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Analytical expressions are derived for the velocity field, and effective slip lengths,
associated with pressure-driven longitudinal flow in a circular superhydrophobic pipe
whose boundary is patterned with a general arrangement of longitudinal no-shear stripes
not necessarily possessing any rotational symmetry. First, the flow in a superhydrophobic
pipe with M different no-shear stripes in general position is found for M = 1, 2, 3. The
method, which is based on use of so-called prime functions, is such that with these cases
covered, generalisation to any M � 1 follows in a straightforward manner. It is shown how
any one of these solutions can be generalised to solve for flow along superhydrophobic
pipes where that pattern of M menisci is repeated N � 1 times around the boundary in
a rotational symmetric arrangement. The work provides an extension of the canonical
pipe flow solution for an N -fold rotationally symmetric pattern of no-shear stripes due
to Philip (Angew. Math. Phys., vol. 23, 1972, pp. 353–372). The novel solution method,
and the solutions that it produces, have significance for a wide range of mixed boundary
value problems involving Poisson’s equation arising in other applications.

Key words: drag reduction, pipe flow, microfluidics

1. Introduction
The study of superhydrophobic surfaces (SHS) has attracted considerable interest in recent
years, as they promise reduced resistance for liquid motion along surfaces, a feature of
great importance for many engineering applications (Rothstein 2010; Wang et al. 2020;
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Liravi et al. 2020). The effect and functionality of SHS are decisively based on their
ability to entrap air in surface roughness, and to maintain the so-called Cassie state (Cassie
& Baxter 1944) where almost shear-free fluid–fluid interfaces displace parts of the no-
slip solid wall. This phenomenon allows fluids to partially slip along these heterogeneous
surfaces, while simultaneously reducing the wall surface fraction, the net effect being
a reduction in viscous drag on a pressure-driven fluid. However, this desired effect is
crucially dependent on the mobility of the interface. Studies have shown that the presence
and deposition of surfactants and/or other impurities may hinder this very mobility,
potentially leading to reduced slip or full loss of functionality (Song et al. 2018).

Nevertheless, the shear-free idealisation has by now established its place as an important
baseline case: the theoretical analysis of SHS is typically based on the assumption that the
shear stress tangential to the fluid–fluid interface, and the flow velocity normal to it, both
vanish. This means that these shear-free interfaces do not pose any resistance for a liquid
moving past them (Davis & Lauga 2009; Schönecker & Hardt 2015; Schnitzer & Yariv
2019). Analytical modelling of SHS is therefore primarily concerned with solving no-
slip/no-shear mixed-type boundary value problems in various geometrical configurations.
An early and important contribution to the theoretical understanding of such surfaces was
made by Philip (1972), who derived several analytical solutions subject to these mixed
boundary conditions using complex analysis techniques. Although originally intended
to describe flow through and along porous media, these analytical models have become
fundamental for SHS research. They cover a range of different cases, including flow along
a single plate or between two infinite plates, and axial flow in circular pipes, each featuring
either a single or periodic array of no-shear regions running longitudinally or transverse
to the flow direction on otherwise no-slip solid walls.

Subsequent research has significantly expanded upon Philip’s work. Lauga & Stone
(2003) were the first to recognise the relevance of his solutions for modelling SHS,
presenting them in a more tangible notation. They also derived an analytical model for
a flow through SHS pipes containing transverse rather than longitudinal shear-free stripes,
and have derived the effective slip length for both kinds of slippery pipes. The latter is a
critical parameter for characterising and quantifying the overall degree of slip, achieved
by averaging and uniformly smearing out the sum of all locally induced slippage onto the
respective surface. The result is an intrinsic material property dependent on the functional
morphology, which can be used as a boundary condition in numerical simulations and
has therefore been widely studied to optimise SHS in practical applications (Lauga &
Stone 2003; Tsai et al. 2009; Asmolov, Nizkaya & Vinogradova 2018). Further extensions
include the study of protruded fluid–fluid interfaces in planar channels (Sbragaglia
& Prosperetti 2007; Crowdy 2010, 2016, 2017), partially invaded cavities (Crowdy
2021a), superhydrophobic annular pipes (Crowdy 2021b), and the incorporation of non-
zero interface shear stress (Belyaev & Vinogradova 2010; Schönecker & Hardt 2013;
Schönecker et al. 2014; Zimmermann & Schönecker 2024), which additionally allows for
the analytical modelling of liquid-infused surfaces.

Another extension of Philip’s work, one that is closed related to the aims of the present
paper, was made by Crowdy (2011). While Philip (1972) gave analytical solutions for both
longitudinal and transverse shear flow over a periodic array of flat no-shear menisci in an
otherwise no-slip surface, Crowdy (2011) generalised those solutions to flows over a wider
class of periodic surfaces having more than one no-shear meniscus per period, with those
menisci in each period window having general positioning. For the case of unbounded
shear flow, the analysis for both longitudinal and transverse flow can be reduced to the
search for an analytic function that Crowdy (2011) showed could be found by considering
special classes of conformal slit mappings. Those slit mappings can, in turn, be expressed
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in terms of transcendental functions called prime functions appropriate to the relevant
pre-image domain (Crowdy 2011, 2020). This conformal slit mapping approach, differing
from Philip’s, which relied on Schwarz–Christoffel mapping theory, retrieves Philip’s
solutions as a special case. The parametric representation of the solutions as presented
by Crowdy (2011) also has the mathematical advantage that square-root branch points
associated with the transition points from no-slip to no-shear do not appear explicitly,
making their numerical evaluation easier.

