on G with the property that

xdP~l)

°°
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[3] Intertwining operators on SL(n, R) 107

for all x € G and p e P. We denote by nx the left translation representation of G
on B^. A common notation for nA is

Since VMAN is Zariski open in G, every function in B%° is determined by its restriction
to the nilpotent group V. The representation ixx may be realised in the so-called
noncompact picture thus:

vyx-''' f o r a l l j c e G , veV,

for all £ in B™. For p in [1, oo), define S(p) to be 2/p - 1. Then - 1 < S(p) < 1.
For k in S(p)p + /a', we endow fi?° with the norm

= / l*(w)l"dwJ '
Then ^ extends to an isometric representation (unitary if p = 2) on the completion
of B?° in this norm. For £ in B^°, we define /x£ by

= f ^ ( ) du for all * e G.

At least formally, if this integral makes sense, then

for all x e G, m e M, a e A, and n e N, so that /*£ ought to lie in fl~, and further,
/̂  commutes with left translations, so that lxnk = TT-^/X- In particular, Ix% is fixed
by K if £ is.

Knapp and Stein |7] (developing earlier work of Kunze and Stein [9, 10], of
Schiffmann [11], and of Gindikin and Karpelevic [2]) showed that, if Re(A.) > 0
(in an appropriate sense), then /; does indeed make sense, and that Ix continues
meromorphically into o^- Furthermore, they showed that if z is a purely imaginary
complex number, then I:p extends to a bounded operator on L2(V). It is easy to show
that if Re(z) = 1, then l:p extends to a bounded operator from L'(V) to L°°(V).
Also, the operator norms of Izp grow admissibly when Im(z) tends to infinity. Hence
Stein's complex interpolation theorem applies to the analytic family of operators
[lv : Re(z) e [0, 1]}, and it follows that 1Hp)p is bounded from LP{V) to Z / (V) ,
where p' denotes the conjugate index p/(p — 1) of p.

In the case where n = 2, this result has been known for a long time. Indeed, in this
case the operator IS{p)p may be realised as the convolution operator on the real line with
kernel v t—>- |v\~2/p' (see [8] or the proof of our main result). This is the kernel of the
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classical Riesz potential operator of homogeneous degree —2/p', which is bounded
from Z / ( l ) to Lq(R) whenever \/r — \/q — 2/p'; in particular, it is bounded from
LP(R) to LP'(R). To prove this result, one first shows that the kernel of IS{p)p is in the
Lorentz space L' ' / 2 o o(K), and then uses Hunt's convolution theorem [5]. A similar
result holds for all real rank one simple groups. This fact was crucial to the improved
version of the Kunze-Stein phenomenon proved by the authors of this paper and Setti
(described in [1]).

For groups of higher rank, however, the situation is more complicated. To illustrate
the problems which may arise, consider the case of SL(2, R) x SL(2, R). The
intertwining operator I$(p)p may be realised as convolution on R2 with the kernel

ks(x, y) = -—— ,
\xy\l/s

where 5 = p' 12. This kernel is singular on the union of two one-dimensional
submanifolds of R2. It is straightforward to check that

|{(JC, y) e R2 : \k,(x, y)\ > t}\ = oo for all t e R + .

Hence ks is not in the Lorentz space Z/i00(K2), and Hunt's convolution theorem does
not apply. However,

\{yeR:ks(x,y)>t}\ =

so that ks(x, •) is in LS-°°(R) when x £ 0. Furthermore,

yeR: —— >
\x\\y\

/ 2
II*,U. O l l t - w = supr|{y € R : !*,(*, y)\ > t}\Ws = ( —

thus, the function x i-^ \\ks(x, OlU'-̂ dn) is in LJ00(IR). We say that k is in the iterated
Lorentz space LJOO(R(1);Z/°°(IR(2))). By applying Hunt's convolution theorem on R
twice, we conclude that convolution with &s is bounded from LP(R2) to Lq(R2).

