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Drop impact onto wetted walls: an unsteady
analytical solution for modelling crown
spreading
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An unsteady analytical solution is proposed to predict the spreading rate of the crown
generated by an impacting droplet onto wetted walls. The modelling strategy is based
on the direct integration of the boundary layer correction into the potential flow solution
that leads to the well-established square-root time dependence. The original potential
flow has the structure of an unsteady, stagnation point flow with decaying strength. For
initial strengths of the potential flow a0 � 100 s−1, we find that a self-similar solution can
also be obtained for the boundary layer in the variables

(
r
√

a(t)/(νt), z
√

a(t)/(νt)
)
. The

self-similarity of the solution enables a straightforward estimation of momentum losses
during the spreading of the liquid layer along the wall. The proposed modelling approach
yields an excellent agreement with experiments during the entire spreading phase.
Moreover, it enables a smooth transition from the inertia-driven to the shear-controlled
regime of crown propagation. In general, the analysis shows that momentum losses arising
from viscous effects cannot be neglected during a significant portion of crown propagation,
particularly for thin wall films.

Key words: boundary layer structure, drops, thin films

1. Introduction

Droplet impact onto wetted surfaces is of pertinence to many technical and environmental
applications such as soil erosion, internal combustion engines, icing on plane wings and
spray coating technologies. Immediately after the impact, the droplet expands radially
along the surface. If the impact kinetic energy is sufficiently high to overcome energy
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Figure 1. Schematics of drop impact and formation of the KD: (a) Phase 1, early stage of droplet induced
flow; (b) Phase 2, formation of the KD. The subscripts ‘resD’ and ‘F’ refer to the residual droplet and wall-film
liquid layers, respectively.

losses arising from deformation and viscous effects, an upward growing crown is generated
with detachment of secondary droplets (splashing regime). Different theoretical models
have been proposed in the literature to describe this process, which can be conceptually
divided into three phases. Phase 1 focuses on the early stage of the impact dynamics,
as shown schematically in figure 1(a). Specifically, it describes the initial deformation of
the droplet during impact and the spreading of the contact line up to a dimensionless
time of τ = tU0/D0 = O(10−1). Here, U0 and D0 denote the velocity and diameter
of the impacting droplet, respectively. Philippi, Lagrée & Antkowiak (2016) performed
numerical simulations of this phase for a single droplet impact onto a dry wall. They found
that the wet footprint of the droplet dictates the size of the impact-induced perturbed flow.
The latter exhibits an inviscid stagnation point flow structure and admits a self-similar
solution, where both the pressure and velocity variables depend solely on the self-similar
variables (r/

√
t, z/

√
t) both in the outer region and in the boundary layer. Here, the

variables r and z denote the radial and vertical coordinates, respectively. Moreover, they
found that the contact line (CL) propagates in time according to the following relation:
rCL = √

3D0U0t/2 = D0
√

3τ/2. For droplet impact on a wetted wall, Yarin & Weiss
(1995) demonstrated that, within the wet footprint of the droplet, momentum is also
transferred to the wall film. Moreover, they modelled the resulting decay of the film
height with time (hF(t)). A detailed description of their model for the droplet induced
flow is presented in § 2, owing to its relevance for our analytical solution. Phase 2 is
seamlessly connected to Phase 1 and focuses on the modelling of the crown formation.
As shown by Philippi et al. (2016), the liquid lamella emerges from the contact line
and follows closely its trajectory during the early stage. Yarin & Weiss (1995) showed
theoretically that the emergence of a crown-like lamella corresponds to the onset of a
velocity (kinematic) discontinuity (KD) with a mass sink (liquid outflow) at its front,
owing to the incompressibility of the liquid layer, as shown in figure 1(b). Phase 3 focuses
on the late stage of the droplet impact process and describes the propagation of the KD. For
this phase, Yarin & Weiss (1995) proposed the following model for describing the crown
propagation in the case of droplet impact onto a wet substrate. Specifically, the radius at
the foot of the KD RKD (see figure 1b) is modelled as R̄KD = RKD/D0 = βYW

√
τ − τ0.

Here, βYW = (2/(3δ))1/4 is an empirical constant, obtained by fitting the experiments of
Levin & Hobbs (1971) for δ = 0.17, with δ = h0/D0 representing the initial dimensionless
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film thickness. The constant βYW essentially describes the effect of wall-film inertia on
the rate of crown propagation. Over the years, several correlations have been proposed to
improve the agreement with experiments by modifying the value of the constant βYW with
varying Weber and Reynolds numbers. In all cases, the following functional dependence
for the radius of the KD was maintained: R̄KD = βτ n. An overview of the different
correlations can be found in table 1.

Recently, Gao & Li (2015) proposed a unified framework to integrate and compare
competing modelling approaches, according to R̄KD = (βYW

√
λ)

√
τ + C0. Indicating

with mD the mass of the droplet, the empirical parameter λ = mDuim/mDU0 =
0.26Re0.05

D /(We0.07
D δ0.34) represents the reduction in transmitted momentum arising from

impact losses. In this respect, uim can be interpreted as the momentum per unit
mass, i.e. specific momentum. Here, the Reynolds (ReD = U0D0/ν) and Weber (WeD =
ρU2

0D0/σ ) numbers are defined on the basis of the physical properties of the impacting
liquid droplet, where ν, ρ and σ denote the kinematic viscosity, density and surface
tension, respectively. Consequently, the characteristic inertial time for crown propagation
is now defined as tcit = D0/(λU0). The parameter λ was included in the definition
of the square-root pre-factor (βGL = βYW

√
λ) to maintain the same definition of the

dimensionless time τ = U0t/D0. The initial offset C0(δ) is only a function of δ and
is analytically derived under the assumption that the droplet volume is completely
transformed into a liquid cylinder of height h0. The physical insight of Gao & Li (2015) is
that the temporal evolution of the crown (KD) will follow the same curve only when the
combined effect of deformation, viscous and inertial forces leads to the same value of the
constant βGL. This can be clearly seen in figure 2(a), where the solid black and red curves
exhibit a very similar trend despite the large difference in Weber and Reynolds numbers.
Moreover, it shows that the Gao & Li model is capable to reproduce the correlations of
Cossali et al. and Rieber & Frohn (correlations No. 3 and 4 in table 1, respectively),
thanks to the introduction of the

√
λ-factor in the original Yarin & Weiss model (see

table 1). Figure 2(a) also shows that the initialisation procedure to determine C0(δ) looses
accuracy with increasing film thickness δ, as discussed in detail in § 2.6. Figure 2(b)
extends the comparison with experiments to a longer time scale and confirms the previous
statement on the inaccuracy of the C0-initialisation with increasing δ. Moreover, in the late
stage of Phase 3, the experimental data exhibit a systematic deviation from the postulated√

t-dependence. Two primary mechanisms may be responsible for this deviation: (1) crown
contraction owing to the restoring action of surface tension; (2) attenuation of the crown
speed owing to boundary layer effects.