The aim of the present paper is similar to that of Crowdy (2011): to take another
solution found by Philip (1972), namely, longitudinal pressure-driven flow along a
superhydrophobic pipe, and generalise it to a more diverse class of no-shear surface
patterning. Of interest here is Philip’s analytical solution for an axial pressure-driven
flow, having the form u = (0, 0, wphili p) in a Cartesian (x, y, Z) plane, through a
superhydrophobic pipe with N no-shear stripes on its boundary, which are restricted to
be rotationally symmetric and of equal individual circumferential length 2Φ (assuming
a unit radius pipe). Such SHS pipes are of great practical importance for reducing drag
in various fluidic systems. However, the manufacturing process is often stochastic, i.e.
the finished surfaces are geometrically heterogeneous. By generalising the symmetric
approach provided by Philip, an important step is taken towards the exploration of real
SHS configurations. Philip found the axial velocity field solution as an explicit function of
the complex variable z = x + iy:

wphili p =
(

1 − |z|2
4

+ 1
N

Im
[

cos−1
(

cos(κ(z))

cos (Φ/2)

)
− κ(z)

])
(1.1)

and

κ(z) = − iN
2

log z. (1.2)

The complex variable z is normalised with respect to the outer pipe radius R0 and the
velocity w by s R2

0/μ, where s is the negative pressure gradient, and μ is the dynamic fluid
viscosity. The corresponding effective slip length λ(P)

eff based on Philip’s model (Lauga &
Stone 2003) is given by

λ
(P)
eff = 2

N
log

(
sec

(
NΦ

2

))
. (1.3)

In any cross-section of the pipe at a fixed value of Z , the no-shear stripes along the
length of the pipe resemble a two-dimensional ‘meniscus’, so it is convenient to use that
designation throughout.

In the present paper, this solution of Philip (1972) is generalised to allow for a much
more diverse array of no-shear patterns around the circular pipe boundary, including
cases with unequally sized menisci and no rotational symmetry at all. Remarkably, these
generalised solutions can also be found in analytical form, a result of some theoretical
significance. The results here are the radial geometry (or pipe flow) analogue of the
generalisation of Philip’s solutions for shear-driven flow over flat SHS presented in
Crowdy (2011). Just as in that study, a key role is played by the prime function machinery
(Crowdy et al. 2016; Crowdy 2020). Moreover, the solutions are given in a parametric form
that shares the benefit of the shear-flow solutions of Crowdy (2011) in encoding the square-
root branch points at the no-slip/no-shear transition points in an implicit way that obviates
the need for careful branch-cut choices in the numerical evaluation of the solutions.

Philip (1972) himself made extensive use of conformal mapping in solving many of
the problems in his paper; this is a natural choice for certain of the problems considered
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by him, for example, for simple longitudinal shear over a periodic array of flat no-shear
‘slots’ in an otherwise no-slip surface, a problem generalised by Crowdy (2011). The
boundary value problem in that case involves Laplace’s equation and enjoys the property
of conformal invariance. However, a complication associated with the pressure-driven pipe
flow considered by Philip (1972) – the generalisation of which is the topic of the present
paper – is that it is governed by a special form of Poisson’s equation – that is, Laplace’s
equation with a non-zero constant forcing function – and, as a result, is not conformally
invariant. Nevertheless, as will be shown here, a wide class of generalised solutions to
this boundary value problem for Poisson’s equation can be found. These solutions are
important not just because they solve the problems considered here; remarkably, the same
boundary value problems recur in a large number of physical problems, rendering the new
solutions here of broad significance in the physical sciences (Bazant 2016). This matter is
discussed again later.

The outline of the paper is as follows. After a description of the relevant mixed
boundary value problem given in § 2, the single meniscus problem solved by Philip (1972)
is rederived in § 3 using a novel geometrical approach based on prime functions and
conformal slit mappings akin to that used previously by Crowdy (2011) to derive some
of Philip’s other solutions for shear flow over periodic SHS. The effective slip length is
defined in § 4, and a formula for it, also in terms of prime functions, is established. Sections
5 and 6 show how the mathematical approach expounded in § 3 generalises in a natural way
to the case of two (M = 2) and three (M = 3) no-shear menisci, respectively. Illustrative
calculations are included in both cases. Section 7 shows how a simple additional conformal
map can be used to take the solution for any pattern of M � 1 no-shear menisci to produce
a generalised solution for flow in another pipe where (a rescaled version of) that no-shear
pattern appears in each 2π/N sector of an N -fold rotationally symmetric arrangement for
any integer N � 1. Finally, § 8 features a summary and discussion of the results, including
some remarks on the broader physical significance of the mathematical results.

