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A COUNTEREXAMPLE CONCERNING THE EXTREMAL INDEX

RICHARD L. SMITH,* University of Surrey

Abstract

The concept of an extremal index, which is a measure of local
dependence amongst the exceedances over a high threshold by a stationary
sequence, has a natural interpretation as the reciprocal of mean cluster size.
We exhibit a counterexample which shows that this interpretation is not
necessarily correct.

Let {;n, n = 0, 1, 2, ...} denote a stationary sequence and define M; = max {;1' ... , ~n}.

Under suitable conditions it is possible to prove results of the form

(1) nP{;1 > Un}~ T¢::> P{Mn~ Un}~ e- 8 r (0 < T < 00)

where 0~ e~ 1. The parameter e was termed the extremal index by Leadbetter (1983),
though the concept had occurred earlier in papers of Newell (1964), Loynes (1965), O'Brien
(1974a), (1974b) and Davis (1982). For a general overview of extremes in stationary
sequences, see Leadbetter et ale (1983).

It is possible to define an exceedance point process N; on (0, 1], such that Nn(s, t] is the
number of exceedances of the level u; among {;r: ns < r ~ nt}. Convergence of {Nn} as
n~ 00 is studied by Hsing et al. (1988). One of their main results is that, if a limiting point
process exists, then it must be compound Poisson. The atoms of this limiting process
correspond to clusters of exceedances. Somewhat parallel results have also been obtained by
Alpuim (1987).

A natural interpretation of e is that 1/ e is the mean cluster size in the limiting point
process. Hsing et al. were not, however, able to prove this without making additional
assumptions. The following example shows that the result is false without such assumptions.

The example is a regenerative sequence of the form

(2)
j-I j

;n = Cj for L Ni~ n < L Ni(j ~ 1)
o 0

where
(i) Cj , j ~ 1 are independent with a common distribution function F satisfying F(I) = 0,

F(x) < 1 for all x < 00,

(ii) For j> 1, given N1, ... '~-1' C1'···' Cj with m ~ Cj < m + 1, the probability of the
event N, == i is qmi. Here {qmi' m ~ 1, i ~ I} is a sequence of probabilities with qmi ~ 0,
I.iqmi = 1 for each m.

In words, the process remains in state Ci for a random number of time epochs determined
by the probability distribution qmi(i~ 1) with m = [C;], and then moves to a new state which is
independently chosen from F.

Let Pm = P{m ~ Cj < m -I}, f.lm = I.iiqmi and suppose f.l = I.pmf.lm < 00. Then u is the mean
recurrence time of the process. The process may be made stationary by a suitable choice of
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(3)

distribution of Nt. It may also be regarded as a function of a Harris chain, and therefore be
treated by extreme value arguments of O'Brien (1987) and Rootzen (1988).

Now let us specify {qmi} to be

{

(m -l)lm, i = 1,

qmi = 11m, i = m + 1,
0, otherwise.

Then Ilm = 2 for all m, and so Il = 2 also. Let {un, n ~ 1} be a sequence of thresholds such
that, Un~OO, nP{'t>un}~r,O<r<oo.

Proposition1. (J = ~ .
Proof. Immediate from Theorem 3.1 of Rootzen (1988).

Proposition 2. The exceedance point process N; converges to a simple Poisson process of
intensity ~ , as n~ 00.

Proof. This follows from Theorem 4.2 of Hsing et al. (1988). Positive recurrent Harris
chains are strong mixing (cf. O'Brien (1987)), and hence satisfy the mixing condition ~(un)

used by Hsing et al. For a suitable sequence {rn} satisfying rn~ 00, rnln~ 0, let

(4) Jrn(j) =p{~ x., = j I~ x., > O}, j = 1, 2, · · ·

where Xn,i is 1 if ~i > u., 0 otherwise. Let Jr(j) = limn_oo Jrn(j) for j = 1, 2,. The theorem of
Hsing et al. asserts that the point process N; converges to a compound Poisson process with
compounding distribution Jr( . ). Theorem 3.3 of Rootzen (1988) could also be used to give
the same result.

However, under (3) it is easy to see that Jr(j) = 1 for j = 1, 0 for j > 1. Hence the limiting
process in this case is simple Poisson, with a mean cluster size of 1. This completes our
description of the example.

From a statistical point of view, the most natural way to estimate the extremal index is via
the point process of high-level exceedances. Such a procedure was in fact proposed by Smith
(1984). The example here reveals a possible fallacy in this procedure, though it may not be
possible to do much about it in practice.

Remarks

1. What is going wrong is the lack of tightness of the sequence {qmi' i ~ 1} as m~ 00. In a
similar way it is possible to construct an example of the same phenomenon for any (J < 1.
Hsing et al. show that the extremal index is in general given by (J = limn {}:jjJrn(j)}-t, so what
is at issue is whether

(5) }:jJrn(j)~ }:jJr(j) as n~ 00.

This is false for the example considered here.
2. It is possible to exhibit other kinds of extremal behaviour by taking other sequences

{qmi}. For instance, if Ilm~ 00 we very easily obtain an example of a process with extremal
index O. Taking this one step further, if qmi~ 0 as m~ 00 for each i but the distribution
{qmi' i ~ 1} converges under some renormalisation to the distribution of a continuous random
variable as m~oo (example: take qmi = 11m for i = 1,2, ... , m), then the point process N;
does not converge but a suitably renormalised sequence converges to a compound Poisson
point process with continuous compounding distribution. Such behaviour is admitted in the
general theory of Hsing et al., but they do not give any examples.
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