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1. Introduction. Murnaghan (9) has proposed the following method of 
analyzing the Kronecker product of two symmetric group representations. 

If (X) = (Xi, X2, . . . , \t) is a partition of p, the representation of the 
symmetric group on n symbols corresponding to the partition (n — p, Xi , . . . , A*) 
is denoted by [A] and is said to be of depth p. 

If [A] is of depth p and [/x] of depth q, then the terms in the Kronecker 
product [A] X [/x] of depth p + q are terms which correspond to the terms 
in the product of S-functions {A} {/*). Murnaghan gives a similar formula for 
the terms of depth p + q — 1, p + q — 2, p + q — 3 and p — q. He uses 
these formulae to work out some of the terms in particular cases and uses 
various artifices to complete the analysis. But he gives no proof of the formulae 
and it is by no means clear what is the general result for terms of depth 
P + q - r. 

In this paper there will be obtained the equivalent of Murnaghan's formulae, 
proof of the results, and extension to the general result, so that a complete 
method of analysing the Kronecker product of symmetric group representations 
will be obtained, or equivalently, of expanding the inner product of two 
S-f unctions (5). 

The method extends to give an analysis of the invariant matrices of 
symmetric group representations, and thus yields the most powerful method 
so far obtained of calculating the inner plethysm of S-f unctions (6). 

In addition the method can be used with even greater simplicity to calculate 
products and plethysms of characters with orthogonal and symplectic groups. 
These cases, being simpler, will be dealt with first. 

2. Products of orthogonal and symplectic group characters. In this 
section and in 3, when (A) is a partition of n, -ÇX} will denote the character 
of the orthogonal group which is associated with this partition (4, p. 233). 
The number of variables will generally be assumed to be large, at least twice 
the number of parts in any partition. For a smaller number of variables the 
correct result can always be inferred by using the modification rules (8, 
p. 282). 

It is required to find a formula which expresses a product -(A)- -(/x} in terms 
of orthogonal group characters. 
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18 D. E. LITTLEWOOD 

If (X) is a partition of n, let 

be a tensor of type -(X), which implies that under the full linear group it is of 
type {X}, but that it is further reduced so that all contractions with the metric 
tensor gij are zero. 

Similarly, if (ju) is a partition of rn, let 

be a tensor of rank m and type •£/*}• Consider the product 

AB = A t l . m m i n B h m m m j m . 

Under the full linear group this is of type corresponding to the product 
{X} [n], but some of the contractions with giJ are zero while others are not. 
The suffixes i, j cannot be contracted with a pair of suffixes of A, nor with a 
pair from B, for these would lead to a zero result since the contractions have 
already been removed. But contraction is still possible if one suffix is con­
tracted with a suffix of A and the other with a suffix of B. The contraction 
gives a non-zero result in the general case since this contraction has not 
previously been removed. 

Let the product AB be contracted with a concomitant of degree r of gij, 
the r first suffixes being contracted with A and the r second suffixes with B. 
Let the r first suffixes be subject to symmetrizing operators corresponding to 
the S-function {£} of weight r, and the r second suffixes corresponding to the 
S-function [t]) of weight r. The symmetrizing operator on the gij's therefore 
corresponds to {£} • jr?}. Since the gij's are equal the only possible symmetrizing 
relation between them is the symmetric one corresponding to {r). Hence 
{£} -{r}} must contain {r}, which is only possible if {£} = {77}. 

The contraction of A with a contra variant tensor of type {£} is of type 
]C r^rxlrl where T^\ is the coefficient of {X} in {J} {£"}. The contraction of 
B is of type X IVMM-

Hence the contraction of the product A B is of type 

The principal part of this contracted tensor is in general distinct from zero. 
Hence for each S-function which appears there is a corresponding orthogonal 
group character in the expansion of -(X} in}. This is true for every suitable 
S-function {£}. 

THEOREM I. / / 

E iVxiWfH,} = E K^AP} 
the summation on the left being with respect to all possible S-functions including 
{£} = {0}> then 

{AHM> = E K^M-
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PRODUCTS AND PLETHYSMS OF CHARACTERS 19 

As an example consider the product {2}{12}. Corresponding to {£} = {0}, 
the product is 

{2} {P} = {31} + {21»}. 