2. A boundary value problem of mixed type
In a Cartesian (x, y, Z) plane, let u = (0, 0, w(x, y)) be the steady, fully developed,
pressure-driven flow in the axial Z direction of a fluid, specifically a liquid rather than
a gas, of viscosity μ, through a circular pipe of radius R0 having a cross-section in the
(x, y) plane, denoted by Dz . The pipe is superhydrophobic and is assumed to have M � 1
no-shear menisci separated by solid wall portions; later, superhydrophobic pipes with an
N -fold rotationally symmetric array of menisci with M menisci per 2π/N sector will also
be considered. It is assumed that all menisci match the curvature of the pipe wall. However,
depending on external influences, there may be additional interface deflection, in which
case the present interface shape should be understood as a first approximation; this matter
is discussed again in § 8. For the analysis that follows, no potential influence of surfactant
depositions at the interface is considered. The axial, or longitudinal, velocity w(x, y) in
such a pipe is governed by

∇2w = −s R2
0

μ
= −1, ∇2 = ∂

∂x2 + ∂

∂y2 , (2.1)

where the flow is driven by a constant pressure gradient s along the Z -axis in the domain
0 � |(x, y)| < 1. Lengths are normalised with respect to the outer-wall radius R0, and the
velocity with respect to s R2

0/μ. At the pipe boundary, the Poisson problem (2.1) has a
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mixture of two types of boundary conditions: either a no-slip condition on any portion of
solid wall, or a no-shear condition on any meniscus. These can be expressed as

w = 0 on |(x, y)| = 1 (no slip parts), (2.2)

∂w

∂n
= 0 on |(x, y)| = 1 (no shear parts), (2.3)

where ∂/∂n denotes the derivative in the normal direction, pointing into the viscous fluid,
at the circular pipe boundary.

It is expedient to express this mixed boundary value problem in terms of the complex
variable z = x + iy. A flow governed by the linear partial differential equation (2.1) subject
to (2.2) and (2.3) can be written as the sum of a particular solution wps and a harmonic
part wh , i.e.

w = wps + wh, (2.4)

with

wps = 1 − |z|2
4

, wh = Re [h(z)] , (2.5)

where non-dimensionalised Poiseuille flow is chosen as the particular solution wps , and
Re[·] denotes the real part of the quantity in square brackets. The harmonic part wh , which
is the real part of an analytic function h(z), a complex potential, serves as a correction
to the Poiseuille flow that takes into account the influence of the shear-free menisci on
the velocity field. In this way, the problem is reduced to finding a complex potential h(z),
analytic in Dz , whose real part is the required wh .

The challenge then is to determine h(z). To do so, it is necessary to express the mixed-
type boundary conditions (2.2) and (2.3) in terms of it. By the choice of wps , the no-slip
condition (2.2) gives

Re [h(z)] = 0 on |z| = 1 (no slip parts). (2.6)

The no-shear condition (2.3) on |z| = 1 can be written as

∇∇∇w · n = Re
[

2
∂w

∂z
(−z)

]
= 0, (2.7)

where use has been made of the fact that if the complex analogues of two vectors a =
(ax , ay) and b = (bx , by) are a = ax + iay and b = bx + iby , then the analogue of the dot
product a · b is Re[ab], where ā is the complex conjugate of a. Note that the complex form
of ∇∇∇w is 2 ∂w/∂z, and the complex form of the normal vector, pointing into the pipe, is
−z. On use of (2.4), condition (2.7) is equivalent to

Re
[
zh′(z)

] = 1
2

on |z| = 1 (no shear parts). (2.8)

An important observation is that by the chain rule, and using the parametrisation z = eiθ

for |z| = 1,
∂

∂θ
= iz

∂

∂z
, (2.9)

so that (2.8) can alternatively be written as

Re
[
−i

∂

∂θ
h(z)

]
= Im

[
∂

∂θ
h(z)

]
= 1

2
on |z| = 1 (no shear parts). (2.10)
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α = ir

ζ plane
1

1

Meniscus 1

χ plane

z plane
Dζ
+

1

χ = R(ζ )

z = Z (ζ )
Φ

Figure 1. Conformal slit mappings Z(ζ ) and R(ζ ) from an upper half unit disc {D+
ζ : |ζ | < 1, Im[ζ ]� 0} to

a bounded circular slit domain (in a complex z plane) and a bounded radial slit domain (in a complex χ plane).
Corresponding images under the respective maps are colour-coded. The point ζ = α is the pre-image of the
origin in both cases.

This can be integrated with respect to θ on the j th no-shear portion to give

Im[h(z)] = θ

2
+ c j , (2.11)

where c j is a constant of integration. Without loss of generality, one of these constants can
be set equal to zero.

In summary, the mathematical problem in the case of M no-shear menisci is to find a
function h(z) analytic in |z| < 1 satisfying the mixed boundary conditions{

Re[h(z)] = 0 on solid portions of |z| = 1,

Im[h(z)] = θ/2 + c j on meniscus j of |z| = 1,
(2.12)

where z = eiθ for some set of real constants {c j : j = 1, . . . , M}.

3. A new derivation of the Philip (1972) single slot solution
It is useful to first retrieve Philip’s solution (1.1)–(1.2) with M = 1 in a novel manner that
differs from the original derivation in Philip (1972). It is then shown in §§ 5 and 6 how
the analysis of this section generalises, in a straightforward way, to the more general case
of M > 1 no-shear slots in general position on the pipe wall; this generalisation makes use
of the prime function and conformal slit mapping machinery developed in Crowdy et al.
(2016) and Crowdy (2020).

