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Abstract

Consider an independent site percolation model on Z
d , with parameter p ∈ (0, 1), where

all long-range connections in the axis directions are allowed. In this work we show
that, given any parameter p, there exists an integer K(p) such that all binary sequences
(words) ξ ∈ {0, 1}N can be seen simultaneously, almost surely, even if all connections
with length larger than K(p) are suppressed. We also show some results concerning
how K(p) should scale with p as p goes to 0. Related results are also obtained for the
question of whether or not almost all words are seen.
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1. Introduction and notation

The problem of percolation of words was introduced in [2] and is formulated as follows.
Let G = (V, E) be a graph with a countably infinite vertex set V. Consider site percolation
on G; to each site v ∈ V we associate a Bernoulli random variable X(v), which takes the
values 1 and 0 with probability p and 1 − p, respectively. We work with the probability
space (�, F , Pp), where � = {0, 1}V, F is the σ -algebra generated by the cylinder sets in
�, and Pp = ∏

v∈V
µ(v) is the product of Bernoulli measures with parameter p, in which the

configurations {X(v), v ∈ V} take place. We denote a typical element of � by ω, and sometimes
we write X(ω, v) instead of X(v) to indicate that X(v) depends on the configuration. When
X(v) = 1 or X(v) = 0, we say that v is ‘occupied’ or ‘vacant’, respectively. A path γ on G

is a sequence v1, v2, . . . of vertices in V such that vi �= vj for all i �= j and vi+1 is a nearest
neighbor of vi for all i; that is, the edge 〈vi, vi+1〉 belongs to E.

Let � = {0, 1}N. A semi-infinite binary sequence ξ = (ξ1, ξ2, . . . ) ∈ � will be called a
word. Given a word ξ ∈ {0, 1}N, a vertex v ∈ V, and a configuration ω ∈ �, we say that
the word ξ is seen in the configuration ω from the vertex v if there is a self-avoiding path
〈v = v0, v1, v2, . . .〉 such that X(vi) = ξi for all i = 1, 2, . . .. Note that the state of v is
irrelevant. For fixed ω ∈ � and v ∈ V, we will consider the random sets Sv(ω) = {ξ ∈ �;
ξ is seen in ω from v} and S∞(ω) = ⋃

v∈V
Sv(ω). An interesting problem is to describe the
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circumstances in which the events {ω ∈ �; S∞(ω) = �} and {ω ∈ �; there exists v ∈ V

with Sv(ω) = �} occur almost surely. Whenever either one of these events occurs, we say that
all words are seen.

From a different perspective, if we suppose that the sequence of digits in the word ξ is a
sequence of independent Bernoulli random variables with parameter α, i.e. each word ξ take its
values in the probability space (�, A, µα), where A is the σ -algebra generated by the cylinder
sets in �, and µα = ∏

n∈N
µ(n) is the product of Bernoulli measures with parameter α, another

question arises, namely whether the event

{ω ∈ �; µα(S∞(ω)) = 1}
occurs almost surely. Whenever this occurs, we say that almost all words are seen or that the
random word percolates.

In general, the problem of seeing all words is significantly harder than the problem of seeing
almost all words. For instance, it is known that, for d ≥ 3 and p = 1

2 , almost all words are seen
on Z

d with nearest neighbors, whereas, in [2], it was shown that it is possible to see all words on
Z

d , P1/2-almost surely (P1/2-a.s.) for d ≥ 10, but, for d < 10, the problem of seeing all words
remains open (see Theorem 1 and Open Problem 2 of [2]). We should remark that, in general,
seeing almost all words does not imply that all words are seen. For instance, Theorem 5 of [2]
gives an example of a tree where we can see µ1/2-almost all words but not all words are seen
P1/2-a.s.

In [9] it was shown that µα-almost all words are seen (with α ∈ (0, 1)) on the triangular
lattice P1/2-a.s. (remember that in the triangular lattice pc = 1

2 , so it is not possible to see all
words). In [10] it was proved that on the closed packed graph of Z

2 (the ordinary square lattice
decorated with both diagonal bonds in each square), for p ∈ (1 − pc(Z

2), pc(Z
2)), all words

are seen Pp-a.s.
On the one hand, percolation of words is a natural generalization of the usual percolation

and, as such, is a source of interesting mathematical questions. On the other hand, research
in theoretical computer science has raised several deep and interesting problems, such as the
compatibility of binary sequences and the clairvoyant demon problem (see [3] and [12]), which
are conceptually closely related to percolation of words. At the same time control over the
behavior of truncated long-range sequences may shed some light on the issue of quasi-isometries
between random spatial objects (as discussed in [11]). See [5] for a more accurate description
of the relations between percolation of words, quasi-isometries, and compatibility of binary
sequences.