The point of this paper is that the convolution kernels of the intertwining operators
for SL(«, R) in the noncompact picture have a 'product structure' similar to that of ks,
and belong to 'iterated Lorentz spaces'. Consequently, certain intertwining operators
are Lp-Lq bounded. This can also be proved by extending the results of Knapp
and Stein [7] to show that the intertwining operators between the unitary principal
series representations are U bounded whenever 1 < r < oo (this involves writing
the operators as a composition of rank-one operators and showing that each of these
is U bounded), and then using interpolation. However our approach also yields
information about the sizes of the kernels of the intertwining operators.

The same idea applies, mutatis mutandis, to the group SL(n, C) and can be extended
to SL(n, H). We are also able to deal with other semisimple Lie groups on a case-by-
case basis. This will appear elsewhere.
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2. Convolution operators on nilpotent groups

109

We say that a Lie group H is the unimodular semidirect product of subgroups H\
and H2, and we write H — Hi t< H2, if H, H\, and H2 are unimodular, H2 is normal
in H, and the map (hi, h2) i->- h\h2 is a homeomorphism from H\ x //2 onto H. Thus
//, and H2 are closed, A/, n H2 = {/} and # i / / 2 = / / , and conjugation on H2 by
elements of / / preserves measure.

Suppose that H is a unimodular Lie group and that p and <? are in [1, oo). Denote
by Cvq

p(H) the Banach space of all distributions k on H such that the operator
/ \-> f * k, initially defined from Cf(H) to C°°(H), extends continuously to a
bounded operator from LP(H) to Lq(H); we endow Cvq

p(H) with the operator norm.
If H = Hi x //2, we say that / is in Cu«(//,; Cvq

p(H2)) if for all fixed fci in //, , the
function A2 H> f(hxh2) is in Cv«(tf2) and hx i-»- ||/(Ai-)llc«|(H2) is in Cu«(ff,).

PROPOSITION 2.1. Suppose that H is a unimodular semidirect product Hx x H2 and
that 1 < p,q < oo. //it w m Cvq

p{HuCvq
p(H2)), then k is in Cvq

p(H), and

PROOF. Suppose that / is a continuous function with compact support. By a
standard result about integration on groups (see, for example, [6, Proposition 5.26]),

/ f(u)du= j j f(uiu2)du2dui= j j
JH JH, JH, JH, JH,

Write uv for v~luv, and define the function #„,,„, on H2 by

gU],Vl(s2) = f(uxvisl') for all s2 e H2.

Then

\(f*k)(u)\qdu

-HI
\JH, JH,

-if U
\J H, \_JHi

) k((v2vi)I J j(UiU2

JH, JH,

f f f{u[vi(u2v2r')k(v;iv2
l)dv2dvi

JH, JH,

lM2d«i I

du2

' /</

dM A d i i . J
1/9
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By Minkowski's inequality,

ll/**ll, <( f I / lift.,.,,**

0
r [ f , -, 1

/ l l g u i vi \\LP(H2) I I ^ C ^ l ) l l c i ) J ( f f 2 ) U V i \

Since conjugations by elements of Hx are measure-preserving on H2,

O
f \ i/p / r \ UP

\f(uivxs2]
H2

= II/(«IVI-)IUP(//2)

Therefore,

\JH, UH

Now the inner integral is the convolution on H\ of the functions

V\ •->• Il/Ov)IILP(H2) and Ui H> ||<:(vr)llci-«(//,).

evaluated at M^ Since vx i-> ||^(vr)llc^(//2) is *n Cvq
p{Hx) by assumption,

Or- \ i / p

Hi

The required conclusion follows. •

Suppose that / / is a unimodular Lie group and that H\, H2,..., Hd are closed
unimodular subgroups of H, whose dimensions sum to that of H. Suppose (backward
recursively) that //,_! normalises HtHi+\ • • • Hd, the conjugation action of //,_i on
//,//,+! • • • Hd is unimodular, and //,_i D //,//,+, • • • Hd = {/} when i = d, ... ,2.
Then //,-_, Hr--Hd = //,_i K Ht • •• Hd when / = J , . . . , 2. We say (again) that / / is
a unimodular semidirect product, and, abusing notation a little (forgetting significant
parentheses), we write

(2.1) H = HX x H2 x ••• K //d.