The problem to be solved is the situation where the pipe wall has a single shear-free
meniscus occupying the sector

− Φ < arg[z] < Φ (3.1)

for some Φ ∈ [0, π). The first step is to introduce a conformal mapping from the upper
half unit ζ disc, denoted by D+

ζ = {ζ : |ζ | < 1, Im[ζ ] > 0} to the fluid inside the circular
pipe; figure 1 shows a schematic. It is given by
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z = Z(ζ ) ≡ −ω(ζ, α) ω(ζ, 1/α)

ω(ζ, α) ω(ζ, 1/α)
, ω(ζ, α) = ζ − α, α = ir, (3.2)

for some 0 � r < 1. Using this definition, it is easy to check that the upper half unit
semicircle, denoted by C+

0 , is transplanted to a portion of the circle |z| = 1, while the
real diameter −1 < ζ < 1 is transplanted to the remainder of this circle. It is also easily
verified that

Z(0) = −1, Z(1) =
(

1 − α

1 + α

)2

, Z(i) = 1. (3.3)

The semicircle C+
0 can be identified with the pre-image of the meniscus, and the real

diameter −1 < ζ < 1 is the pre-image of the no-slip portion of the pipe wall. The centre
of the meniscus at z = 1 is ζ = i. The pre-image of the edge of the meniscus in the lower
half-plane, i.e. at z = e−iΦ , is ζ = 1, meaning that

Z(1) =
(

1 − α

1 + α

)2

=
(

1 − ir
1 + ir

)2

= e−iΦ, or
1 − ir
1 + ir

= e−iΦ/2. (3.4)

Simple manipulation of this relation and use of familiar trigonometric identities yields

r = tan(Φ/4). (3.5)

The simple monomial ω(ζ, α) = ζ − α can be identified as the prime function for the
unit disc, while the form of the mapping (3.2) is an example of a bounded circular slit
mapping. These concepts and their generalisations are discussed in detail by Crowdy
(2020).

It is useful now to write down another conformal slit mapping to a complex χ plane,
called a radial slit mapping (Crowdy 2020), having a form very similar to (3.2) but
defined by

χ =R(ζ ) ≡ −ω(ζ, α) ω(ζ, 1/α)

ω(ζ, α) ω(ζ, 1/α)
. (3.6)

Notice that while the first terms in the numerators and denominators of (3.2) and (3.6)
are the same, the second terms have been swapped. The image of D+

ζ under this mapping
is the interior of the circular disc |χ | < 1, with C+

0 being transplanted to a radial slit on
the positive real χ -axis, and the real diameter −1 < ζ < 1 being transplanted to the entire
circle |χ | = 1. It is easy to check, using (3.6), that

R(1) = 1, R(−1) = 1. (3.7)

Given explicit knowledge of the conformal mapping Z(ζ ), the composed function

H(ζ ) ≡ h(Z(ζ )) (3.8)

can be introduced, which, by virtue of the respective analyticity properties of h(z) and
Z(ζ ), is analytic in D+

ζ . In view of (2.12), on the boundary of D+
ζ it must satisfy{

Re[H(ζ )] = 0 on −1 < ζ < 1,

Im[H(ζ )] = θ/2 on C+
0 ,

(3.9)

where z = Z(ζ ) = eiθ , and where the single constant of integration in this M = 1 problem
has been set to zero. This can also be written as{

Re[H(ζ )] = 0 on −1 < ζ < 1,

Im[H(ζ )] = − i log Z(ζ )

2
on C+

0 .
(3.10)
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It will now be argued that the expression

H(ζ ) = 1
2

(log Z(ζ ) − log R(ζ )) , (3.11)

involving both the bounded circular slit mapping Z(ζ ) and the radial slit mapping R(ζ ), is
the required solution for H(ζ ). Both mappings Z(ζ ) and R(ζ ) have simple zeros at ζ = α

in D+
ζ , but the resulting logarithmic singularities cancel out in (3.11), meaning that the

function H(ζ ) in (3.11) is analytic in D+
ζ , as required. Since the real diameter −1 < ζ < 1

is transplanted to a unit circle (in the respective target plane) by both slit mappings Z(ζ )

and R(ζ ), it is easy to check that Re[H(ζ )] = 0 on this real diameter; thus (3.11) satisfies
the first of the boundary conditions in (3.10). And since C+

0 is transplanted by R(ζ ) to a
radial slit on the positive real χ -axis, so that arg[R(ζ )] = 0 for ζ ∈ C+

0 , it is just as easy to
verify that (3.11) also satisfies the second of the boundary conditions in (3.10).

Expression (3.11) is a convenient parametric form of Philip’s single slot solution (Philip
1972). It is shown in Appendix A how to retrieve (1.1)–(1.2) for N = 1 from (3.11). A
significant advantage of the parametric form (3.11) is that the square-root branch points
in h(z) at the edge of the no-shear slots do not appear explicitly, and are accounted for
implicitly by use of the parametric variable ζ .

4. Effective slip length
It is now possible to calculate the so-called effective slip length λeff representing the
averaged influence of the no-shear boundary segments on the axial velocity field, providing
a tool to quantify the degree to which given SHS diverge from being a no-slip wall. It
involves equating the total volume flux Q caused by a given pressure gradient s to that of a
suitable comparison flow (0, 0, wns(x, y)) driven by the same pressure gradient, contain-
ing a purely no-slip wall at |z| = 1. The effective slip length is the value of λeff for which

Qns = Q(λeff). (4.1)

To evaluate this quantity, consider first a general axisymmetric pipe flow solution of

∇∇∇2w∗ = −1 (4.2)

subject to

w∗ = λeff
∂w∗

∂n
. (4.3)

This problem has the solution

w∗ = 1 − |z|2
4

+ λeff

2
, (4.4)

describing an axisymmetric pressure-driven pipe flow with constant slip λeff at the outer
wall, which can be interpreted as the effective slip length. By integrating (4.4) over the
pipe cross-section, the associated volume flux is found to be

Q = π

8
+ π

2
λeff. (4.5)

An explicit expression for the effective slip length is then found by rearranging the ratio
Q/Qns such that

λeff = 1
4

(
Q

Qns
− 1

)
, (4.6)
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where Qns denotes the reference no-slip flow value. It is natural to take the comparison
flow to be Poiseuille flow through the pipe for which Qns = π/8.