In the present paper we are concerned with the graph GK = (V, EK), in which V = Z
d ,

d ≥ 2, and where all long-range edges parallel to the coordinate axes are allowed, that is,

EK = {〈(x, y)〉 ⊂ Z
d × Z

d : there exists i ∈ {1, . . . , d} such that 0 < |xi − yi | ≤ K

and xj = yj for all j �= i}.

The graph GK can be seen as a truncation of the (nonlocally finite) graph G = (V, E), where

E = {〈(x1, . . . , xd)(y1, . . . , yd)〉 ⊂ Z
d × Z

d : there exists i ∈ {1, . . . , d} such that xi �= yi

and xj = yj for all j �= i},
that is, GK can be obtained from G by erasing all bonds with length larger than K .
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In an earlier paper, de Lima [4] showed that, for all p ∈ (0, 1), there exists a positive integer
K = K(p) such that, on the graph GK ,

Pp

(⋃
v∈V

{ω ∈ �; ξ is seen in ω from v on GK}
)

= 1 for all ξ ∈ �. (1)

Moreover, (1) implies that, for the same K(p), it is possible to see µα-almost all words (with
α ∈ (0, 1)) on GK , but (1) does not imply that it is possible to see all words.

We would like to point out that Grimmett et al. [7] treated similar questions to those
considered in this paper, but on Z (in the oriented case) instead of Z

d , d ≥ 2. One of the
results proved therein was that, when K = 2, not all words are seen from the origin P1/2-a.s.

In Section 2 we prove that there is a constant K(p) such that, with positive probability, all
words are seen on GK from a given vertex and state some results on the scaling of the constant
K(p) as p ↘ 0. In Section 3 we state a result on the scaling of the constant K(p) for which
µα-almost all words are seen on GK . In Section 4 we make some final remarks concerning the
scaling behavior for ordinary percolation, and state some conjectures and open questions.

2. All words can be seen

Our first result generalizes that of [4], showing that all words are seen on GK for sufficiently
large K .

Theorem 1. For all p ∈ (0, 1), there exists a positive integer K = K(p) such that

Pp{ω ∈ �; S0(ω) = � on GK} > 0.

Equivalently,

Pp

(⋃
v∈V

{ω ∈ �; Sv(ω) = � on GK}
)

= 1.

Proof. For any given n ∈ N and x = (x1, . . . , xd) ∈ Z
d , let

�x(n) = {y = (y1, . . . , yd) ∈ Z
d; 0 ≤ yi − nxi ≤ n − 1 for all i = 1, . . . , d} (2)

be a hypercubic box of side n. We observe that, for any n ∈ N, the set of boxes {�x(n); x ∈ Z
d}

forms a partition of Z
d .

Consider a renormalized lattice, isomorphic to Z
d , whose sites are the boxes {�x(n);

x ∈ Z
d}. Given a configuration ω ∈ �, we declare each box as ‘good’, in the configuration ω,

if all lines have at least one occupied site and one vacant site. To be precise, the box �x(n) will
be ‘good’ if, for all i ∈ {1, . . . , d} and all finite sequences (lj )j with lj ∈ {0, . . . , n − 1} and
j ∈ {1, . . . , d} − {i}, there exists z, w ∈ L(i, (lj )j ) such that X(ω, z) = 1 and X(ω, w) = 0,
where

L(i, (lj )j ) = {y ∈ �x(n); yj = lj + xj for all j ∈ {1, . . . , d} − {i}}
are the lines of �x(n).

Consider the events

Ax(n) = {ω ∈ �; the box �x(n) is good in ω}.
It is clear that all events of the collection {Ax(n); x ∈ Z

d} are independent and have the same
probability. A rough estimate for a lower bound of this probability gives

Pp(A(n)) = 1 − Pp(A(n)c) ≥ 1 − dnd−1(pn + (1 − p)n).
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Then,
lim

n→∞ Pp(A(n)) = 1 for all p ∈ (0, 1).