We now define recursively an iterated version of the Lorentz space L500, which
will be important for our main result (Theorem 3.4). Suppose that (2.1) holds.
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When d = 1, we define LSOO(H\) to be the usual Lorentz space, that is, the set of
all measurable functions / on //, such that, for some (/-dependent) number C,

\{h e / / , : \f(h)\ > X}\]/s < C/X for all X e K + .

We define the ' no rm ' of / to be the m i n i m u m poss ible value of C. W h e n d > 1,

we define L ! 0 C ( / / , ; Lv ° ° ( / / 2 ; . . . Lsrx(Hd)...)) to be the space of all measurab le

functions f on H such that, for a lmost all h\ in / / , , (/i2, . . . , /z^) i-> f(h\h2 • • -hd) is

in LS/X(H2\... Ls-°°(Hj)...), and the function hx H> \\f(hv)\\L,^Hl_L-.^HilU) is in

Ls< •*>(//, )• The 'norm' of / is defined to be the LJ0O(//,) 'norm' of this last function.
We have written 'norm' because, in general, the triangle inequality does not hold, and
we do not have a true norm.

We write R(i) for the range of the one-parameter subgroup / i—• ?e, of the group K2,
where {ei, e2} is the standard basis of R2. Then

We now show that, for this example, the order of the variables in the iterated space
matters and that the iterated spaces are different to the Lorentz space LVOO(K2). We
observe that / is in LSOO(K2) if and only if | / | J is in Ll 0 0(K2), and similarly, / is in
Z/-°°(IR(/); LSOC(KU))) if and only if | / | s is in L''°°(IR(;); L''°°(IR0))). Thus it suffices
to consider the case where 5 = 1.

Define the functions g, h and k on K2 by

g(x, y) = e'xXE(x, y), h(x, y) = g(y, x), and k(x, y) =
\xy\ '

where E = {(x, y) € K+ x K+ : x < ey}.

If X > 0 and x > 0, then

{y € 0& : g(x, y) > X] = [y € R : e"v > A.} n {y e K : XE(JT, v) > 0}

= {>' e K : y > 0, y > logx , y < - log A.},

which is empty if X > 1 or if X < ]/x, and nonempty otherwise. Thus

y e Ol :g( jc ,y) > A.}| = sup
A>0

if 0 < x < 1, while if x > 1, then

||g(jt,-)ll/.'-(»>= sup X[\og(X'])-\ogx]= sup Alog((jcX)-') = ( « ) " ' .
0 l / 0 A 1

N o w x h^ | | ^U , Ollt'-dj) is in LLoo(!R), and g is in L1-°°(IR(,);L'-°°(IR(2))). It is easy

to check that ||g(-, v)||/.i.x(R) = xR+(y), which is not in Ll 0 O(IR). Thus g does not

belong to L'-^(iR(2); L1 °°([R(I))).
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Similarly, h is in Ll-°°(R{2); Ll'°°(R(l))), but not Lloo(K(1); L''°°(1R(2))).
If A. > 1, then the set {(*, y) 6 R2 : g(x, y) > X] is empty, while if 0 < X < 1,

then the set is {(x, y) e E : y < — log A.}. Therefore,

: g(x, y) > X}\ = Q- - \

whence ||g||z.>.~(i»2) = supx>0A \{(x, y) e K2 : g(x, y) > X}\ = 1, and g is in the
standard Lorentz space Ll-°°(U.2). Similarly, h also belongs to this space. As already
remarked, k belongs to the iterated space (with either ordering of the variables), but
not to the Lorentz space Lloo(IR2), so the iterated space (with either ordering of
the variables) is not contained in the standard Lorentz space. Consideration of the
functions g and h shows that the standard Lorentz space is not included in the iterated
space (with either ordering of the variables).