For {£} = {1}, the product is 

{1}{1} = {2! + {P} 

and no other value of {£} is possible. Thus 

{2}{12} = {31} + {212} + {2} + {l2} 

a result easily checked by other means. 
The method is equally applicable to the symplectic groups. The skew-

symmetric fundamental form is available for contractions in exactly the 
same way as the symmetric metric. In view of the different significance of 
orthogonal group and symplectic group characters it seems somewhat surpris­
ing that the multiplication laws for the two sets of characters are identical. 

THEOREM II. Under the same conditions as in Theorem I 

MM = £ KUP). 
Here (X) denotes a symplectic group character. 

3. Plethysm with orthogonal and symplectic group characters. One 
of the pleasing features of the method is that it extends directly to plethysm. 
Formerly the general method of evaluating say -(X)- ® {JJL} was to express 
•(X} in terms of S-functions, evaluate the plethysm and convert back into 
orthogonal group characters (4, p. 94). This made the labour of calculation 
rather tedious, and it was to avoid this tedious calculation that work was 
done showing that the orthogonal groups in certain numbers of variables 
were simply isomorphic with certain other groups (3). But this only simplified 
the problem in certain cases, notably in 3 and 4 variables. 

The method described here gives a general method which will evaluate for 
the orthogonal group {X} ® {/*}, or for the symplectic group (X) ® {ju}, in 
any number of variables. 

The method is best described by means of an example. Consider {21} ® {2}. 
The expansion of {21} -(21)- may be obtained from Theorem I, and this is equal 
to 

{21} {21} = # 1 } ® {2} + { 2 1 } <S> {l2}. 

To calculate {21} {21} the following terms are obtained 

{21} {21} = {42} + {412} + {32} + 2{321} + {23} + {313} + {2212}, 
{2} {2} = {4} +{31} + {22}, 

{l2} {l2} = {22} + {212} + {l4}, 
{2} {l2} = {31} + {212}, 

{l2} {2} = {31} +{21 2 } , 
{1} {1} = {2} + { P } , {!{{!} = {2} + {12}, 
{0} {0} = {0}. 
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Considering the product of two equal tensors of rank 3, A ijk Apqr it is clear 
that, of the terms corresponding to the product {21} {21}, the symmetric 
part corresponds to {21} 0 {2} and the skew-symmetric part to {21} 0 {l2}. 

Of the first contraction gipAijk APQT the terms corresponding to {2} {2} are 
changed into themselves by the interchange of A iJk and Avqr. The symmetric 
part will thus correspond to {2} 0 {2} and the skew symmetric part to 
{2} 0 {l2}. Similar results are obtained for the terms corresponding to 
{i2} m -

There are certain terms which correspond to {2} {l2}. Interchanging Aijk 

and AvqT these are changed into different terms corresponding to {l2} {2}. 
Clearly there is no reduction here corresponding to plethysm, but just one 
of the two products {2} {l2} and {l2} {2} is retained either for {21} 0 {2} 
or for {21} 0 {l2}. 

Treating all the terms in this way the expansion of {21} 0 {2} corresponds 
to the expansion 

{21} 0 {2} + {2} 0 {2} + {l2} 0 {2} + {2} {l2} + 2{1} 0 {2} + {0} 0 {2} 
= {42} + {23} + {321} + {313} + {4} + 2{22} + {l4} + {31} 

+ {212} +2{2} + {0}. 

Hence 

«21} 0 {2} = {42} + {23} + {321} + {313} + {4} + 2{22} + {l4} + {31} 
+ {212} + 2{2} + {0}. 

THEOREM III . If (y) is a partition of 2, then 

{X} 0 {M} = E H^M 

where 

E H^{V) = E (r«*{i?}) 0 {M! + E r^r€fX{i?}{f}, (*?) * (r). 
summed for all suitable S-functions {£}, {77}, {f}, the last term not being repeated 
for the interchange of {rj} and {f}. 

The only aspect of the Theorem which is not obvious from the above 
example is the position of the coefficient T^\ in the first summation when this 
coefficient exceeds 1. Such a case occurs for {321} 0 {2} when {£} = {21}, 
{77} = {21}. In this case T^\ = 2. Referring to contractions of the product 
of two tensors, there will exist for each tensor two corresponding contractions 
of type {21}. If the same contraction is taken for each tensor, these will be 
interchangeable to give a term corresponding to {21} 0 {2} in each case. 
If, however, different contractions are taken for the two tensors these will 
not be interchangeable, and there will be a term {21} {21}. 