Now, for fixed p ∈ (0, 1), let N = N(p) = min{n ∈ N; Pp(An) > pc(Z
d)}, where

pc(Z
d) is the ordinary independent nearest-neighbor site percolation threshold for Z

d . Then
the origin of the renormalized lattice will percolate with strictly positive probability, that is,
there is an infinite path (�x0(N), �x1(N), �x2(N), . . . ) of renormalized ‘good’sites, with xk =
(xk,1, . . . , xk,d) ∈ Z

d , ‖xk+1 − xk‖1 = 1 for all k ∈ N, and x0 = (0, . . . , 0). From now on,
we fix some configuration ω ∈ � for which this infinite path (�x0(N), �x1(N), �x2(N), . . . )

of renormalized ‘good’ sites occurs.
Given any word ξ = (ξ1, ξ2, . . .) ∈ �, we can see its digits along some path γ = 〈v0 =

0, v1, v2, . . .〉 starting from the origin of the original lattice in the following way. Define v0
as being the origin; we will define the other vertices inductively. Given the vertex vk−1 ∈
�xk−1(N), let ik ∈ {1, . . . , d} be the unique integer such that |xk−1,ik − xk,ik | = 1. Since the
box �xk

(N) is good, there exists at least one vertex v ∈ �xk
(N) along the line L(ik, (lj )j ) with

lj = vk−1,j for all j �= ik such that X(v) = ξk . Choose one of these vertices and call it vk .
Observe that vk−1 and vk belong to the same line and that ‖vk−1 −vk‖1 ≤ 2N −1 for all k ∈ N.

Then, by construction, on this fixed configuration ω, we have ξk = X(ω, vk) for all k ∈ N.
So, taking K(p) = 2N(p) − 1 we have

Pp{ω ∈ �; S0(ω) = � on GK} > 0.

The last statement of the theorem follows by observing that the event
⋃

v∈V
{ω ∈ �;Sv(ω) =

� on GK} is translation invariant, so its probability must be 0 or 1.

From now on, we can suppose that K(p) is the minimal truncation constant such that
Theorem 1 holds. A natural question to ask is how the magnitude of K(p) varies as a function
of p. We can easily see that K(p) is symmetric around p = 1

2 and a coupling argument can
be used to show that K(p) is nonincreasing on the interval (0, 1

2 ], achieving its minimum at
p = 1

2 (when d = 2, the constant K( 1
2 ) could be taken as 11). It is natural to expect that

K(p) increases to ∞ as p approaches 0, as we will show in Theorem 2 below, and a problem
of relevance is to determine how K(p) scales as p goes to 0. Without loss of generality (by
symmetry), we consider only the situation where p ∈ (0, 1

2 ].
Related problems on other models have been extensively studied, for example, in [1], the

authors determined the right finite-size scaling as p goes to 0 for the critical threshold in
two-dimensional bootstrap percolation. This is the setup of the next theorem and lemmas.

Lemma 1. If K = K(p) = 2λ/p� then, for λ > −3 ln(1 − pc(Z
d)), it holds that

lim
p→0

Pp

(⋃
v∈V

{ω ∈ �; Sv(ω) = � on GK}
)

= 1.

Proof. By translation invariance, it is enough to prove that there exists some p∗ > 0 such
that, for large λ and all p ∈ (0, p∗),

Pp{ω ∈ �; S0(ω) = � on GK} > 0. (3)

We say that there is a seed at vertex v ∈ Z
d if X(v) = 1 and X(u) = 0 for all u with

‖v − u‖1 = 1. We call the vertex v the center of the seed. Observe that

Pp{there is a seed located at v} = (1 − p)2dp,
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and that the events {there is a seed located at v1} and {there is a seed located at v2} are inde-
pendent if ‖v1 − v2‖1 ≥ 3.

As limp→0[1 − [1 − p(1 − p)2d ]1/3(λ/p�−2)�] = 1 − exp(−λ/3), we can choose some
large λ > −3 ln(1 − pc(Z

d)) and some small p∗ such that

1 − [1 − p(1 − p)2d ]1/3(λ/p�−2)� > pc(Z
d) for all p ∈ (0, p∗).