In this work, we will mainly investigate the relevance of momentum losses during
crown propagation. This requires an accurate estimation of the strain rate in the boundary
layer, which depends not only on the fluid viscosity, but also on the thinning rate of the
liquid layer. For this purpose, we propose an extension of the Yarin & Weiss analytical
solution by incorporating explicitly the boundary layer profile in the evolution of the
radial velocity component both for the flow field within the impact zone and for the KD.
This is shown schematically in the inset of figure 1(b). The rationale for this choice is
the following. In contrast to all models listed in table 1, the Yarin & Weiss approach is
the only one that provides a comprehensive analytical solution for the two-dimensional
flow field, for the wall-film decay and for the position of the KD. As shown in § 3, the
inclusion of momentum losses allows an accurate prediction of the KD-spreading rate and
enables a smooth transition from the inertia-driven to the shear-controlled regime of crown
propagation.
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No. Author(s) Test conditions Correlations

1 Yarin & Weiss (1995) δ = 0.17 R̄KD = βYW
√
τ − τ0

(modelling & experiments) We,Re N/A βYW = (2/(3δ))1/4

U0 up to 30 m s−1 —

2 Gao & Li (2015) δ = 0.175–0.341 R̄KD = βGL
√
τ + C0(δ)

(modelling & experiments) We = 381–616 βGL = βYW
√
λ

Re = 304–3439 λ = 0.26Re0.05
D /(We0.07

D δ0.34)

— C0(δ) = 1√
6δ

−
(

1
3δ

− 1√
6δ

)1/2

3 Cossali et al. (2004) δ = 0.29–1.13 R̄KD = β(τ − τ0)
0.43±0.03

(experiments) We = 296–842 τ0 = 0–1.5
Re = 9110–15 366 —

4 Rieber & Frohn (1999) δ = 0.116 R̄KD = 1.058τ 0.459

(num. simulation) We = 250, 598 R̄KD = 1.065τ 0.444

Re = 11 294, 17 467 —
Oh = 0.0014 —

5 Trujillo & Lee (2001) δ = 0.25 R̄KD = βτ 1/2

(modelling) We N/A —
Re = 800–3500 —

6 Davidson (2002) δ = 0.1–0.5 R̄KD = βτ 1/2

(modelling) We = 20–1000 —
Re N/A —
Fr = 100 —

7 Xie, Koshizuka & Oka (2004) δ = 0.5 D̄KD = 0.00913(τ + 0.4)1/2

(modelling) We = 2010 (inner crown width)
Re N/A —
Oh = 0.0384 —

8 Guo et al. (2014) δ = 0.3–0.7 D̄KD = βτ n

(modelling) We,Re N/A n = 0.469 for δ = 0.3
U0 = 2.75–4.32 m s−1 —

9 Philippi et al. (2016) δ = 0 (dry wall) R̄CL = R̄KD = βPhτ
1/2

(modelling) We = 250 valid for τ � 0.1
Re = 5000 βPh = √

3/2

10 Rioboo, Marengo & Tropea (2002) δ = 0 (dry wall) R̄KD = βRioτ
1/2

(experiments) We = 48–535 valid for τ � 0.1
Re = 66–10 395 βRio = 1.4

Table 1. Overview of empirical correlations R̄KD = βτ n describing the propagation of the crown, i.e. the
evolution of the radius of the KD.

2. Modelling approach

This section describes in detail the modelling approach for Phase 3. The proposed solution
encompasses the inclusion of boundary layer effects both in the propagation of the KD and
in the flow field within the impact zone, the estimation of the thinning rate of the liquid
layer and its residual thickness. In the process, we also propose an alternative method to
initialise the solution for the KD propagation. This leads indirectly to an estimation of
the total length of the impact zone (Lim) and of the KD formation time (τini) for impact
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Figure 2. Empirical correlations for the temporal evolution of the crown (KD). (a) Comparison among the
correlations of Rieber & Frohn (1999) (RF), Cossali et al. (2004) (Cos), Yarin & Weiss (1995) (YW) and Gao
& Li (2015) (GL). All correlations are listed in table 1. (b) Comparison of experimental data (exp. No. 5,7)
with theoretical models. Detailed test conditions can be found in table 3 in Appendix B.

events on both dry and wetted walls. For ease of reading, the description of the modelling
approach has been subdivided into several sub-sections, even though all modelling aspects
are part of a unified approach.

2.1. Solution for the KD
The starting point of the theoretical model of Yarin & Weiss (1995) was to solve the
one-dimensional, axisymmetric momentum equation in conservative form (i.e. negligible
viscous losses). This equation admits velocity discontinuities as a solution, when the initial
velocity distribution in the liquid layer (u = F(ζ )) has a finite large value in the impact
zone and then rapidly drops to zero outside the wet footprint of the droplet, as shown in
the pictorial illustration in figure 3(a). The variable ζ denotes the radial coordinate in the
impact zone. In contrast to the original work of Yarin & Weiss (1995), here the origin of
the coordinate axis is set at the centre of the impact zone, yielding the following coordinate
transformation: ζ = ζ ′ + 0.5Lim. For a small value of ζ , Yarin & Weiss (1995) assumed
that the initial velocity distribution in the liquid film can be approximated as F(ζ ) = Bζ ,
with B being a positive constant. Consistently with the previous assumption, Yarin &
Weiss further assumed the maximum extent of the impact zone Lim to be proportional to
D0, yielding Lim = αD0 with α > 0. Following Whitham (1974), the equations describing
the position and velocity of the KD in the asymptotic regime (large t, alias Phase 3) read
as

A =
∫ 0.5Lim

−0.5Lim

F
(
ζ ′ + Lim

2

)
dζ ′, uKD = 1

2

√
2A
t
, RKD(t) =

√
2At. (2.1a–c)

The parameter A is defined as the integral of the initial velocity distribution F(ζ )within the
impact zone. It represents the total amount of kinetic energy transferred by the impacting
droplet to the KD. To estimate the value of the parameter A, it is therefore necessary to
relate the initial velocity distribution F(ζ ) = Bζ to the impact conditions. In this work,
we propose to estimate the constant B = a0 = λU0/D0, so that it represents the specific
momentum transferred per unit length from the impacting droplet to the liquid layer.
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Figure 3. Extent of the impact zone: (a) schematic of its evolution; (b) non-dimensional maximum length of
impact zone Lim/D0 as a function of non-dimensional film thickness δ.