Taken together these terms correspond to 

2({21} 0 {2}) + {21} {21} = (2{21}) 0 {2}. 

The generalization for any value of T^x presents no difficulty. 
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For the symplectic group the result is slightly different. When the two 
tensors are interchangeable allowance must be made for the skew-symmetry 
of the fundamental form. The difference occurs only when (£) is a partition 
of an odd number, say a partition of m = 2k + 1. 

Let the fundamental skew-symmetric tensor be rij. A single contraction 
between the two tensors, or a contraction m times, will introduce a skew-
symmetric relation between the two tensors. This will have the effect of 
changing {rj} ® {/x} into {TJ} ® {#} where (p) is the partition conjugate to 

GO. 

THEOREM IV. / / (p) is a partition of 2 

where 

+ Z r€,xr^W{f}, oo* (f), 
iw w/b'cft (e) = (2) if {£} is of even weight, but (e) = (l2) if (£) is of odd weight. 

As an example the expansion of (21) ® {2} will be obtained. The corres­
ponding expansion is 

{21}®{2} + {2}<g){l2} + {12}®{12} + {2}{12} + 2{1}®{2} + {0}®{12} 
= {42} + {23} + {321} + {313} + 2{31} + 2{212} + 2{2}. 

Thus 

(21) ® {2} = (42) + (23) + (321) + (313) + 2(31) + 2(212) + 2(2). 

To obtain the expansion of -Çh} ® {n} where (ju) is a partition of 3, a pro­
cedure is adopted which will first be illustrated with an example. To evaluate 
43} ® {3} consider the product of 3 equal tensors of rank 3, each of type -£3), 
say 

A ijk Apqr A stu. 

Leaving out contractions with respect to the fundamental tensor gij, the type 
is 

{3} ® {3} = {9} + {72} + {63} + {522} + {421}. 

Allowing one contraction with gij between the first and second tensors, these 
two tensors remain symmetric and the type is 

({2} ® {2}) {3} = {7} + {61} + 2{52} + {43} + {421} + {322}. 

One contraction between first and second, one between first and third 
tensors allows the symmetric interchange of the second and third tensors 
to give 

{1) ({2} ® {2}) = {5! +{41} + {32} + {221}. 
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Three contractions, one between each pair, allow the three tensors to be 
permuted symmetrically, and give 

{1} ® Î3J = S3}. 

Two contractions between first and second tensors give 

({11 ® {2}) {3} = {5} + {41} + {32}. 

Two between first and second, one between first and third give 

{1}{2} ={3} + {21}. 

Two between first and second, one between first and third, one between 
second and third gives 

in. 
Finally three contractions between the first two tensors gives 

{3}. 
Hence 

{3> ® {3} = 49> + -(72) + <63> + £>22} + <421> + {7} 
+ {61). + 2{52> + {43> + {421} + {322> + 2{5> 
+ 2{41} + 2<32> + <221> + 3«3> + {21} + {1}. 

Consider now the general case {X} ® {/JL} with (/*) a partition of 3. I t is 
required to obtain the contractions of the product of three tensors, each of 
type {X}. Let the contractions with gij between the first and second correspond 
to the S-function {7}, between the first and third to {/3} and between the 
second and third to {a}. The two sets of contractions of the first correspond 
to {13} and {7}, so that the contracted tensor is of type £ r^xfe}» where 
Ttfy\ is the coefficient of {X} in the product {£} {/3} {7}. The type of the con­
tracted product is thus 

Zl r W r w x rfa/3x{£} {rj} {f}. 

Allowing permutations of the three tensors each such term is repeated 6 
times, except in certain cases of equality. But only /M of the 6 terms are 
retained for -(X) ® {M!> where f(fi) is the degree of the representation corres­
ponding to (ju) of the symmetric group on 3 symbols. 