For this large λ and p ∈ (0, p∗), define n = λ/p� and consider the partition of Z
d , {�x(n);

x ∈ Z
d}, as defined in (2). We will use the letters x and y to denote vertices of the renormalized

lattice. The idea is to construct, dynamically, a sequence (Rx, x ∈ U ⊂ Z
d) of {0, 1}-valued

random variables and a sequence (Di, Ei), i = 0, 1, . . . , of ordered pairs of subsets of Z
d ,

defined as follows.
First, let f : N → Z

d be a fixed ordering of the vertices of Z
d and define (D0, E0) = (∅, ∅).

Let x0 = 0 be the origin of Z
d . We say that Rx0 = 1 if at least one of the d(n − 1) vertices in

the set

Tx0 = {v = (v1, . . . , vd) ∈ Z
d; there exists i ∈ {1, . . . , d} with vi ∈ {1, . . . , n − 1}

and vj = 0 for all j �= i}
is the center of some seed, that is, if there exists v ∈ Tx0 with X(v) = 1 and X(u) = 0 for all
u with ‖v − u‖1 = 1. Otherwise, we say that Rx0 = 0. Observe that

Pp(Rx0 = 1) ≥ 1 − [1 − p(1 − p)2d ]d(n−1)/3� ≥ 1 − [1 − p(1 − p)2d ]n/3�.

Now, define

(D1, E1) =
{

(D0 ∪ {x0}, E0) if Rx0 = 1,

(D0, E0 ∪ {x0}) if Rx0 = 0,

and if Rx0 = 1, define z(x0) as the center of some seed belonging to Tx0 .
Let (Di, Ei) be given. If ∂e(Di)∩Ec

i = ∅, define (Dj , Ej ) = (Di, Ei) for all j > i, where

∂e(A) = {v ∈ Z
d; v ∈ Ac and there exists u ∈ A with ‖v − u‖1 = 1}.

Otherwise, let xi be the first vertex in the fixed order belonging to ∂e(Di) ∩ Ec
i and define yi as

any vertex belonging to Di such that ‖xi − yi‖1 = 1 (observe that y1 = x0).
We say that Rxi

= 1 if at least one of the n − 2 vertices of the set

Txi
= �̃xi

∩ {z(yi) + j ēxi−yi
; j ∈ Z}

is the center of some seed, that is, if there exists v ∈ Txi
with X(v) = 1 and X(u) = 0

for all u with ‖v − u‖1 = 1. Here, ēl denotes the unit vector of Z
d in the lth direction and

�̃x = {y = (y1, . . . , yd) ∈ Z
d; 0 ≤ yi − nxi ≤ n − 3 for all i = 1, . . . , d} (this ensures the

independence of the sequence (Rxi
, i = 0, 1, . . . )). Otherwise, we say that Rxi

= 0. Observe
that Pp(Rxi

= 1 | Rxj
for all j < i) ≥ 1 − [1 − p(1 − p)2d ](n−2)/3�. Define

(Di+1, Ei+1) =
{

(Di ∪ {xi}, Ei) if Rxi
= 1,

(Di, Ei ∪ {xi}) if Rxi
= 0,

and if Rxi
= 1, define z(xi) as the center of some seed belonging to Txi

. Owing to our choices
of λ, p, and n, the process (Rxi

, i = 0, 1, . . . ) dominates an independent and identically
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distributed (i.i.d.) {0, 1}-valued process with parameter larger than pc(Z
d). Comparison with

ordinary site percolation shows that (see Lemma 1 of [6]) Pp(#(
⋃

i∈N
Di) = ∞) > 0 and,

by construction, on the event (#(
⋃

i∈N
Di) = ∞), all words ξ ∈ � can be seen along some

self-avoiding path 〈0, v1, v2, . . . 〉 with vi belonging to some seed for all i, as we will now show.
Then, (3) is proved with K(p) = 2λ/p�.

When the event {#(
⋃

i∈N
Di) = ∞} occurs, it is possible to take a sequence of adjacent boxes

�xi0
, �xi1

, �xi2
, . . ., with xi0 = x0 = 0, such that R(xij ) = 1 for all j and z(xij ) − z(xij−1) =

mēl for some m ∈ Z
∗ and l ∈ {1, . . . , d}. That is, seeds in adjacent boxes have their centers

belonging to the same line. To simplify the notation, let us denote xij by wj .
Given any word ξ ∈ �, define l1 = min{i; ξi = 1} and lj = min{i > lj−1; ξi = 1} for

j ≥ 2. If l1 = 1, define v1 = z(w0); if l1 > 1, define vi = z(wi−1) − ēb for all i < l1 and
vl1 = z(wl1−2), where b is the unique direction such that the inner product 〈ēb · z(w0)〉 is not 0.
Then, by construction, the finite word (ξ1, . . . , ξl1) is seen along the path 〈0, v1, . . . , vl1〉. Define
I (1) as the index such that vl1 = z(wI (1)) (observe that I (1) = 0 if l1 = 1 and I (1) = l1 − 2
if l1 ≥ 2).