Substituting this value in (2.1a–c) yields

A =
∫ 0.5αD0

−0.5αD0

ao

(
ζ ′ + αD0

2

)
dζ ′ = a0

α2D2
0

2
. (2.2)

Consequently, the velocity and location of the KD can be modelled as

ūKD = uKD

U0
= α

√
λ

2
√
τ
, (2.3)

R̄KD = α
√
λ
√
τ . (2.4)

Equation (2.4) shows that the semi-empirical correlation for R̄KD of Gao & Li (2015)
can be recovered by setting α = βYW = (2/(3δ))1/4 (see table 1, correlation No. 2).
Alternatively, if we neglect impact losses (i.e. λ = 1), the formula of Yarin & Weiss (1995)
is reobtained (correlation No. 1 in table 1). This finding not only confirms the validity
of the proposed estimation for the constant B, but yields also a measure for the extent
of the impact zone. In non-dimensional terms, the variation of Lim/D0 = α is plotted in
figure 3(b) as a function of δ. As can be seen, the impact length decreases monotonically
with the wall-film thickness and tends to the droplet diameter D0 with increasing δ. This
means that with increasing the wall-film inertia, the size of the liquid volume displaced
by the impacting droplet to form the KD will decrease. In this context, it is important to
point out that this trend is based on the functional dependence proposed for the empirical
constant βYW with δ. The latter was validated against the experiments of Levin & Hobbs
(1971) for δ = 0.17. Note that the uncertainty in the estimation of the non-dimensional
wall-film thickness (nominally δ = 0.17) for these experiments cannot be ascertained.
Moreover, an anomaly is observed for δ � 0.1, where the predictions for Lim are even
larger than the maximum distance covered by the KD over the entire duration of a splashing
event, as shown in § 3. A possible explanation is to assume that, for δ � 0.1, the wall film
is almost completely removed from the impact zone. Consequently, the propagation of the
contact line/KD is mainly limited by friction losses at the wall rather than by wall-film
inertia. For droplet impact on dry walls, Philippi et al. (2016) found for the contact line:
r̄CL = √

3/2
√
τ (see also table 1, correlation No. 9). The coefficient βPh = √

3/2 is also
plotted in figure 3(b) for comparison. As can be seen, friction effects limit the propagation
of the KD more effectively than wall-film inertia effects. For the estimation of the total
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extent of the impact zone, we decided therefore to adopt βPh for δ � 0.2 and then βYW
for δ > 0.2. In support of this choice, we refer to the overview shown in table 1. As can
be seen, very few experiments or simulations have been performed for δ � 0.1 for which
the value of the parameter β was specified. The only noteworthy exception is provided by
the simulations of Rieber & Frohn (1999), who found a value of β ≈ 1.1 for δ ≈ 0.12,
which is very close to the constant βPh = √

3/2 for impact on a dry wall (Philippi et al.
2016). Moreover, with reference to figure 3(b), one can see that for δ = 0.2, the difference
between βPh and βYW becomes minor, thus justifying the choice of 0.2 as the transition
value. The validity of this approximation for estimating the total extent of the impact zone
Lim is verified in § 3 through comparison with experimental data.

2.2. Flow field solution within the impact zone
For modelling the flow field within the impact zone, the momentum balance equation
in the radial direction, written in cylindrical coordinates for an axisymmetric flow, is
considered. Neglecting the body force and indicating with u and w the velocity component
in the radial and vertical directions, it follows

∂u
∂t

+ u
∂u
∂r

+ w
∂u
∂z

= ν

[
∂u
∂r

(
1
r
∂(ur)
∂r

)
+ ∂2u
∂z2

]
− 1
ρ

∂p
∂r
. (2.5)

As an outer flow solution for the inviscid flow, the potential flow solution of Yarin & Weiss
(1995) is adopted with B = a0. This yields the following expressions for the induced flow
velocity within the impact zone, valid for the asymptotic regime:

u(t) =
(

a0

1 + a0t

)
r = a(t) r, w(t) = −2a(t) z. (2.6a,b)

These findings show that the impacting droplet transfers momentum to the liquid layer both
radially and vertically. In particular, the outer flow induced in the radial direction has the
functional dependence of a stagnation point flow with decaying strength a(t). Moreover,
the decay in the wall-film height was modelled as follows (Yarin & Weiss 1995):

hF(t) = h0

(1 + a0t)2
. (2.7)

Note that (2.7) can also be obtained by directly integrating the outer momentum equation
in the z-direction: w = ∂z/∂t = −2a(t)z in the interval [0, t] and [h0, hF(t)].

The boundary layer solution can be obtained by reducing the Navier–Stokes equations to
an ordinary differential equation. This can be achieved by eliminating the time dependence
through the coordinate transformation proposed by Roisman (2009):

ξ =
√

a(t)
νt

z, g(ξ) = ψ
√

t
r2

√
ν a(t)

, (2.8a,b)

where ψ denotes the stream function. The velocity components are then transformed as

u = 1
r
∂ψ

∂z
= a(t)r

t
g′ (ξ) w = −1

r
∂ψ

∂r
= −2

√
ν a(t)

t
g (ξ) . (2.9a,b)
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With this transformation, the unsteady term is subsequently expressed as

∂u
∂t

= ∂

∂t

[
a(t) r

t
g′ (ξ)

]
= −a(t) r

t2

(
ξ

2
g′′ + g′

)⎡
⎢⎢⎣1 +

ε(t)︷ ︸︸ ︷
ao t

(1 + a0 t)

⎤
⎥⎥⎦ . (2.10)

The function ε(t) represents an additional contribution owing to the temporal variation of
a(t) and varies between 0 (for t = 0) and 1 (for t → ∞) (see derivation in Appendix A).
In the transformed coordinate (Drazin & Riley 2007), the radial pressure gradient for an
unsteady, viscous, axisymmetric stagnation-point flow can be expressed as

p − p0

ρ
= −1

2
[a(t)]2r2

(
g′

t

)2

− 2 ν a(t)
(

g2

t2
+ g′

√
t

)
. (2.11)

For the radial derivative we then obtain

1
ρ

∂p
∂r

= − [a(t)]2 r
t2

g′. (2.12)

Because the pressure is transmitted integrally through the boundary layer, (2.12) can be
evaluated in the free stream, where g′ = 1. Calculating all other derivatives in a similar
manner and substituting these expressions into (2.5) yields

g′′′ + 2gg′′ − g′2 + 1 + [1 + ε(t)]
a(t)

(
1
2
ξg′′ + g′

)
︸ ︷︷ ︸

unsteady term

= 0, (2.13)

with the boundary conditions

ξ = 0 : g = 0, g′ = 0; ξ → ∞ : g′ = 1. (2.14a,b)