It remains to find the mass flux Q associated with the solution of the mixed boundary
value problems solved earlier. In view of the decomposition (2.4), it is natural to write

Q = Qns + Qh, (4.7)

where

Qh =
∫∫

Dz

wh dA =
∫∫

Dz

Re [h(z)] dA (4.8)

so that the effective slip length is given by

λeff = 1
4

(
Qns + Qh

Qns
− 1

)
= 1

4
Qh

Qns
= 2

π
Qh . (4.9)

Let ∂ Dz denote the pipe boundary. The complex form of the Stokes theorem implies

Qh = Re
[∫

Dz

h(z) dA

]
= Re

[
1
2i

∮
∂ Dz

h(z) z dz

]
= Re

[
1
2i

∮
∂ Dz

h(z)
dz

z

]
, (4.10)

where the fact that z = 1/z on ∂ Dz has been used. But h(z) is analytic in Dz , so by the
residue theorem,

Qh = Re
[

2πi × h(0)

2i

]
= π Re[h(0)]. (4.11)

It follows that

Qh = π log
∣∣∣∣ω(α, 1/α)

ω(α, 1/α)

∣∣∣∣ , (4.12)

where (3.11), (3.2) and (3.6) have been used. It follows from (4.9) and (4.12) that

λeff = 2
π

Qh = 2 log
∣∣∣∣ω(α, 1/α)

ω(α, 1/α)

∣∣∣∣ . (4.13)

This expression for the effective slip length in terms of the prime function of the pre-
image domain, in this case the unit ζ disc, is an important new result of this paper. Exactly
the same formula will be found in the following sections to give the effective slip length
for a wide range of superhydrophobic pipes with more general no-shear patterns, the only
modification being that the appropriate prime function ω(·, ·) relevant to each pipe must
be used in (4.13).

On use of the definition (3.2) of the prime function for the unit disc, it follows from
(4.13) that

λeff = 2 log
∣∣∣∣α − 1/α

α − 1/α

∣∣∣∣ = 2 log
∣∣∣∣1 + r2

1 − r2

∣∣∣∣ = 2 log
(

sec
(

Φ

2

))
, (4.14)

where (3.5) and some trigonometric double-angle formulae have been used. In this way,
Philip’s slip length result (1.3) for a single slot is retrieved. As will be seen shortly, other
choices of prime function used in (4.13) will give different results.

5. Exact solution for M = 2 unequal menisci
Consider a superhydrophobic pipe, with cross-section again denoted by Dz , now having
M = 2 generally unequal menisci separated by solid portions with total solid fraction equal
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to φ, and each having equal circumferential length. The latter restriction is not necessary,
and is easily lifted, but it makes presentation of the results clearer. According to the
analysis in § 2, the problem reduces to finding a function h(z), analytic inside Dz and
satisfying the mixed boundary conditions⎧⎨

⎩
Re[h(z)] = 0 on solid portions of |z| = 1,

Im[h(z)] = θ/2 on meniscus 1 of |z| = 1,

Im[h(z)] = θ/2 + c2 on meniscus 2 of |z| = 1,

(5.1)

for some real constant c2.
In view of the new derivation of Philip’s single meniscus solution in § 3, and motivated

by the use of conformal slit mappings in solving mixed boundary value problems of this
kind as originally proposed by Crowdy (2011), it is now posed that a parametric solution
for h(z) satisfying the boundary conditions (2.12) is given by

z = Z(ζ ), h = H(ζ ) = 1
2 (log Z(ζ ) − log R(ζ )) , (5.2)

where the parametric complex variable ζ takes values in the upper half-annulus {D+
ζ : ρ <

|ζ | < 1, Im[ζ ]� 0}, and

Z(ζ ) ≡ −ω(ζ, α) ω(ζ, 1/α)

ω(ζ, α) ω(ζ, 1/α)
, R(ζ ) ≡ −ω(ζ, α) ω(ζ, 1/α)

ω(ζ, α) ω(ζ, 1/α)
, (5.3)

for

ω(ζ, α) = − α

C2 P(ζ/α, ρ), C =
∞∏

n=1

(
1 − ρ2n

)
, (5.4)

with α = ir for ρ < r < 1, and where

P(ζ, ρ) = (1 − ζ ) P̂(ζ, ρ), P̂(ζ, ρ) ≡
∞∏

n=1

(
1 − ρ2nζ

) (
1 − ρ2n/ζ

)
. (5.5)

In (5.2), the principal branch of the complex logarithm is assumed with log X = log |X | +
i arg[X ], where −π < arg[X ]�π so that the logarithm of a negative real quantity has
imaginary part iπ.