PROPOSITION 2.2. Suppose that H is a unimodular semidirect product

H = //,!>< tf2 K • • • K Hd,

in the sense of (2.1), where 1 < p, q, s < oo, and that \/p + l/s = \/q + 1. Then

the iterated space LSOO{H\;... Lsoo(Hd)...) is contained in Cvq
p(H) and there exists

a constant Cd such that ||A:||c««(//) < Cd \\k\\U-^H,-,...V-(//,,)...)•

PROOF. We argue by induction on the number of factors. If there is only one factor,

the result is Hunt's well known convolution theorem [5].
Suppose that the result holds when the number of factors is less than d. The

subgroup H2Hi • • • Hd is normal in H. By definition of the iterated Lorentz space, for
a l m o s t a l l h x i n / / , , ( h 2 , . . . , h d ) * - > f ( h x h 2 • • • h d ) i s i n L s r x ( H 2 ; . . . L ' ' ° ° ( H d ) . . . ) ,

and the function h, h-> ||/(Ai-)llf-"(H2;...t
i-*(%)...) is in Ls''°°(//i). By the inductive

hypothesis, Lsao(H2;... Ls°°(Hd)...) is contained in Cvq
p{H2 • • • Hd) and

\\k'\\cv"p(H1...H,) < Crf-.ll|fc'llz.'-<tf2;..X>-(«„)...)

for all k' in LS°°(H2;... LS0O(Hd)...). In particular,

\\f(hv)\\cv"l,(H2...Hd) < Q

so h\ (-• \\f(h\-)\\cvip(H2...Hd) is in LI 0 O(// i) , and hence in Cvq
p(HC), by Hunt's convo-

lution theorem applied to Ht. The required result now follows from Proposition 2.1,
with H2 • • • Hd in place of H2. •
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3. Structural properties of intertwining operators

Let V* denote the set of all v e V such that w*v is in VMAN. Then V* is Zariski
open in V, and in particular is of full measure in V. The next lemma describes some
properties of the map v i-> V(w*v) from V* to V. These properties are essentially
known (see, for instance, [7] or [9, 10]).

LEMMA 3.1. The following hold:

(i) V(w*V(w*v)) = v and A(w*V(w*v)) = A(w*v)~l for every v in V*\
(ii) the Jacobian of the mapping v h-> V(w*v) is A(w*v)~2p for every v in V*\

(iii) A(w*v~l) — A(w*v)~"' far every v in V*;
(iv) A(w*v") = a~"' A(w*v)a for every v in V* and a in A;
(v) the intertwining operator Ik may be realised as a convolution operator in the

noncompact picture:

where rk: V" - • K+ is defined by rk(v) = A (u>*u-')*-".

PROOF. TO prove (i), we write w*v — V(w*v) M(w*v) A(w*v) N(w*v). Multi-
plying both sides by w*, and observing that w*2 — e, we see that

v = w* V(w*v) M(w*v) A(w*v) N(w*v),

so that

zZ,* V{xl)*v) = v M(w*vyl A(w*v)-1 n .

This implies that A(w*V(w*v)) = A(w*v)~l and V(w*V(w*v)) = v, as required.
To prove (ii), recall that the Haar measures on G, V, M, A and N may be normalised

so that

/ u(g)dg= I I I I u(vman)dna2p dadmdv for all u e CC(G),
JG JV JM JA JN

by [6, Proposition 5.26]. We will express the invariance of the Haar measure on G in
terms of this 'Bruhat decomposition for the Haar measure'. To do so, we first observe
that if w*v = V(w*v)M(w*v)A(w*v)N(w*v), then

w*vman = V (w*v)[M(w*v)m][A(w*v)a][(ma)~i N (w*v)(ma)n].