In the transformed coordinate system (2.13), the order of magnitude of the unsteady term
is basically weighted by the factor 1/a(t), being 0 � ε(t) � 1. The temporal variation of
a(t), as derived by Yarin & Weiss (1995) (see (2.6a,b)), is shown in figure 4(a) for selected
experiments. For the typical duration of a splashing experiment (tmax ≈ 30 ms), a(t) never
attains a value lower than 30 s−1. Hence, irrespective of the value of the function ε(t),
the unsteady term is at least one or two order of magnitudes smaller than the convective
or diffusive terms. This statement is further corroborated by performing a parametric
analysis of the unsteady pre-factor. After simple algebra, the latter can be re-written as [1 +
ε(t)]/a(t) = (1/a0)+ 2t. Its temporal evolution is shown in figure 4(b) for characteristic
values of the parameter a0, which, to a large extent, controls the order of magnitude of
the unsteady term. For the present splashing experiments, the parameter a0 is always
comprised in the range 460 < a0 < 1060 s−1 (see Appendix B), thus confirming the
negligibility of the unsteady term in the transformed coordinate system, i.e. in (2.13). This
feature has important implications on the characteristics of the solution for the velocity
profile g′(ξ). Indeed, by solving the third-order ordinary differential equation (ODE) for
different fixed values of the parameter a(t) and ε(t), we found that all solutions merge into
a single curve for a(t) � 100 s−1, while minor deviations appear only for a(t) = 10 s−1,
as shown in figure 5(a,b). The advantage of this finding is mainly from a computational
point of view. Indeed, as shown in § 3, the estimation of momentum losses during crown
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Figure 4. Evaluation of unsteady term: (a) temporal dependence of the function a(t) = a0/(1 + a0t) on the
input parameter a0 = λU0/D0 for selected experiments (No. 1,2 (n-hexadecane), 9 (hyspin), 15,17 (B3), 18,20
(B10) and 21,23 (B50), see tables in Appendix B) covering a range of 460 < a0 < 1060 s−1; (b) dependence
of the unsteady term’s pre-factor (1 + ε(t))/a(t) = (1/a0)+ 2t of (2.13) on the input parameter a0.
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Figure 5. Overview of the different solutions for the unsteady stagnation point flow in the transformed
coordinate system: (a) ε(t) dependence; (b) a dependence.

propagation can be made with reasonable accuracy by employing the solution of (2.13),
obtained at a constant fixed value for the parameter a (e.g. a0), without the need of
employing a time consuming iterative approach. In summary, thanks to the short duration
of a splashing event (tmax ≈ 30 ms), our analysis shows that a self-similar solution can
also be obtained for the boundary layer of an unsteady stagnation point flow with decaying
strength a(t). The present self-similar solution in the variables [r

√
a(t)/(νt), z

√
a(t)/(νt)]

represents a straightforward generalisation of the self-similar, inviscid stagnation point
flow solution in the variables (r/

√
t, z/

√
t) established by Philippi et al. (2016).

2.3. Estimation of momentum losses
The momentum losses are determined solely for the spreading phase of the crown
(Phase 3), thanks to the availability of an analytical solution for the outer flow for both
the KD and the flow field within the impact zone. For this purpose, the first step is to
model the decay of the liquid layer htot(t) at the foot of the crown (see figure 1b), defined
as htot(t) = hresD + hF(t). The subscripts ‘resD’ and ‘F’ refer to the residual droplet and
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Figure 6. (a) Graphic visualisation of momentum losses. The grey area represents the momentum carried
by the lamella, deprived of momentum losses (red striped area). (b) Dimensionless residual thickness of the
droplet liquid layer for impact on dry and wetted walls. For impacts on dry walls, the comparison between
experimental and numerical correlations shows an excellent agreement.

wall-film liquid layers, respectively. The estimation of the liquid layer’s decay rate as well
as of the residual film thickness is discussed in § 2.4. Hereafter, we describe the approach
adopted in this work to estimate the momentum losses. The latter can be evaluated by
introducing a profile-averaged non-dimensional velocity according to

ḡ′ = uv

u∞
= 1
ξmax

∫ ξmax

0
g′ dξ = 1

ξmax
g(ξmax), ξmax =

√
a(t)
νt

htot(t). (2.15a,b)

Here ξmax represents the total scaled height of the liquid layer in the transformed coordinate
system. The definite integral in (2.15a,b) yields no integration constant, because g(ξ)
crosses the origin. Equation (2.15a,b) essentially estimates the momentum carried by
the moving lamella by calculating the total area of the velocity profile and dividing it
by the non-dimensional height of the liquid layer. Its physical meaning is schematically
illustrated in figure 6(a). The momentum losses are represented by the red area. In the
inviscid approximation (e.g. Gao & Li 2015), the velocity is constant along the wall film
(grey rectangular area). Hence, (2.15a,b) yields uv(t) = u∞(t). If we now incorporate
a boundary layer flow close to the wall, (2.15a,b) measures the average momentum
carried by the lamella uv(t), deprived of momentum losses, as a fraction of u∞(t).
Note that ḡ′(ξmax) is not constant in time, as it is implicitly a function of the total
height htot(t). Hence, even though the shape of the self-similar solution g(ξ) does not
change in time, the profile-averaged non-dimensional velocity ḡ′(ξmax) will vary between
approximately one (when htot � hres) and an asymptotic value (when htot → hres). Owing
to the self-similarity of the boundary layer solution, the analytical function ḡ′(ξmax) can
be employed to estimate the attenuated flow velocity at any radial location between the
impact point and the KD. As a first step, the averaged velocity is transformed back to the
physical coordinate system according to

uv(t)
u∞

= λ1(t) = 1√
a(t)
νt

htot(t)

g

[√
a(t)
νt

htot(t)

]
. (2.16)

In this work, we are only interested in determining the crown’s speed. Hence, u∞ denotes
the velocity outside the boundary layer as determined by potential theory (see (2.3)) and
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λ1(t) represents the loss in momentum arising from viscous forces. It follows

ūvKD = λ1
uKD

U0
= αλ1

√
λ

2
√
τ
, (2.17)

R̄KD = αλ1
√
λ
√
τ − τini + R̄KD,ini. (2.18)

Direct integration of the velocity ūvKD(τ ) yields the function R̄KD(τ ), where [τini, R̄KD,ini]
represent the starting values of a fully formed crown at the end of the impact phase. Based
on the discussion presented in the §§ 1 and 2.1, (2.17) and (2.18) include all the recent
literature findings. Specifically, the impact losses are incorporated through the factor

√
λ,

in compliance with the analysis of Gao & Li (2015). The pre-factor α is modelled as
α = βPh for δ � 0.2 to take into account that the extent of the impact zone is mainly
limited by friction losses, in compliance with the analysis of Philippi et al. (2016). Instead,
for δ > 0.2, we set α = βYW to take into account that the extent of the impact zone is
mainly determined by the wall-film inertia, in compliance with the findings of Yarin &
Weiss (1995). The advantage of this approach is that it provides a unified solution for
droplet impact on both dry and wetted walls. The validity of this choice is verified in § 3.