Functionally, these formulae look identical to those in § 3, but there is a small but
significant difference: the function ω(ζ, α) is no longer defined by ω(ζ, α) = ζ − α, which
is the prime function associated with the unit ζ disc. Instead, ω(ζ, α) now denotes the
prime function for the concentric annulus {Dζ : ρ < |ζ | < 1} (see chapters 5 and 14 of
Crowdy 2020), although its dependence on the parameter ρ is suppressed in the notation.
An important feature is that the prime function ω(ζ, α) has a simple zero when ζ = α. On
substitution of (5.4) into (5.3), it is also possible to write

Z(ζ ) ≡ − P(ζ/α, ρ) P(ζα, ρ)

P(ζ/α, ρ) P(ζα, ρ)
, R(ζ ) ≡ − P(ζ/α, ρ) P(ζα, ρ)

P(ζ/α, ρ) P(ζα, ρ)
, (5.6)

which highlights the dependence of Z(ζ ) and R(ζ ) on ρ. The formulae (5.6) will be used
in what follows. It is a straightforward exercise to show, directly from the infinite product
representation (5.5), that P(ζ, ρ) satisfies the two functional relations

P(1/ζ, ρ) = −ζ−1 P(ζ, ρ), P(ρ2ζ, ρ) = −ζ−1 P(ζ, ρ). (5.7)

The two functions (5.6) built using the prime function are, respectively, further examples
of a circular slit map and a radial slit map as described in Crowdy & Marshall (2006)
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ρ

1

1

Meniscus 1

Meniscus 2

πφ

πφ

ζ  plane

χ plane

z plane

C1
+

C0
+Φ

Ψ

χ = R(ζ )

z = Z (ζ )

α = ir

Dζ
+

Figure 2. Conformal slit mappings Z(ζ ) and R(ζ ) from an upper half-annulus {D+
ζ : ρ < |ζ | < 1, Im[ζ ]� 0}

to a bounded circular slit domain (in a complex z plane) and a bounded radial slit domain (in a complex χ

plane). Corresponding images under the respective maps are colour-coded. The point ζ = α is the pre-image of
the origin in both the z and χ planes.

and Crowdy (2011, 2020). The difference compared with those already presented in §
3 is that there are now M = 2 pre-image circles C+

0 and C+
1 , and consequently, two

circular arc slit images and two radial slit images; in § 3, C+
1 was clearly absent. The

properties (5.7) can be used to confirm that the colour-coded images of the boundary
portions of the upper half-annulus D+

ζ under these two mappings are as shown in figure 2.
In particular, the upper half unit circle, denoted by C+

0 , is taken to be the pre-image of
the blue meniscus centred at z = 1, and the upper half-circle |ζ | = ρ, denoted by C+

1 ,
is the pre-image of the red meniscus centred at z = −1. The two intervals on the real
axis, −1 < ζ < −ρ and ρ < ζ < 1, are taken to be the pre-images of the two no-slip
boundary portions of the pipe. From these geometrical properties, it can be verified, using
properties of the complex logarithm, that h(z) as given in (5.2) satisfies all the boundary
conditions (2.12).

The mapping function Z(ζ ) satisfies the functional identity

Z(−ζ ) = − P(−ζ/α, ρ) P(−ζα, ρ)

P(−ζ/α, ρ) P(−ζα, ρ)
= − P(ζ /α, ρ) P(ζα, ρ)

P(ζ /α, ρ) P(ζα, ρ)
= Z(ζ ), (5.8)

which reveals that the image of any point ζ and that of −ζ (the reflection of ζ in the
imaginary ζ -axis) are complex conjugates of each other in the z plane. This symmetry
has two consequences. First, since C+

0 and C+
1 are taken to be the pre-images of the two

menisci, the pre-images of their centres are at ζ = i, iρ. Indeed, it can be verified that

Z(i) = 1, Z(iρ) = −1, (5.9)

and the two menisci are reflectionally symmetric about the x-axis. The symmetry (5.8) also
confirms that the lengths of the images of the two segments of the real axis −1 < ζ < −ρ

and ρ < ζ < 1, which are taken to be the pre-images of the two solid portions, must have
the same circumferential lengths since the image of one is the reflection about the x-axis
of the other.
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It is useful to remark here that to generalise the analysis to no-slip boundary portions of
different lengths, it is simply necessary to allow the parameter α to move off the imaginary
ζ -axis but to remain in the upper half-annulus.

The conformal mapping in (5.6) depends on two unknown real parameters: r and ρ.
For given values of the angles Φ and Ψ indicated in figure 2, the values of these two
parameters are found by solving the equations

Z(−1) = eiΦ, Z(−ρ) = eiΨ , Ψ = Φ + πφ, (5.10)

where φ is the solid fraction, so that πφ is the circumferential length of one of the solid
portions. This is readily done using a nonlinear solver such as Newton’s method.

Concerning the radial slit mapping, the two functional relations (5.7) can be used to
show that the images of both C+

0 and C+
1 have constant argument. Indeed, it can be verified

using (5.6) that

R(i) =
(

P(+r, ρ)

P(−r, ρ)

)2

, R(iρ) = −
(

P(ρr, ρ)

P(−ρr, ρ)

)2

, (5.11)

revealing that the images under the radial slit mapping, in a complex χ plane say, of the
points ζ = i, iρ (corresponding to the centres of menisci 1 and 2), are, respectively, on the
positive and negative real χ -axis; indeed, these correspond to the ends, inside the unit χ

disc, of the blue and red radial slits shown in figure 2.
With these geometrical properties of the two conformal slit mappings Z(ζ ) and R(ζ )

established, it is easy to verify, using the properties of the principal branch of the complex
logarithm, that they satisfy⎧⎨

⎩
Im[log Z(ζ )] = θ on meniscus 1,

Re[log Z(ζ )] = 0 on solid portions,
Im[log Z(ζ )] = θ on meniscus 2,

(5.12)

and ⎧⎨
⎩

Im[− log R(ζ )] = 0 on meniscus 1,

Re[− log R(ζ )] = 0 on solid portions,
Im[− log R(ζ )] = −π on meniscus 2.