Consider now the cases of equality. Such a case arises when {a} = {£}, 
{£} = {*?}• The corresponding term for {X} {\} {X} is 

r U r w | { ) {«Mr}. 
The interchange of the first two tensors leaves this unaltered. It has the 
effect of interchanging the two as in the coefficient T^aa\ and also the two 
{£}'s in the product {£} {£}. In the case of -(X} ® {3} either both interchanges 
must be symmetric or both skew-symmetric. Let r ^ x be the coefficient of 
{X}in 
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m ({«} ® {2}), 

and rfa//x the coefficient {X} in 

M ({«I ®{i2î)-
The corresponding term for -(X)- ® {3} is 

£ iWrHtfWU}) ® !2}]+ Z rr„»x{r}[(re«rx{f}) ® {i2}]. 

The term for {X} ® {l3} is obtained from this by interchanging a and a". 
Since {21} appears in both the products {2} {1} and {l2} {1}, the corres­

ponding term for {X} ® {21} is the sum of the two, or 

E rrattXrU{f}{f}{f}. 
The cases when {a} = {7}, {£} = {f}, or when {/?} = {7}, {rj} = {f} 

become equivalent to the above case by a rearrangement of the three tensors, 
and these cases need not be considered. 

There remains only the case 

M = {/?} = w , m = {«?} = {*•}. 

The numerical coefficient becomes 

T^aaX = (T^a'X + I V " x ) = I ^ X + T ta"\ + 3r$ a 'X Tça>>\ + 3 r ^ a " X IV'X-

The terms which correspond to 

r̂ a'x r^a"x 
and to 

r^a'/X T â'X 

are treated in the same way as the case considered above when {a} = {13}, 
{£} = hi-

The term 

rVx 
for-(X)- ® {fx} corresponds to 

Z (iVxUJ) ® {M}. 
The term 

1 £a"X 

implies a skew-symmetry for every interchange among the 3 tensors. This 
has the effect of converting {/z} into {#}, (jS) being the conjugate partition to 

GO. 

THEOREM V. If (/*) w a partition of 3, 

<X> ® {M} = Z # x ^ > 
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E i v M = / (M)E i w r w X i w U } {,}{?} 
+ E dWtt}) ® {/} iVxfr} + E ttWU}) ® M i w l r } 
+ E OVxUO ® M + E (iVxU}) ® !M! 
+ E (iVx{£}) ® {P'}IVX{É} + E dV'xl*}) ® {M'}IVX{£). 

In this expression, /(") is the degree of the representation corresponding to 
x<">; 0*') = (2) if (M) = (3), (//) = (I2) if GO = (I3), ( / ) - (2) + (P) if 
(/z) = (21); T^Tx is the coefficient of {X} in {£} {/?} {7}, rVx is the coefficient 
of {X} in {£} ({«} ® {2}), IV>X is the coefficient of {X} in {£} ({a} ® {l2}. 
Terms are omitted in any summation when cases of equality lead to corres­
ponding terms in a later summation. 

The case of the symplectic group is very similar. The only differences arise 
by making allowance for the skew-symmetry of the fundamental form. 

THEOREM VI. If (/z) is a partition of 3, 

(X) ® {/*} = Z J*,(r) 

where the definition of ^ J\^{v} differs from that of ^ Hx ĵ*'} in Theorem V 
only by the interchange of {/*'} and {p!) in the second and third summations 
when (7) is a partition of an odd number, and by the interchange of {//} and 
{#'}, {n} and {#} in the last 4t summations when (a) is a partition of an odd 
number. 

The method extends readily to the cases when (/*) is a partition of 4, 5, 6, 
etc., no essentially new concept being required. But the details become more 
and more complicated. The statement of a Theorem even for n = 4 must 
involve so many special cases that it does not seem worth while to enunciate. 

4. Symmetric group representations. The method can be applied to 
representations of the symmetric group, the results being equivalent to 
evaluating the inner product (5) and the inner plethysm (6) of S-functions. 

Henceforward in this paper [X] = [Xi, . . . , XJ, where (X) is a partition of 
p, will denote the S-function {n — p, Xi, . . . , X*}. 

The symmetric group of permutations on n symbols is the group of w-rowed 
permutation matrices, and is thus a sub-group of the full linear group on n 
variables It is in fact the restricted group which leaves invariant 
a set of forms of respective degrees 1, 2, . . . , n, namely, the forms 

Clearly a permutation of the x /s will leave invariant these symmetric 
functions of the x/s , and conversely if the values of Si, S2, . . . , Sn are assigned 
the Xi's will be the roots of a certain equation of degree n and the only possible 
transformations will be the permutations of the roots. 