2.4. Estimation of the liquid layer’s evolution
Equation (2.16) shows that modelling the temporal evolution of the liquid layer htot(t) is a
key requisite for determining the viscous losses. In this work, we assume that right after
the impact, the liquid-droplet and the wall-film fluids merge perfectly creating a planar
interface, as shown in figure 1(a). Moreover, both layers start spreading radially outwards,
while maintaining the possibility for the impacting droplet to initially slide along the
quiescent wall film until the formation of the KD. The first step is, therefore, to model
the decay of the liquid-droplet and wall-film heights, independently. For this purpose,
we revised the available literature studies, which provide then a basis for our modelling
strategy.

For droplet impact on a dry wall, a comprehensive analysis was performed by Lagubeau
et al. (2012), who found that the central height of the droplet decays with hc ∼ D0/τ

2

until a residual thickness (hresD) is reached. This minimal film thickness scales with
Re−2/5. This scaling was additionally confirmed by the experimental measurements of
van Hinsberg et al. (2010) and by the numerical simulations of Wildeman et al. (2016).
Figure 6(b) shows an excellent agreement among the different correlations. In the present
work, we found that for very thin wall films (i.e. δ < 0.06), the wall film is completely
expelled from the impact zone. Consequently, only the droplet liquid layer is modelled by
employing the self-similar law of Lagubeau et al. (2012) for the decay of the droplet height,
which reads as hd(t) = 0.492D3

0/[U
2
0(t + t0)2] with t0 = 0.429 D0/U0. The residual film

thickness hresD is estimated with the correlation of Wildeman et al. (2016). The validity
of this modelling approach is discussed in § 3. Note that no major changes were observed
when the correlation of van Hinsberg et al., in the limit of δ → 0, was employed as an
alternative.

For droplet impact on wetted walls, unfortunately no data are available in the literature
to model hresD . Wildeman et al. (2016) pointed out that the height of the liquid layer in
free-slip droplets decreases continuously as hc/D0 ∼ 1/τ 2 until rebound. In splashing
experiments, rebound is never reached owing to the formation of the KD. Indeed,
figure 7 shows that the formation of the KD starts already in the very early phase of
the impact dynamics (i.e. τ < 0.1). Specifically, the droplet has the shape of a truncated
sphere and is surrounded by a thin, radially spreading lamella, in agreement with the
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D0 = 30 pixel DKD = 37 pixel DKD = 42 pixel

Inter-frame time τintfr = 0.087

Lref = D0 Lim = 2 RKD,ini
τ = 0

DKD = 48 pixel DKD = 53 pixel

Figure 7. Early dynamics of the impact phase for an n-hexadecane droplet with δ = 0.08, WeD = 1343,
ReD = 2459 (exp. No. 3, see Appendix B).

numerical simulations of Wildeman et al. (2016). The KD formation occurs at the rim
of this lamella, which has a thickness much smaller than the droplet central height. For
these conditions, it appears appropriate to model the decay of the liquid layer htot(t)
at the foot of the crown as htot(t) = hresD + hF(t). We found that for impact on wetted
walls with δ in the range 0.06 � δ < 0.4, hresD can be estimated as (hresD/D0)rW =
0.4 ∗ (hresD/D0)W = 0.4 ∗ 0.7Re−2/5. For higher wall-film thicknesses (i.e. δ � 0.4), the
droplet impact phenomenology approaches the deep pool regime, characterised by the
formation of a crater within the impact zone. For these conditions, the droplet-liquid layer
can no longer freely slide on the wall film owing to the increased wall-film inertia. In this
case, the correlation of van Hinsberg et al. (2010), which includes an explicit dependence
of hresD upon δ, leads to a better agreement with the experimental data. Note, however,
that modelling the droplet impact on thick wall films is beyond the focus of the present
work.

The decay of the wall-film height hF(t) in the inertial regime is modelled with the
analytical solution of Yarin & Weiss (1995), see (2.7) for more details, until a residual
film thickness hresF is attained. The latter can be estimated on the basis of simple
scaling arguments (Lagubeau et al. 2012). Specifically, hresF should be proportional
to the boundary layer height (hresF ∼ h0/

√
U0h0/ν ∼ h0/

√
Reh) and also a fraction

of the initial film thickness (hresF ∼ δ). Hence, the simplest estimation gives hresF =
1.5 δ h0/

√
Reh, where the factor 1.5 is slightly smaller than the boundary layer height

[hBL/h0 = 2.5/
√

Reh] in the transformed coordinate for a stagnation point flow (see
figure 5a). Finally, in agreement with the remarks of Lagubeau et al. (2012), we would
like to point out that this modelling choice is not univocally defined. The two possible
dependencies for the residual thickness, Re−1/2 or Re−2/5, are so close to each other
that each of them can be adopted without any loss of accuracy by simply modifying the
coefficient of proportionality. The only important requirement is the overall estimation of
htot(t). For the present investigations, we found an excellent agreement with the tabulated
residual thicknesses as measured by van Hinsberg et al. (2010) for δ > 0.2.

2.5. Initialisation
To finalise the modelling of the crown propagation, it is necessary to determine the initial
parameters [τini, R̄KD,ini] that appear in (2.18). In this work, we start from the asymptotic
velocity distribution in the impact zone F(ζ ) = dζ/dt = a0ζ , as it is primarily responsible
for the formation of the crown. As shown in figure 7, the KD is located directly at the end
of the impact length Lim. We assume the asymptotic solution F(ζ ) to be valid as of τref .
Its integration over the length of the impact zone provides the location of the crown at
the end of the impact phase (Phase 2). Integrating over the interval L(τref ) = D0 until
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Figure 8. Sensitivity analysis on the prediction of τini: (a) variation of δ; (b) influence of viscosity; (c) fraction
of droplet volume penetrated into the wall film at τref . To highlight the changes in τini, a double logarithmic
scale is chosen for all plots.

L(τini) = Lim yields

ln
(

Lim

D0

)
= ln(α) = λ(τini − τref ), (2.19)

being Lim/D0 = α per definition of the impact length. Here, it is important to recall
the discussion presented in § 2.1 on the estimation of the factor α, based on a
comparison between analytical/numerical solutions and empirical correlations. It follows
then immediately that R̄KD,ini = Lim/2 = α/2, while τini can be calculated from (2.19), if
the reference time τref can be estimated.

Thoroddsen (2002) investigated the early dynamics of an ejecta sheet for droplet impact
onto a liquid layer. He found that ejecta sheets can emerge as early as 10 μs, which, in
our experiments, corresponds to τ values in the range of 0.013 < τ < 0.019 depending on
the fluid viscosity. We assume that the condition L(τref ) = D0 is reached shortly after and
chose τref = 0.02 for all test cases. To assess the influence of τref on the time initialisation,
we performed a parameter study by varying τref in the interval [3 × 10−3–0.14] for
different initial wall-film heights and test fluids. As can be seen in figure 8, τini is rather
insensitive to the choice of τref , provided τref < 0.04. The choice of τref mainly influences
the fraction of droplet volume that penetrates into the wall film. The latter is irrelevant for
the chosen initialisation approach and never exceeds a few percent of the droplet volume.