Now, we describe the induction step. Suppose that the finite word (ξ1, . . . , ξlk ) is seen along
the path 〈0, v1, . . . , vlk 〉 for all k ≥ 1. If lk+1 = lk +1, define vlk+1 = z(wIk+1); if lk+1 > lk +1,
define vi = z(wI (k)+i−lk )− ēwI (k)−wI(k)+1 for all lk < i < lk+1 and vlk+1 = z(wI (k)+lk+1−1−lk ).
Then, by construction, the finite word (ξ1, . . . , ξlk+1) is seen along the path 〈0, v1, . . . , vlk+1〉.
Define I (k + 1) as the index such that vlk+1 = z(wI (k+1)) (observe that I (k + 1) = I (k) + 1
if lk+1 = lk + 1 and I (k + 1) = I (k) + lk+1 − lk − 1 if lk+1 > lk + 1). Thus, we define the
path 〈0, v1, v2, . . . 〉 in such way that X(vi) = ξi for all i. This completes the proof.

Lemma 2. If K = K(p) = λ/p� with λ < 1/2d, it holds that

lim
p→0

Pp

(⋃
v∈V

{ω ∈ �; Sv(ω) = � on GK}
)

= 0.

Proof. For the subcritical behavior, with a standard argument we show that, for λ < (2d)−1,
the word 1̄ = (1, 1, . . .) does not percolate. Let σK

m be the number of self-avoiding paths of
length m starting from the origin on the graph GK , and let MK

m be the number of such paths
which are occupied. It is clear that if we see the word 1̄ from the origin then there are occupied
paths of all lengths starting from the origin. This implies that, for all m ∈ N,

Pp{ω ∈ �; 1̄ ∈ S0(ω) on GK} ≤ Pp{ω ∈ �; MK
m (ω) ≥ 1 on GK}

≤ E(MK
m )

= pmσK
m

≤ (p2dK)m.

This last inequality follows from the fact that, in order to have a self-avoiding path, each new
step has at most 2dK choices. Therefore,

Pp{ω ∈ �; 1̄ ∈ S0(ω) on GK} ≤ lim
m→∞(p2dK)m.

Thus, if K < 1/p2d , it holds that

Pp{ω ∈ �; 1̄ ∈ S0(ω) on GK} = 0,

https://doi.org/10.1239/jap/1324046024 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1324046024


1158 B. N. B. DE LIMA ET AL.

that is,

Pp

(⋃
v∈V

{ω ∈ �; Sv(ω) = � on GK}
)

= 0.

Theorem 2. There exists a constant λ0 ∈ (1/2d, −6 ln(1 − pc(Z
d))) such that, if K(p) =

λ/p�, it holds that

lim
p→0

Pp

(⋃
v∈V

{ω ∈ �; Sv(ω) = � on GK}
)

=
{

0 if λ < λ0,

1 if λ > λ0.

Proof. Observe that Pp(
⋃

v∈V
{ω ∈ �; Sv(ω) = � on GK}) is increasing in λ and must be

0 or 1 by translation invariance. Therefore, this theorem follows by Lemmas 1 and 2.

Observe that in Lemma 1 we made a more involved construction than in Theorem 1. The
reason is that the right scale for K(p) is different if we consider the event percolation of good
boxes, as shown in the next theorem.

Theorem 3. Let A0(n) = {ω ∈ �; the box �0(n) is good in ω}. Then, for n = n(p) =
−β ln p/p�, we have

lim
p→0

Pp(A0(n)) =
{

1 if β > d − 1,

0 if β ≤ d − 1.
(4)

Proof. For i ∈ {1, . . . , d}, define the events

Ci
0(n) = {ω ∈ � : for all (lj )j with lj ∈ {0, 1, . . . , n − 1} and j ∈ {1, . . . , d} − {i},

there exists z ∈ L(i, (lj )j ) such that X(ω, z) = 1}
and

B0(n) =
d⋂

i=1

Ci
0(n),

where
L(i, (lj )j ) = {y ∈ �0(n); yj = lj for all j ∈ {1, . . . , d} − {i}}

are the lines of �0(n).
By the definitions of A0(n) and B0(n), observe that

Pp(B0(n) \ A0(n)) ≤ Pp{there exists in the box �0(n) at least one line without 0}
≤ dnd−1pn.