The tensor coefficients of these forms will be denoted by Ri} R^, Rijk, etc. 
Although the forms are algebraically independent, the tensors are connected 
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in that every one can be expressed as a concomitant tensor of the quadratic 
and cubic tensors Rtj and i ? ^ . Since the quadratic tensor Rtj is available for 
raising and lowering suffixes, which it does without modification, there is no 
distinction between upper and lower suffixes. Then clearly 

Rij Rijk = Rk 

-K-ijk -K-ivo. = -K-jk pq 

with similar results for tensors of rank 5, 6, etc. 
Since transformations which leave certain tensors invariant also leave 

invariant every concomitant tensor, the following Theorem results. 

THEOREM VII. The symmetric group on n symbols is the subgroup of the full 
linear group in n-variables which leaves a quadratic form and a cubic form 
invariant. 

The linear concomitant can be used to reduce the number of variables from 
n to n — 1. The full linear group in n — 1 variables may therefore be taken 
if it is assumed that the linear concomitant is identically zero. 

The characters of the symmetric group can be obtained from those of the 
full linear group in a similar manner to that used for the orthogonal group, 
namely by considering a tensor corresponding to any partition (X) of any 
integer n, and removing all possible contractions with the fundamental forms 
(2, p. 392). The remainder when all contractions are removed is an irreducible 
character, provided that n — p > Xi, and it is not difficult to see that it is in 
fact the character of the symmetric group corresponding to the partition 
(n — p, Xi, . . . , \i). It is convenient to represent by [X] not this character, 
but the corresponding S-function 

[X] = {n - p, Xi, . . . ,X,}. 

The inner product and inner plethysm of these S-functions correspond exactly 
to products and plethysms of symmetric group characters (5; 6). 

THEOREM VIII. If 
A 

is an irreducible tensor under the symmetric group corresponding to the S-function 
[X], where (X) is a partition of r, then for every non-zero term in the tensor all the 
suffixes will be different. 

To prove this it is sufficient to show that if two suffixes are equal there 
exists a non-zero contraction. Suppose that i\ — ii and consider the contraction 

•D jizi\ . . . ir = = -K-iiizj -A* iii'i . • • iv 

Then the term corresponding to j = ii = H is non-zero and the contracted 
tensor does not vanish, contrary to hypothesis. The Theorem follows readily. 

Consider now the inner product of two S-functions [X].[/x], where (X) is a 
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partition of p and (/x) a partition of q. Corresponding to [X], [y] respectively 
are two tensors 

A = Aili2. . . ip, B = Bjlj2. . . jq. 

These two tensors are of type {X}, {/x} respectively over the full linear group, 
but have had removed from them all contractions with Rtj, Rijk. 

The product is of type under the full linear group corresponding to the 
product 

MM = E r X M » . 
The subtensor corresponding to {v) will have had some, but not all, of its 
contractions removed. The principal part of this tensor, of type [v], will not 
be zero since no contraction at all is involved. It follows that the inner product 
[X].[/x] includes ]T TA^M. TO determine what other terms are involved it is 
necessary to determine what non-zero contractions can be formed with 
j£\.ij, -K-ijki e t c . 

Since the suffixes in A are all distinct and the suffixes of Rij, Rijk or Rijkp 
are all equal, it is clear that for a non-zero result only one contraction can 
occur between these two tensors, and only one contraction between the 
fundamental tensor and B. Thus exactly two of the suffixes of the fundamental 
tensor can be contracted away. If the fundamental tensor is quartic, two 
suffixes remain and there is no reduction in the rank. The contractions we are 
seeking, however, are of lower rank. There are thus two possibilities, 
contraction with Rij} just as for the orthogonal group, and contraction with 
Rijk leaving one uncontracted suffix in the place of two. 

If the tensor Rtj is used r times the suffixes removed from A will correspond 
to a partition (a) of r, and since the tensors Rtj are symmetrically disposed, 
the r suffixes removed from B will correspond to the same partition (a) of r, 
just as with the orthogonal group. 

Suppose that the tensor Rijk is used 5 times, the suffixes removed from A 
will correspond to a partition (/3) of s, the suffixes removed from B to a partition 
(7) of s. In order that the 5 tensors Rijk may be symmetrically disposed the 
remaining s uncontracted suffixes of the Rijk must correspond to {/3} .{7}. 