2.6. Comparison between different initialisation procedures
This section presents a direct comparison between the initialisation method proposed
by Gao & Li (2015) and the one proposed in this work (2.19). An overview of the
different assumptions is presented in table 2. Gao & Li (2015) employed a volumetric
approach, based on the conservation of the droplet volume. The latter is transformed into
an equivalent cylinder of base πr̄2

i and height δ, where the radial position r̄i = 1/
√

6δ
denotes the origin of the KD. The initial time is estimated as τi = (r̄i − 0.5)/λ. Hence,
it follows that r̄i = R̄KD,ini and τi = τini. As shown in figure 7, this assumption is not
realistic, because the KD formation starts very early in the impact phase, when only
a few percentage of the droplet volume has penetrated into the wall film. The overall
disadvantage of the volumetric approach is that it leads to a significant overestimation of
both initial parameters for small wall-film thicknesses (δ < 0.2), as shown in figure 9(a,b).
This occurs because increasingly more time is required to transform the droplet volume in
an equivalent cylinder of height δ and radius r̄i. The overestimation of the initial parameters
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Parameter Present model Gao & Li (2015)

R̄KD,ini
Lim

2
= α

2
1√
6δ

with α = √
3/2 for δ � 0.2 —

with α =
(

2
3δ

)1/4

for δ > 0.2 —

τini
lnα
λ

+ τref
(r̄i − 0.5)
λ

with τref = 0.02 —

Table 2. Direct comparison of initialisation parameters R̄KD,ini and τini.
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Figure 9. Dependence of the initialisation parameters upon the non-dimensional film thickness δ for different
theoretical models: (a) initial crown radius R̄KD,ini; (b) initial time τini; (c) parameter C0(δ).

[R̄KD,ini, τini] is confirmed by analysing the early stage dynamics of droplet impact on
thin films, shown, for example, in figure 7. Even though only a rough estimation of the
formation time can be obtained from the figure, it follows τini 
 2, being τini = 0.087 ×
5 = 0.435. This experimental value is well reproduced by our initialisation method, while
the initialisation of Gao & Li (2015) predicts a formation time of τini ≈ 2.3. To compensate
for this overestimation, Gao & Li (2015) introduced the parameter C0(δ) (see figure 9c) in
their theoretical prediction. The expression for C0(δ) is obtained by setting R̄KD(τini) = r̄i.
Hence, it follows from table 1:

R̄KD = βGL
√
τini + C0(δ) = r̄i, (2.20)

C0(δ) = r̄i − βGL
√
τini = 1√

6δ
−

(
2λ2

3δ

)1/4
√

1
λ

(
1√
6δ

− 1
2

)
, (2.21)

C0(δ) = 1√
6δ

−
(

1
3δ

− 1√
6δ

)1/2

. (2.22)

The dependence of C0 on the non-dimensional film thickness δ is depicted in figure 9(c).
For thin films (δ < 0.17), the parameter C0(δ) assumes negative values, which limits the
temporal applicability of the Gao & Li correlation (see correlation No. 2 in table 1). In
other words, R̄KD cannot assume negative values. As shown in figure 2(b) and in § 3,
the offset C0(δ) leads to a correct positioning of the theoretical curve for 0.1 < δ < 0.3
for which the model was validated. Outside of this range, the following is observed.
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For δ < 0.1, τini is too large, as shown in figures 11(a) and 12(a). For δ � 0.3, the slope
of the R̄KD-curve is underestimated owing to the vertical shift in the

√
τ -curve (see

(2.20)), induced by the artificial offset. This is demonstrated by comparing the slope of
all R̄KD-curves close to the initialisation point with the experimental data for δ = 0.3 (see
e.g. figures 11b and 12b).

In our approach, τini is estimated by (2.19), while R̄KD,ini is directly connected to the
length of the impact zone: R̄KD,ini = α/2. The latter was estimated by comparing the
analytical solution to the available empirical correlations under the assumption that the
extent of the impact zone is limited by friction effects for δ � 0.2 and by wall-film inertia
for δ > 0.2, as explained in §§ 2.1 and 2.5. Despite these limitations, in § 3, it is shown
that the newly proposed initialisation provides a significant improvement compared with
previous estimations and exhibits an excellent agreement with experimental data over the
entire range of wall-film thicknesses considered in this work (0.03 � δ < 0.4).

3. Results and discussions

The objectives of this section are twofold. First, it is necessary to verify the existence
of self-similar solutions in the transformed coordinate system for the unsteady stagnation
point flow with decaying strength a(t). Second, the predictive capabilities of (2.18) in
reproducing the temporal evolution of the dimensionless crown radius R̄KD need to be
assessed. Concerning the self-similarity, the radial momentum equation in the transformed
coordinate system (i.e. (2.13)) has been solved twice for a selected n-hexadecane
experiment (Exp. No. 5 in table 3). The two solutions differ only in the modelling of
the unsteady term, as discussed in detail in § 2.2. Specifically, in the first approach,
the parameter 1/a(t) is kept constant by setting 1/a(t) = 1/a0 = const.; while in the
second approach, the temporal variation of the parameter a(t) is explicitly incorporated
by repeating the iterative solution of (2.13) at each time step. The result of this exercise
is shown in figure 10. As can be seen, the two solutions overlap perfectly. This confirms
the order of magnitude analysis presented in § 2.2. Specifically, it was shown that the
overlapping of the different profiles (self-similarity requirement) is directly related to the
negligibility of the unsteady term in the transformed coordinate system. In what follows,
we make use of the self-similarity by solving (2.13) only once at the nominal impact
strength a0 = λU0/D0, because the latter can be immediately inferred from the initial
impact conditions.

Concerning the reliability of our viscous correction, the capability of (2.18) in predicting
the propagation of the crown radius (KD) is analysed for a variety of fluids, which include
hyspin, n-hexadecane and the silicone oils B3, B10 and B50. In total, more than 700 droplet
impact experiments were performed and analysed, covering a wide range of normalised
wall-film thickness (0.03 � δ � 0.5), droplet Weber number 600 < WeD < 1900 and
droplet Reynolds number 160 < ReD < 2600. Please note that each experiment was
repeated five times to evaluate the reproducibility of the crown morphology and spreading
rate. A detailed description of the test-rig, experimental procedures, post-processing
algorithm and reliability of the experimental data can be found in Geppert et al. (2017)
and Bernard et al. (2020). The inaccuracy in determining the position of the KD is
approximately 1–2 % (Geppert et al. 2016), while the inaccuracy in the determination
of ReD, WeD and δ is approximately 2.5–3 % (Geppert et al. 2017). Hereafter, only a
selected number of experiments are discussed, which span over the entire range of test
conditions, and are listed in Appendix B. As pointed out by Geppert et al. (2017), the crown
propagation is only weakly dependent upon the WeD and ReD numbers. It is, instead, very
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Figure 10. Verification of the self-similarity assumption for the unsteady stagnation point flow with decaying
strength a(t). Test case: experiment No. 5 in table 3.

sensitive to the initial wall-film thickness, which controls, to a large extent, the interplay
between viscous and inertial forces.