(5.13)

From these observations, the form of the required solution (5.2) satisfying (5.1) is now
clear. Arguments the same as in § 4 lead to the deduction that formula (4.13) continues to
give the relevant effective slip length, but now with ω representing the appropriate prime
function. In this case, it can be rewritten as

λeff = 2 log
∣∣∣∣ P(−r2, ρ)

P(+r2, ρ)

∣∣∣∣ . (5.14)

It is worth mentioning that this closely resembles a slip length formula for shear flow over
SHS with periodic arrays of no-shear slots as found by Crowdy (2011).

The problem of a single meniscus, the case M = 1, corresponds to the ρ → 0 limit of
the above analysis. The pre-image ζ annulus reduces in this limit to the unit ζ disc. And
from (5.4), as ρ → 0, the prime function for the concentric annulus ρ < |ζ | < 1 reduces to
the prime function for the unit disc (Crowdy 2020), namely,

ω(ζ, α) = ζ − α, (5.15)

while P(ζ, ρ) → (1 − ζ ) so that (5.14) retrieves (4.14).
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Figure 3. Graph of λeff as a function of Φ for M = 2 no-shear menisci and two equal no-slip zones with solid
fraction φ = 1/2. The two open circles, at Φ = 0, π/2, show Philip’s result (1.3) for N = 1 and φ = 1/2 since
the configuration reduces to Philip’s single meniscus solution retrieved in § 3. The cross, at Φ = π/4, shows
Philip’s result (1.3) for N = 2 and φ = 1/2 since the no-shear pattern has two fold rotational symmetry in this
case. The new solutions interpolate between these known special cases. The triangle, filled circle and open
square correspond to the contour plots in figure 4.

5.1. Illustrative calculations
Suppose that the solid fraction is chosen to be φ = 1/2 so that the circumferential length of
each solid portion is 2πφ/2 = π/2; figure 3 shows graphs of λeff, calculated using (5.14)
as a function of Φ. Thus Φ is in the range 0 �Φ �π/2: as Φ → 0, meniscus 1 (shown
in blue in figure 2) disappears, while as Φ → π/2, meniscus 2 (shown in red in figure 2)
disappears. These graphs are computed by first solving (5.10) for r and ρ given a value of
Φ (and φ = 1/2), and using these values to find λeff from (5.14).

Several checks are available in this case. When Φ = 0, π/2, the two no-slip zones
merge, and one of the menisci disappears, leaving a pipe with a single meniscus and no-
slip fraction equal to φ = 1/2. The results of (5.14) should therefore coincide with (1.3) for
N = 1 and φ = 1/2, as corroborated by open circles in figure 3. When Φ = π/4, the two
no-slip zones have the same size as the two menisci, and the patterning on the pipe has
symmetries about both the x- and y-axes (and a four fold rotational symmetry). The value
of the effective slip length should then coincide with that given by (1.3) when N = 2 and
φ = 1/2, as corroborated by a cross in figure 3. The new analytical solution (5.2), for two
non-equal menisci generally devoid of any rotational symmetry, can therefore be viewed
as providing a continuous interpolating set between the rotationally symmetric N = 1 and
N = 2 solutions, both with solid fraction φ = 1/2.

Figure 4 shows contour lines of constant axial velocity for three different geometric
configurations of superhydrophobic pipes, with M = 2 unequal shear-free menisci, for
Φ = 0.5, 1, 1.3. The slip lengths associated with these SHS pipes are indicated in figure 3
by a triangle, a filled circle and an open square, respectively.

6. Superhydrophobic pipe with M > 2 menisci
In the M = 2 analysis in § 5, the central role played by the prime function defined in
(5.4), and associated with the concentric annulus relevant to that example, is apparent.
The concentric annulus is an example of a doubly connected circular domain, a domain
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(a) (b) (c)

Figure 4. Constant axial velocity contours for superhydrophobic pipes with M = 2 unequal shear-free
menisci, assuming φ = 1/2: (a) Φ = 1/2, (b) Φ = 1, (c) Φ = 1.3. The parameters r, ρ are found by solving

(5.10).

δδ

qq
1

1

1

Meniscus 3

Meniscus 2

Meniscus 1

2πφ/3

2πφ/3

2πφ/3

α = ir

z plane

Φ

χ plane

C1
+

χ = R(ζ )

z = Z (ζ )

C2
+

C0
+

Dζ
+

ζ  plane

Figure 5. Conformal slit mappings Z(ζ ) and R(ζ ) as given by (6.3) to a bounded circular slit domain (in a
complex z plane) and a bounded radial slit domain (in a complex χ plane). The image in the z plane is the
interior of a circular superhydrophobic pipe with M = 3 menisci punctuated by three solid portions of equal
circumferential length. Corresponding images under the respective maps are colour-coded. The point ζ = α is
the pre-image of the origin in both the z and χ planes.

whose boundaries are a union of circles. Prime functions can naturally be associated
with any multiply connected circular domain, a mathematical fact whose theory has
been expounded in detail in a recent monograph (Crowdy 2020). Equipped with this
mathematical machinery, the generalisation of the M = 2 solution to any value of
M > 2 is straightforward, a circumstance underscoring the theoretical importance of prime
functions in applied mathematics (Crowdy 2020).