The types of the contracted tensors A and B respectively are 

2L, vm\{t) and 2J 

The type of the contracted product is thus 

THEOREM IX. The inner product of two S-functions [X], [/*], each of weight 
n, is given by 

where 

Z i V W = E r^ixrwU}{i,}({/3}.{7}). 
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The coefficient Ta^\ is denned as the coefficient of {X} in the product 
{a} {(3} {£}. The summation is with respect to all suitable partitions (a), (/3), 
(7) of which (jS) and (7) are partitions of the same integer. Those cases are 
included for which (a) = (0), and/or (/3) = (7) = (0). 

As an example consider the inner product [21] • [21]. First, 

{21} {21} = {42} + {412} + {32} + 2{321} + {23} + {313} + {2212}. 

Take next the cases for which (/3) = (7) = (0) with respectively (a) = (1), 
(a) = (2), (a) = (l2), (a) = (21). These give 

({2} + {l2})({2} + {l2}) + {l}{l} + {l}{l} + {0} 
= {4} + 3{31} + 2{22} + 3{212} + {l4} + 2{2} + 2{12} + {0}. 

Next with (0) = (7) = (1) and (a) respectively (0), (1), (2), (l2) the 
following terms result 

({2} + {l2}) ({2} + {l2}) {1} + 4(1} {1} {1} + {1} + {1} 
= {5} + 4{41} + 5(32} + 6{312} + 5{2212} + 4{213} + {l6} 

+ 4{3i +8{21J + 4{13} + 2{1}. 

With (0) = (7) = (2), and (a) = (0), (a) = (1), the terms are 

{1} {1} {2} + {0} {0} {2} = {4} + 2{31} + {22} + {21*} + {2}. 

Also (/3) = (7) = (l2) gives exactly the same result. 
But 03) = (2), (7) = (l2) gives 

{1} {1} fi2} + {0} {0} {l2} = {31} + {22} + 2{212} + {1*} + }12}, 

with precisely the same result for (13) = (l2), (y) = (2). 
Lastly when (/3) = (y) = (21) the result is 

{21} -{21} = {3} +{21} +{1»}. 

Hence 

[21]-[21] = [42] + [412] + [32] + 2[321] + [23] + [31«] 
4- [2212] 4- [5] 4- 4[41] + 5[32] 4- 6[312] 4- 5[221] 4- 4[2P] 4- [l5] 

4- 3[4] 4- 9[31] 4- 6[22] + 9[212] 4- 3[14] 4- 5[3] 4- 9[21] + 5[13] 4- 4[2] 
4- 4[P] 4- 2[1] 4- [0]. 

The result conforms with that given by Murnaghan (7). 

5. Inner plethysm of S-functions. The method extends immediately to 
the evaluation of inner plethysms. To evaluate [X] O {M} where (/z) is a 
partition of 2, consider the inner product [X] • [X] as given by Theorem IX. 
The coefficients P\xM are obtained from the expression 

Z r^xra7,x{£}M({/3}.{7}). 
For each term in this expansion there is an equal term obtained by inter-
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changing {(3} and {7}, {£} and {7?}. Provided that these two equal terms are 
distinct, one only of the pair will appear for [X] O {2} and one for [X] O {l2}. 

The situation is different if {£} = {rj}, {/3} = {7}, for then the interchange 
of the two factors [X] in the inner product changes this term into itself. It is 
therefore possible to separate the symmetric and the skew-symmetric com­
ponents of the product. This term in [X].[X] is then 

rà.*{*}U}({/3}.{|8}) = r^x( j£ j®!2} + {!!®{l2})({/3)0{2) + {/3}0{l2|. 

Of the four terms obtained by expanding the right hand side the choice of 
{£} © {l2} rather than {£} © {2} indicates a change of sign for the inter­
change. Similarly the choice of {/3} © {l2} rather than {/3} © {2} also indicate 
a change of sign. 

THEOREM X. / / (/x) is a partition of 2, 

[X] O {M} = Z QxM 

where 

Z <2x.» = Z r^xiW{ê}M({/3}.Î7}) 

+ E [ t t W f f } ) ® {2}({/?} o {M}) 

+ (Taf^M © {l2}({/3} O {£})]. 