The predictions of the non-dimensional crown radius R̄KD for hyspin and the silicone
oils B10 and B50 are shown in figure 11, while those for n-hexadecane and B3 are
plotted in figure 12. In all cases, a comparison with the experimental data and the model
of Gao & Li (2015) is also included. The inclusion of momentum losses reproduces
quite accurately the systematic deviation from the

√
t time dependence observed in the

experimental data. Moreover, it leads to a significant improvement in the accuracy of the
predictions, particularly in the late spreading phase compared to inviscid models (e.g.
Gao & Li 2015). Note that the deviation from the inviscid solution occurs at increasingly
later times with increasing δ. Consequently, the improvement caused by the inclusion of
momentum losses is more pronounced for small, initial wall-film thickness (δ < 0.2). For
δ > 0.3, the liquid film acts as a buffer and attenuates the retarding effect of the wall on
the outer flow velocity. Indeed, for δ = 0.4 (figure 12c), the experimental data are also well
reproduced by the Gao & Li (2015) model for a significant part of the crown evolution.
Noteworthy is the counterintuitive role played by viscosity. In figures 11(c) and 11(d),
the B50 curve follows more closely the inviscid solution compared with the B10 case
for δ = 0.3. This behaviour arises from the compensation between impact and viscous
losses. Impact losses are higher for viscous fluids, leading to smaller λ and a0 values. This
results in a slower decay rate for the wall-film height (i.e. a smaller velocity gradient in the
near-wall region) for the B50 droplet and therefore in attenuated viscous losses compared
with the B10 test case.

These considerations are further corroborated by a direct comparison of the KD
velocities predicted by the viscous and inviscid model, respectively. The dependence upon
the initial film thickness is analysed in figure 13(a). As can be seen, the largest differences
are obtained for small values of the dimensionless wall-film height (e.g. δ = 0.05) owing
to the increased relevance of boundary layer effects, while only minor deviations are
observed for δ = 0.3. The dependency upon fluid viscosity is illustrated in figure 13(b),
which confirms our previous statement about the contrasting effect between impact and
viscous losses. Namely, higher impact losses are associated with higher fluid viscosities
and lead to reduced viscous losses. Indeed, for a given δ, the B3 silicone oil (red solid
curve) experiences basically the same momentum attenuation as the B50 silicone oil
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Figure 11. Temporal evolution of the crown R̄KD: comparison between experiments and theoretical models.
The vertical line marks the time of maximum crown’s height Hcr,max. Detailed test conditions can be found in
table 3 in Appendix B. (a) Hyspin, δ < 0.1. (b) Hyspin, δ > 0.1. (c) Silicone oil, B10. (d) Silicone oil, B50.

(red dashed curve), despite the large differences in kinematic viscosities. Note that, in
the early stage of the spreading phase (i.e. τ � 3), the velocity predictions are basically
identical. The time shift observed in the initial phase (see figure 13a) arises from the
different initialisation approaches discussed in § 2.6, which differ significantly for droplet
impact on thin films (i.e. δ < 0.1). Overall, the comparison shows that our analytical
solution is capable of describing the progressive transition from the inertia-controlled to
the shear-controlled regime of crown propagation.

An additional interesting aspect is the direct comparison with correlations developed
for droplet impact on dry walls, as shown in figures 11(a) and 12(a) for very thin initial
wall-film thicknesses (δ � 0.04). Two correlations are considered: a numerically derived
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Figure 12. Temporal evolution of the crown R̄KD: comparison between experiments and theoretical models.
The vertical line marks the time of maximum crown’s height Hcr,max. Detailed test conditions can be found
in table 3 in Appendix B. (a) n-Hexadecane, δ < 0.1. (b) n-Hexadecane, 0.1 < δ < 0.3. (c) n-Hexadecane,
δ > 0.3. (d) Silicone oil, B3.

one by Philippi et al. (2016) and an experimentally derived one by Rioboo et al. (2002). For
early times (τ < 3), both the present model (2.18) and the dry wall correlations reproduce
the experimental data quite well. For larger times, however, the dry wall correlations start
to deviate from the experimental data. This is not surprising because both correlations
were validated only in the range 0 < τ < 0.1. The improved predictions of (2.18) arise
from the inclusion of viscous losses, which become relevant at later times (τ > 3). The
comparison with dry wall correlations demonstrates that (2.18) is also capable to predict
the crown radius evolution for both dry and wetted wall impacts.
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v K

D
 (–

)

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

τ (–) τ (–)

δ = 0.2

Eq. (2.17)

Eq. (2.17)
Silicone oil B50:

Silicone oil B3:

Gao & Li (2015)

Gao & Li (2015)

(a) (b)

Figure 13. Temporal evolution of the KD velocity with (ūvKD) and without (ūKD) viscous attenuation for
different (a) initial film thicknesses exp. No. 2,6, see Appendix B and (b) fluid viscosities exp. No. 16,22,
see Appendix B.

Hyspin – Hyspin interaction: δ = 0.05, WeD = 1423

τ = 5.27 τ = 8.09 τ = 8.73 τ = 9.36 τ = 9.73

τ = 12.33τ = 11.35τ = 10.94τ = 7.03τ = 3.13

Hexadecane – Hexadecane interaction: δ = 0.05, WeD = 1384
(b)

(a)

Figure 14. Crown bottom breakup time sequence with δ = 0.05 (exp. No. 2 and 10 in Appendix B).