Next, we take u on G such that u(vman) = U\(v)u2(a)uT,(n), where

/
u2(a)a2pda — 1 and / uj,(n)dn = 1.

JN
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Then

lul(v)dv = III I U\{v)u2(a) Ui(n)dna2p dadmdv
Jv JVJMJAJN

= u(g)dg = u(w*g)dg
Jc Jc

= 111 [ ul(V(w*v))u2(A(w*v)a)ui{N(w*v)man)dna2p dadmdv

= I I Ui(V(w*v)) u2{a) A(w*vy2pa2p dadv
JVJA

= I'ui(V{w*v)) A(w*vy2pdv,
Jv

so that the Jacobian of the transformation D M> V(W*V) is A(w*v)~2p, as required.
To prove (iii), note that w*v = V(w*v)M(w*v)A(w*v)N(w*v), whence

u-'u)*-' = N(w*v)-1 l l K

Now w* — w*~\ so w*v~x is equal to

say, where v\ e V, m, e M and ti\ e N, since A'1"* = V, Vw' = N, and M is a
normal subgroup of M'. Then A(w*v~l) = u)*A(u)*u)~'?Zi*~', as required.

To prove (iv), suppose that w*v = v'm'a'n'. Then for a e A,

w*va = w"a'xva =a-a'w*va = a'*'v'm'a'ri a = (i/)""''ma'*''da(ri)",

so A(w*v") = a~w' A(w*v)a, as required.
Finally we give a nonrigorous proof of (v), and refer the reader to [7] for more

details. Recall that

Ik$(v')= [ $(v'w*v)dv= f ^(v'V(w*v))A(w*v)-{p+X)dv.
Jv Jv

By virtue of (i) and (ii), the change of variables v" = V(w*v) transforms the last
integral into

f £(uV) A(w*V(w*v")yip+k) A{w*v"Y2pdv"
Jv

= [ £(uV) A(w*v")p+k A(w"v"y2p du"
Jv

= $, *rk(v'),

as required. •
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In view of Lemma 3.1 (v), when Re k = S(p)p, the intertwining operator IK reduces
to the (right) convolution operator on V whose kernel is A(w*-)Wp)~i)p. Thus, it may
be useful to compute A(w*-)p.

For x in SL(«, K), denote by Dk(x) the determinant of the submatrix (x,j)\<,,j<k.

LEMMA 3.2. For any x in VMAN, A{x)p = \\"~=\ \Dk(x)\.

PROOF. It is well known [3, page 434] that

VMAN = [x e SL(H, K) : Dx(x) £ 0, . . . , £>„_,(*) / 0}.

Moreover,

/ x D2(x) Dn(x)
M(x)A(x) = diag

and

Recall that

,...,xa)) =
« + 1 — 2j

Then

A{x)lp = \Dx(x)\n D2(x) n-l 3-n

= \D,{x)\2\D2(x)\2

and the lemma follows.

Dn.2{x)

\Dn^2(x)\2\Dn^(x)\\

•
Before we can use this information, we need some structural information about V.

Fork s { 1 , 2 , . . . , n(n - l)/2}, let m(k) be the integer part of ((8* - 7) ' / 2 + l) /2.
Let 4>k be the one-parameter subgroup t i-> / + ?£,,7 of V, where

/ = w ( A : ) + l and y = k - m(k)(m(k) - l ) /2,

and let Hk denote the range of <j>k. We refer to the ((, _/)th place in the matrix as the
place indexed by k. For the case where n — 5, the number k is written in the place
indexed by k in the following matrix:

\
1 . . .