In the first summation the term is not repeated for the interchange of 
{£} and {77}, {13} and {7}, and those terms are omitted for which {£} = {rj}, 
W = Î7Î-

As an example consider [21] O {2}. Of the terms considered above for 
[21]-[21], the term {21} {21} is replaced by 

{21} <g> {2} = {42} + {321} + {313} + {23}. 

The cases 08) = (T) = (0), (a) = (1), (2), (1*), (21) give 

{2}®{2} + {12}<S>{2} + {2} {1*} + {1}®{2} + {1}<8){2} + {0}®{2} 
= {4} + {31} + 2{22} + {212} + {V} + 2(2} + {0}. 

For 08) = (Y) = (1), («) = (0), (1), (2), (1*), the terms are 

({2} ® {2} + {l2} ® {2} + {2} {l2}) {1} + [(2{1J) ® {2}] {1} + {1} + {1} 
= {5} + 2{41} + 3{32} + 2{312} + 3{221} + 2{213} + {l6} + 3{3} 

+ 4(21} + {l3} + 2 { 1 } . 

For 08) = (T) = (2) with (a) = (0), (1), 

({1} ® {2}) {2} + {0} {2} = {4} + {31} + {22} + {2}, 

with an equal result for (0) = (7) = (l2). 
For (0) = (2), (7) = (l2) the term is the same as in [21].[21], namely, 

{1} {1} {l2} + {0} {0} {l2} = {31} + {22} + 2{212} + {!*} + {!*}, 
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but this is taken once only. Lastly for ($) = (7) = (21) the terms are 

{21} ©{2} = {3} + {21}. 

Summing this gives 

[21] O {2} = [42] + [321] + [313] + [23] + [5] + 2[41] + 3[32] + 2[312] 
+ 3[221] + 2 [2P] + [l5] + 3[4] + 4[31] + 5[22] + 3[212] + 2[14] + 4[3] 

+ 5[21] + [V] + 4[2] + [l2] + 2[1] + [0]. 

Th is result has been checked as follows. Tak ing n = 10, it gives the expansion 
of {721} O {2}. T h e total degree of the representat ions on the r ight is then 
found to be 12,880 which is correctly equal to £(160 X 161). 

T h e extension to [X] O {n} where (/*) is a par t i t ion of any integer, is s t ra ight­
forward, b u t becomes complicated even in comparat ively simple cases because 
of the multiplici ty of the possible contract ions with Rijt Rijk, Rijkp, e tc . I t 
does not seem worth while to a t t e m p t to express a general theorem, b u t the 
method will be il lustrated with respect to the comparat ively simple case 
[ 2 ] 0 { 3 ) . 

Denote by Cu contract ions from the first and second tensors with Rijf 

by Cu similar contract ions with Rijk. Denote by C123 contract ions from 
all three tensors with Rijk1 and by Cm* similar contract ions with Rijkp» 

The possibilities will be listed below. 

Cu {2}{2} = {4} + {31} + {22}. 
Cu {2}!2}{1} = {5} +2{41} +2{32} + {312} + {221}. 
C12 {2} = (2}-

Cu Cu {2}{1} = {3} + {21}. 
r12 

W 2 
{2}{2} = {4} + {31} + {22}. 

C12 Cu •{2} = {2}. 
Cu Cu • f i i f i H i } = {3} +2{21} + {l3}. 
C12 Cu {2}{2} + {l2} {I2} = {4} + {31} +2{2} + {212} + {l4}. 

Before proceeding, a word of explanation m a y be needed here. There are 
two tensors RiJk, the first suffix of each being contracted with the first tensor 
of type [2]. T h e suffixes are necessarily symmetr ic . T h e second suffixes, con­
t racted respectively with the second and third tensors, can be either sym­
metric or skew-symmetric. T h e uncontracted suffixes of the second and third 
tensors will likewise be symmetr ic or skew-symmetric in the respective cases. 
Fur ther , if the second suffixes of the tensors Rijk are skew-symmetric, then the 
third uncontracted suffixes mus t also be skew-symmetric. 

T h e remaining possibilities are as follows: 

C\2 Cu C23 • {0J. 
C12 Cu C23'.' {1}. 
C12 Cu C*23 • {2}. 
C\2 Cu C23 ' {3J. 