Then we have
lim
p→0

Pp(B0(n) \ A0(n)) = 0. (5)

For all i ∈ {1, . . . , d}, the Ci
0(n) are increasing events, so, by the Fortuin–Kasteleyn–Ginibre

inequality and rotational invariance, we have

[Pp(C1
0(n))]d ≤ Pp(B0(n)) ≤ Pp(C1

0(n)). (6)

Thus, using (5) and (6), it is enough to prove (4) by replacing the event A0(n) by C1
0(n).
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Observe that Pp(C1
0(n)) = [1 − (1 − p)n]nd−1

. Then, when n = n(p) = −β ln p/p�, we
have

lim
p→0

Pp(C1
0(n)) = lim

p→0
[1 − (1 − p)−β ln p/p](−β ln p/p)d−1

= lim
p→0

exp[−(−β ln p)d−1pβ−(d−1)]

=
{

1 if β > d − 1,

0 if β ≤ d − 1.

Remarks. (i) The result of Theorem 1 can be generalized if we consider any finite alphabet
instead of the binary alphabet, that is, � = {0, 1, . . . , n− 1}N, in the following sense. Suppose
that we have i.i.d. random variables indexed by the sites v ∈ Z

d such that P(X(v) = i) = pi for
i ∈ {0, 1, . . . , n−1}. Then the result of Theorem 1 should hold taking p = min{p0, . . . , pm−1}
with minor modifications to the proof.

(ii) The statement of Theorem 2 remains the same replacing the event
⋃

v∈V
{ω ∈ �; Sv(ω) =

� on GK} by {ω ∈ �; S∞(ω) = � on GK}. Nevertheless, the constant λ0 should be different.

3. Percolation of random words

Now we consider the same kind of scaling question, but concerning the probability

Pp

(⋃
v∈V

{ω ∈ �; µα(Sv(ω)) = 1 on GK}
)

,

i.e. the probability that almost all words are seen on GK from one vertex.
We aim to prove an analogue of Theorem 2. Observe that, when α = 0, we have ordinary

percolation of 0s, and so the constant K can be taken to be equal to 1. When α = 1, the
right scale of K(p) is the same as in Theorem 2 (see Corollary 1 below). We are not yet able
to determine the right scale; actually, we do not even know if the scale itself changes (as the
next theorem might suggest) or if only the constant λ0 would change, but we can give a lower
bound. We should observe that, although de Lima [4] guaranteed the existence of a truncation
that allows almost all words to be seen, the proof does not give an explicit upper bound.

Theorem 4. Given 0 < α < 1, it holds that, for all ε > 0 and K(p) < (4dpα−ε)−1,

lim
p→0

Pp

(⋃
v∈V

{ω ∈ �; µα(Sv(ω)) = 1 on GK}
)

= 0.

Proof. Given ε > 0 and N0 ∈ N, consider the following subset of words:

Aε
N0

=
{
ξ ∈ �;

∣∣∣∣∑n
i=1 ξi

n
− α

∣∣∣∣ < ε for all n ≥ N0

}
.

We claim that µα(Aε
N0

) → 1 as N0 → ∞ . To see this, note that, for all N0, Aε
N0

⊂ Aε
N0+1.

This implies that Aε
N0

↑ Aε∞ = (
⋃∞

N0=1 Aε
N0

) and µα(Aε
N0

) → µα(Aε∞) as N0 → ∞. By the
strong law of large numbers, for all ξ , there exists, µα-a.s., some n0(ξ) ∈ N such that∣∣∣∣∑n

i=1 ξi

n
− α

∣∣∣∣ < ε for all n ≥ n0.