2 3 • •
4 5 6 -

\ 7 8 9 10 •)
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Then (backward recursively) Hk_x normalises Hk- • • Hn(n-U/2, and

V = Hi tX H2 tX • • • X //n(n_i)/2,

in the sense of (2.1). Indeed, Hk • • • Hnin_l)/2 is the subgroup of all v in V whose
only nonzero, nondiagonal entries are in the places in the matrix indexed by k,...,
n(n — l) /2 , and Hk-\ is the subgroup of all v in V whose only nonzero, nondiagonal
entries are in the place in the matrix indexed by k — 1, which lies to the right of, or
above, the places indexed by / , . . . , n(n — l ) /2 . It is easy to see that Hk_i normalises
the subgroup of all v in V whose only nonzero, nondiagonal entries are in the rows
below the place in the matrix indexed by k — 1, and centralises the subgroup of all v
in V whose only nonzero, nondiagonal entries are in the same row as the place in the
matrix indexed by k — 1.

Note that //, K Hi+i ix • • • tx Hn(n_i)/2 may be identified with the subgroup of lower
unipotent matrices in SL(n, K) with zero entries in the places indexed by 1 , . . . , / — 1,
and that H{ x H2 x • • • K H(n-wn-2y2 (which has zero entries in the places indexed by
(n — l)(n — 2)/2 + 1 , . . . ,« (« — l)/2) is isomorphic to the group of lower unipotent
matrices in SL(« — 1, R).

The crucial result is the following proposition, which provides a sharp estimate for
the size of the intertwining kernel rk when Re A. is a multiple of p.

PROPOSITION 3.3. Let V be the group of lower triangular real unipotent n x n
matrices. Fork in { 1 , . . . , n — 1}, define Dk(v) by

Dk(v) = dtt(Vjj)n-k<i<n for all v eV.

(i) Ifv is in V, then v is in V* if and only if Dk(v) ^ 0 when k = \,... ,k — 1.
(ii) For every v in V*,

J
(iii) The function v H* A(w*v)-fi is in L l 0 o ( / / 1 ; . . . L l o o ( / / n ( n _ 1 ) / 2 ) . . . ) , and

PROOF. First, an element v of V is in V* if and only if w*v is in VMAN, and
this holds if and only if Dk(w*v) ^ 0 when k = 1 , . . . , n — 1, by [3, page 434].
Multiplying the lower triangular unipotent matrix v on the left by w*, as defined in
(1.1), just reverses the order of the rows of v. Therefore Dk(w*v) = ±Dk(v), and (i)
follows.
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Now we prove (ii). For convenience, we write <J>(u) for A(w*v) p. By Lemma 3.2
and part (i) of this proposition,

* < u > = n 7 7 7 7 ^ ^ 1 = n
1

•=* \Dk(w*v)\ l=\ \Dk(v)\

Now we prove (iii), by induction onrc. We write Vn for the group of lower unipotent
real n x n matrices, and $„ rather than just <t>.

Suppose first that n = 2. Write vx for the lower unipotent 2 x 2 matrix whose
lower left entry is x. Then 4>2(u.() = I*I"1, and the result is evident.

For the inductive step, we let n,,: SL(«, R) ->• SL(n + 1, R) be the injection

gij if' < n and j < n;

0 if / = n + 1 and j < n;

0 if / < n and j = n + 1;

1 if / = n + 1 and y = n + 1.

To shorten the notation a little, we denote the subgroup Hnin_l)/2+m by H'm where
/n = 1, 2, . . . , n, and the corresponding one parameter subgroup by <pm. Thus the
only nonzero nondiagonal entries of elements of H'm are in the (n + 1, m)th place in
the matrix. We will show that for all v in V*, the function

is in Ll-X(H[ : ... Ll0C(H'n)...) and

(3.1) ll*B+i(wn(u)-)lk' 1;)...) = 2"*B(u).