C 1 2 3 : {3}. 
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W 2 3 {3}{1} = 14Î + S31}. 
W23 C12 {!}• 
W23 W 2 {DU} = {2} + [1% 
W23 C\2 {1}{1} = {2} + {l2}. 
W23 W 2 UH1H1} = {3} + 2{21} + 

r 2 

W23 

!0J. 
W23 W23 {!)• 

r '2 

W23 
{2}. 

Summing 

[2] O {3} = [6] + [42] + [23] + [5] + 2[41] + 2[32] + [312] + [221] 
4[4] + 4[31] + 4[22] + [2P] + [l4] + 5[3] + 5[21] + 2[1«] + 6[2] 
2[P] + 3[1] + 2[0]. 

This result has been checked by obtaining the total degree of the represen­
tation for S-functions of weight 10, and gives correctly 

7,770 = 35.36.37/6. 

There is one case of special importance for which a general formula can 
be found. That is the case [1] © {n}. This is equivalent to expressing the 
general S-f unction {/x} as a sum of symmetric group characters, when the 
symmetric group is regarded as a sub-group of the full linear group. 

To express the result it is convenient to employ an analogue of differential 
operators, following the method of Foulkes (1). Let 

D({\})M = E i W , } 
Such operators satisfy 

D({\} + M) = D({\}) + D ({„}), 

2 ? ( { \ } { M } ) = D({\}) £({„}). 

Let (M) be a partition of m. It is required to find [1] © {JJL}. Following the 
method used for the orthogonal group (4, p. 393), consider a general tensor 
of type {/*} and note all the tensor forms that can be obtained by contractions 
with the fundamental tensors. 

Consider first the tensor Rijf repeated r times. The total set of 2r contracted 
suffixes correspond to a concomitant of RtJ, and therefore to a term in the 
expansion of {2} 0 {r}. The type of the tensor corresponding to {/*} is there­
fore reduced to D{{2) © {r}) {/*}. Similarly for complete contractions with 
Rijk the corresponding operator is D({3} © {/}), and so on. There remain to 
consider contractions with fundamental tensors which leave one suffix of the 
fundamental tensor uncontracted. 

Suppose that there are s tensors Rijk for which the first two suffixes only 
are contracted with the tensor of type {n}. The type of the contracted suffixes 
is {2} © {X} for some partition (X) of s. In order that the 5 tensors Rijk may 
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be symmetrically disposed the last suffixes must correspond to the same par­
tition (X). The type of the operator is therefore 

{\}D({2\ ®{\}){»\. 

Similar results hold for the fundamental tensors of rank 4, 5, 6, etc. 

THEOREM XI. If 

£ {X,}{X,}...{X,}Z>({2} ® {A,})...£>({«} ® {\{})D({2} ® { r , } ) . . . 

...D({j}® {rj})M = Z V,M 

the summation on the left being with respect to any combination of partitions 
(X2), . . . , (Xi) and of integers r2, . . . , r^ including (Xfc) = (0) a ^ r* = 0, 
then 

[i] o M = E V„M. 

The following examples illustrate. Consider first [1] O {21}. Since 

[1 + D({2}) + {1} D{2\] {21} = {21! + {1} + {2} + | l 2 i . 

therefore 

[1] O {21} = [21] + [2] + [V] + [1]. 

As a check, for n = 6 this gives 

{51} O {21} = {321} + {42} + {4P} + {51}. 

The degree of the representation is, correctly 

| 4 . 5 . 6 = 16 + 9 + 10 + 5. 

Next consider [1] O {31}. Since 

[1 + D({2\) + {1} D({2}) + (P) 2>({31}) + {1} D({2}) D({2\) 

+ Dm + {1} 2?({3})] {31! = {31! + {2} + {Pi + {3! + 2{21J 

+ {i»} + {P) + {1} + {1} + {2} + {P}, 

therefore 

[1] o {31} = [31] + [3] + 2[21] + [V] + 2[2] + 3[12] + 2[1]. 

This formula for n = 7 gives 

{61} O {31} = {321} + {43} + 2(421} + {4P} + 2{52} + 3{5P} + 2{61}. 

The degree of the representation gives, correctly 

-3-r 5.6.7.8 = 21 + 14 + 70 + 20 + 28 + 45 + 12. 
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