Regarding the occurrence of crown retraction, the latter is caused by the restoring
action of surface tension. As mentioned in § 1, this may also cause deviations from the
square-root time dependence. Our experimental results show that crown retraction is
not observed systematically. This occurs because, during a splashing event, the crown
may collapse or break before a balance between inertia and capillary forces is reached.
Typically, this is the case for droplet impact on very thin films, as shown in figure 14.
For hyspin, for example, the crown is ripped off at its base already during the early stage
of the elevation phase, namely at τ = 7.8. In figures 11 and 12, the occurrence of crown
retraction coincides with a decrease in time of the crown base radius. For these cases,
our analytical solution is no longer capable to follow the experimental trend. Noteworthy
is the fact that crown retraction develops only after the crown velocity has decayed to
almost zero, as illustrated by the horizontal slope in e.g. figure 11(b,c) for δ = 0.2. Our
experimental results seem to suggest that crown retraction can occur only when inertia
and viscous forces become negligible due to the vanishing crown speed. If that happens,
surface tension remains the only dominant force and is capable to reverse the crown motion
against wall friction effects.
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4. Conclusions

In this work, an extension of the potential flow solution that describes the propagation of
the crown (Yarin & Weiss 1995) is presented. Although not explicitly stated in the original
model, the potential flow has the structure of a stagnation point flow of constant strength
in the impact phase (Phase 1). During the spreading phase (Phase 3), instead, due to the
exponential decay of the peak impulse provided by the impacting droplet (Mitchell et al.
2019), the potential flow evolves towards an unsteady stagnation point flow with decaying
strength a(t) = a0/(1 + a0t). Our strategy has been first to recover the original solution for
the crown propagation ūKD, based on the above mentioned outer flow structure. Second,
we extended it by integrating a boundary layer correction to describe the momentum
reduction due to viscous losses. For this purpose, we solved analytically the Navier–Stokes
equations and found a self-similar solution in the variables [r

√
a(t)/(νt), z

√
a(t)/(νt)] for

a0 � 100 s−1. The latter represents a straightforward generalisation of the self-similar,
inviscid stagnation point flow solution in the variables (r/

√
t, z/

√
t) (Philippi et al. 2016).

The consistent application of the outer flow solution in the impact zone leads to an accurate
determination of the extent of the impact region and required time τini for the formation
of the KD. Our analysis shows that, during the spreading phase, viscous losses are
negligible only in the early stage of crown propagation and become increasingly important
with reducing film height. This causes a systematic variation from the square-root time
dependence, derived from the inviscid approach. Our study also showed that viscous losses
affect the temporal evolution of the crown in two ways: directly by causing momentum
losses during the spreading of the lamella and indirectly through the impulse transfer from
the droplet to the wall film, which is inhibited in highly viscous fluids. This generates a
complex interaction between impact and viscous losses: the higher the impact losses, the
lower the total viscous losses in the spreading phase and vice versa. This counterbalancing
of impact and viscous losses explains why the crown evolution was found to be only weakly
dependent upon fluid viscosity.
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Appendix A. Exact derivation of the unsteady term

In this section, we present the exact derivation of the unsteady term in the transformed
coordinate system and discuss its influence on the solution of the self-similar function
g(ξ).

Proof . Recalling the definition of the vertical, transformed coordinate ξ = [z
√

a(t)/(νt)],
the proof is as follows:

∂u
∂t

= ∂

∂t

[
a(t) r

t
g′ (ξ)

]
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= a(t) r
t

g′′(ξ)
∂

∂t

[√
a(t)
νt

z

]
+ g′(ξ)

∂

∂t

[
a(t)r

t

]

= −a(t) r
t2

ξ

2
g′′(ξ)− a(t)2 r

t
ξ

2
g′′(ξ)+ g′(ξ)

[
−a(t) r

t2
− a(t)2 r

t

]

= −g′′(ξ)
a(t) r

t2
ξ

2
[1 + a(t)t] − g′(ξ)

a(t) r
t2

[1 + a(t)t]

= −a(t) r
t2

(
ξ

2
g′′ + g′

) [
1 + a0t

(1 + a0t)

]
(A1)

= −a(t) r
t2

(
ξ

2
g′′ + g′

)
[1 + ε(t)] . (A2)

�

Appendix B. Test conditions and fluid properties

In this section, the experimental conditions of the analysed experiments are listed.

n-hexadecane:
σ = 27.60 mN m−1, ν = 4.46 mm2 s−1, ρ = 773 kg m−3

No. D0 U0 δ h0 λ a0 WeD ReD Reh
mm ms−1 – μm – s−1 – – –

1 2.58 3.8 0.04 110 0.65 947 1038 2192 93
2 2.54 4.4 0.05 130 0.62 1062 1384 2511 129
3 2.51 4.4 0.08 200 0.54 949 1343 2459 196
4 2.53 4.3 0.1 253 0.51 868 1314 2439 244
5 2.51 4.3 0.2 500 0.40 691 1304 2419 482
6 2.50 4.3 0.3 750 0.34 586 1299 2410 723
7 2.48 4.3 0.4 1000 0.30 512 1271 2374 957
8 2.50 4.3 0.5 1250 0.27 459 1305 2415 1207

hyspin:
σ = 28.65 mN m−1, ν = 18.0 mm2 s−1, ρ = 878 kg m−3

No. D0 U0 δ h0 λ a0 WeD ReD Reh
mm ms−1 – μm – s−1 – – –

9 2.70 4.0 0.03 80 0.66 983 1328 602 18
10 2.42 4.4 0.05 121 0.58 1054 1420 589 29
11 2.36 4.4 0.08 180 0.52 959 1378 573 45
12 2.65 4.0 0.1 280 0.47 712 1310 592 62
13 2.57 4.3 0.2 520 0.37 609 1434 610 127
14 2.58 4.5 0.3 800 0.30 524 1598 645 194

Table 3. Listing of experimental parameters for n-hexadecane and hyspin experiments. More details on the
experimental set-up can be found in Geppert et al. (2017).
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silicone oil B3:
σ = 18.0 mN m−1, ν = 3.0 mm2 s−1, ρ = 900 kg m−3

No. D0 U0 δ h0 λ a0 WeD ReD Reh
mm ms−1 – μm – s−1 – – –

15 2.01 3.21 0.1 200 0.52 824 1036 2151 214
16 1.98 2.75 0.2 400 0.41 572 749 1815 367
17 2.00 2.61 0.3 600 0.35 461 681 1740 522

silicone oil B10:
σ = 20.2 mN m−1, ν = 10.0 mm2 s−1, ρ = 945 kg m−3

No. D0 U0 δ h0 λ a0 WeD ReD Reh
mm ms−1 – μm – s−1 – – –

18 2.01 3.58 0.1 200 0.49 866 1205 720 72
19 1.99 3.58 0.2 400 0.38 678 1193 712 143
20 1.99 3.72 0.3 600 0.31 587 1288 740 223

silicone oil B50:
σ = 20.8 mN m−1, ν = 50.0 mm2 s−1, ρ = 960 kg m−3

No. D0 U0 δ h0 λ a0 WeD ReD Reh
mm ms−1 – μm – s−1 – – –

21 2.08 4.04 0.1 210 0.44 859 1567 168 17
22 2.11 4.35 0.2 420 0.33 689 1843 184 37
23 2.09 4.35 0.3 630 0.27 570 1825 182 55

Table 4. Listing of experimental parameters for silicone oil B3, B10 and B50 experiments. More details on
the experimental set-up can be found in Bernard et al. (2020).
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