The result then follows by induction.
To prove (3.1), we take v in V*. The range of <pm is H'm, and

7T n ( t ; ) 0 |U i ) •••</>„(*„) =

It is easy to check that, if k < n, then nn{v)4>\{x\).. .4>k(xt) is the matrix obtained by
setting jcjt+i Jcn equal to 0 in the matrix above. Since Dk is the determinant of the
bottom left k x k submatrix,

{ 1

^2.1

IV1

o •••
l •••

IV 2 • • •
x2 •••

0
0

1

0

0

1)

Dk(Tin(v)<t>\{x\) • --(j)n{xn)) — Dk(nn(v)(l>i(xi)
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<i>n+\(nn(v)^i(xi)---<t>n(xn)) =
J t = l

It is clear that 4>n+!(7rn(U)0I(JCI) • • •</>„(•*„)) depends on xn in only one determinant,
namely Dn{ntt{v)<t>\{x{) • • • cpn(xn)). By expanding this determinant along the bottom
row, we see that

|JCB

where cn is a rational function of the coordinates v,j and Xj that does not depend on
xn. In this formula, Dn indicates the determinant of the bottom left n x n submatrix
of the (n + 1) x (n + 1) matrix, while D'n_x(v) is the determinant of the bottom left
(n — 1) x (n - 1) submatrix of the n x n matrix v. Further, D'n_i(v) ^ 0, because
v e V*. Now, for all positive k and K, and any real c,

1

and so

By applying this to the case at hand, we deduce that

It is clear that HOn+iCu^^Jti) • • •0B-i(JCn-i)Olk1^(//;) depends on ^ _ i in only one de-
terminant, namely Dn_i(7Tn(u)<^i(A:i) • • -(pn-.\{xn^\)). By expanding this determinant
along the bottom row much as before, we see that

After n iterations of this argument, we end up with the estimate (3.1).

Our main convolution theorem is now easy to state and prove.

D

THEOREM 3.4. Let V be the group of lower triangular real unipotent n x n matri-
ces.
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(i) Suppose that k is in o'c and Ik is bounded from LP(V) to Lq(V), where
1 < p , ^ < oo. Then p < q and the projection Proj p Re k of Re k onto p is equal to
{\/p-\/q)p.

(ii) Suppose that 1 < p < q < oo and Re A = (l/p — \/q)p. Then the
convolution operator lk is bounded from LP(V) to Lq(V).

PROOF. TO prove (i), we first recall a result of Hormander [4, Theorem 1.1]. It
generalises immediately to the context here, and shows that p < q, because V is
noncompact.

Now we adapt a classical dilation argument for Riesz potentials on Euclidean
spaces. By Lemma 3.1 (iv), we see that

rk(v") = A{w*vaf-p = [a"'rA(w*v)a]l-p = [a~a'"af-prk(v),

and
[a-^af-o = exp((X - p) log a - (k - p) Kd(w*) log(a))

= exp((A - p) loga - Ad(iZ>*)'(* - p) log(a))
P.-AdO? ')'k—2p

since Ad(iD*)'p = —p. Given a function / on V and a e A, we write / " for the
function v h-> f(v"). A change of variables shows that

f*rdv")= / f(v"v')rk(v'-l)dv'
Jv

= a2p f /(i/V0K(i/-")di/
Jv

= a'-Am"n ( fa(vv')rx(v'-
Jv

Another change of variables shows that | | / a | | ¥ = (a"2p)l/ '?ll/l|( /-
Suppose now that the operator / H> / * rk is Lp(V)-Lq(V) bounded. Then for

all / in U'(V),

rk)
a \\q = a™-***'* ReX || f*rk ||,

= CaRe''-MU7')'R^(a-2p)]/p\\f\\p for all a e A,

sothataReX-Ad("*»'ReX = (a2py/p-]/'1 for all a in A, whence

Rek - Ad(w*)' Rek =
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This implies that Proj p Re A = (\/p — \/q)p, as claimed.

To prove (ii), from Lemma 3.1 (v) and Proposition 3.3 (iii),

I Oil — n\W •) ,

which is in U-°°{HX;... Z/'00 (//„<„_ l ) / 2 ) . . . ) , where I /s = I - I /p+1 /q. The desired

result now follows from Proposition 2.2. •
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