This implies that µα(Aε∞) = 1.
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On the set Aε
N0

, we have

(α − ε)n ≤
n∑

i=1

ξi ≤ (α + ε)n (7)

for all n ≥ N0.
Given any ξ ∈ �, we will define ξ (n) = (ξ1, . . . , ξn). Then, for any n ≥ N0, we have

{ω ∈ �; S0(ω) ∩ Aε
N0

�= ∅ on GK}
⊂

⋃
γ ;|γ |=n

ξ(n);ξ∈Aε
N0

{ω ∈ �; ξ (n) is seen in ω along the path γ on GK},

where the union is over all self-avoiding paths on GK of size n, having the origin as its starting
point. Hence, for all n ≥ N0,

Pp{ω ∈ �; S0(ω) ∩ Aε
N0

�= ∅ on GK} ≤
∑

γ ;|γ |=n

ξ(n);ξ∈Aε
N0

p
∑n

i=1 ξi (1 − p)n−∑n
i=1 ξi .

Using (7), we have, for all n ≥ N0,

Pp{ω ∈ �; S0(ω) ∩ Aε
N0

�= ∅ on GK} ≤ (2dK)n2np(α−ε)n(1 − p)n−(α+ε)n.

Thus, taking K < (4dpα−ε)−1 and observing that (1 − p)1−α−ε < 1, we have 4dKpα−ε(1 −
p)1−α−ε < 1, and so

Pp{ω ∈ �; (Aε
N0

∩ S0(ω)) = ∅ on GK} = 1 for all N0 ∈ N.

Using standard arguments, we can conclude that

Pp{ω ∈ �; (Aε∞ ∩ S0(ω)) = ∅ on GK} = 1.

As µα(Aε∞) = 1, we show that

Pp{ω ∈ �; µα(S0(ω)) = 1 on GK} = 0,

or, equivalently, using translation invariance, we can conclude that

Pp

(⋃
v∈V

{ω ∈ �; µα(Sv(ω)) = 1 on GK}
)

= 0.

Moreover, by the proof above we can conclude a stronger statement:

Pp

(⋃
v∈V

{ω ∈ �; µα(Sv(ω)) = 0 on GK}
)

= 1.
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4. Final remarks

As a straightforward corollary of Lemmas 1 and 2, we obtain the precise scaling behavior
of the truncation constant K(p) as p goes to 0 for ordinary percolation.

Corollary 1. There exists a constant λ0 ∈ (1/2d, −2 ln(1 − pc(Z
d))) such that if K(p) =

λ/p�, it holds that

lim
p→0

Pp{ω ∈ �; (1, 1, . . . , 1, . . .) is seen in ω on GK} =
{

0 if λ < λ0,

1 if λ > λ0.

Proof. It is enough to observe that

Pp{ω ∈ �; (1, 1, . . . , 1, . . .) is seen in ω on Gλ/p�}

is increasing in λ and must be 0 or 1, by translation invariance. Lemma 2 says that λ0 > 1/2d,
and with a simple modification of the proof of Lemma 1 we can show that

λ0 < −2 ln(1 − pc(Z
d)).

In [8] it was shown that limd→∞ 2dpc(Z
d) = 1. Therefore, this constant λ0 must be such

that lim supd→∞ dλ0 ≤ 1.

Related to the comment above, a natural question to ask is:

• What is the asymptotic behavior, in the dimension d, of λ0 in Theorem 2?

As already mentioned, it is an open question whether the events {µα(S∞) = 1} and⋃
v∈V

{µα(Sv) = 1} have a sharp threshold behavior on the scaling as the one given in The-
orem 2. In many cases, the counting-paths reasoning of Theorem 4 becomes sharper as the
parameter becomes extreme, whence we obtain the following result.

Conjecture 1. For any ε > 0, let K(p) = 1/pα+ε�. Then

lim
p→0

Pp

(⋃
v∈V

{ω ∈ �; µα(Sv(ω)) = 1 on GK}
)

= 1.

This would not, however, determine completely the precise scaling behavior of the event
above. Indeed, we could ask if there is a λ0 ∈ (0, ∞) such that, if K(p) = λ/pα�, the
following limit holds:

lim
p→0

Pp

(⋃
v∈V

{ω ∈ �; µα(Sv(ω)) = 1 on GK}
)

=
{

0 if λ < λ0,

1 if λ > λ0.

Related to the discussion above, we could ask:

• Is the threshold scaling for the event {ω ∈ �; µα(S∞(ω)) = 1 on GK} the same as
for the event {ω ∈ �; there exists v ∈ V with µα(Sv(ω)) = 1 on GK} or is it strictly
smaller?
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