Suppose now that a superhydrophobic pipe, with cross-section denoted again by Dz , has
M = 3 menisci in general positions around the boundary, punctuated by M no-slip zones.
Figure 5 shows such a superhydrophobic pipe with total solid fraction equal to φ, and each
having equal circumferential length; again, the latter restriction is not necessary and can
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be lifted. The solution construction for this M = 3 case will now be set out, after which
generalisation to any M � 1 should be obvious.

According to the analysis in § 2, the problem reduces to finding a function h(z), analytic
inside Dz and satisfying the mixed boundary conditions⎧⎪⎪⎨

⎪⎪⎩
Re[h(z)] = 0 on solid portions of |z| = 1,

Im[h(z)] = θ/2 on meniscus 1 of |z| = 1,

Im[h(z)] = θ/2 + c2 on meniscus 2 of |z| = 1,

Im[h(z)] = θ/2 + c3 on meniscus 3 of |z| = 1.

(6.1)

The parametric solution for h(z) using generalised conformal slit mappings is
immediate given the prime function framework (Crowdy 2020). It is

z = Z(ζ ), h(z) = H(ζ ) = 1
2 (log Z(ζ ) − log R(ζ )) , (6.2)

where the parametric complex variable ζ takes values in the upper half circular domain
D+

ζ also shown in figure 5, and

Z(ζ ) ≡ −ω(ζ, α) ω(ζ, 1/α)

ω(ζ, α) ω(ζ, 1/α)
, R(ζ ) ≡ −ω(ζ, α) ω(ζ, 1/α)

ω(ζ, α) ω(ζ, 1/α)
, (6.3)

with α = ir for 0 < r < 1. The formulae (6.2) and (6.3) are exactly the same as in §§ 3
and 5, with the only difference being that the function ω(·, ·) must now be taken to be the
prime function associated with a triply connected circular domain Dζ comprising the unit
disc |ζ |� 1 with two circular discs |ζ + δ| < q and |ζ − δ| < q excised; the unit circle will
be denoted by C0, and the two smaller circular boundaries |ζ + δ| = q and |ζ − δ| = q by
C1 and C2, respectively. The domain D+

ζ shown in figure 5 is the upper half of this circular
domain Dζ . The general theory of prime functions associated with circular domains such
as Dζ can be found in Crowdy (2020), and Appendix B surveys methods by which these
special functions can be evaluated. An important feature of every prime function ω(ζ, α)

is that it has a simple zero when ζ = α. It has other mathematical properties that ensure
that (6.3) continues to provide the requisite conformal slit mappings with the geometrical
effect shown in figure 5 (Crowdy 2020).

The upper half of the unit circle is denoted again by C+
0 , while the upper halves of

the circles |ζ + δ| = q and |ζ − δ| = q will be denoted by C+
1 and C+

2 , respectively. For
the superhydrophobic pipe problem with three no-shear menisci, the images of the upper
half semicircles C+

0 , C+
1 , C+

2 under the mapping Z(ζ ) are taken to be the three no-shear
menisci in the z plane, with the correspondences colour-coded in figure 5; the no-slip
zones are the images of the three portions of the real ζ -axis, shown in black in figure 5.
The semicircles C+

1 and C+
2 are taken to have the same radius, with centres symmetrically

disposed about the ζ origin, and α has been placed on the imaginary axis inside D+
ζ

because these are necessary (but not sufficient) conditions for the three solid portions to
have the same circumferential length.

In (6.2), the principal branch of the complex logarithm is assumed, and it is easy to show
that the constants c2 and c3 in (6.1) are related to the arguments of the radial slits shown
schematically in figure 5. Formulae, in terms of the prime function, for these constants can
be derived, but they are not important for determining the flow or the effective slip length,
so they are omitted here.

The mapping Z(ζ ) now depends on three real parameters, q, δ and r . Suppose that the
solid fraction is chosen to be φ = 1/2 so that the circumferential length of each no-slip
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Figure 6. Graph of λeff as a function of Φ for M = 3 no-shear menisci and three no-slip zones of fixed length
π/3 so that the solid fraction is φ = 1/2. The cross shows Philip’s result (1.3) with N = 3 and φ = 1/2 when
Φ = π/6, since at this value, the no-shear pattern has three fold rotational symmetry. The open circle shows
the result (1.3) with N = 1 and φ = 1/2 when Φ = π/2, since at this value, the configuration corresponds to
Philip’s single meniscus case studied in § 3. The new solutions interpolate between these known special cases.
The triangle, filled circle and open square correspond to the contour plots in figure 7.

region is 2πφ/3 = π/3. Then q, δ and r must be chosen to satisfy the three conditions

Z(−1) = eiΦ, Z(−δ − q) = ei(Φ+π/3), Z(−δ + q) = e5π i/6, (6.4)

where the angle Φ is shown in figure 5. A nonlinear solver such as Newton’s method
applied to (6.4) leads easily to the requisite values of q, δq, δ and r . It is important to
emphasise that although the same function name ω(·, ·) as in § 5 has been used, it now
refers to a different function that can be readily calculated following the discussion in
Appendix B. More details on how to compute the prime function can be found in Chapter
14 of Crowdy (2020).

The same arguments as used in § 4 lead to the deduction that (4.13) continues to give the
relevant effective slip length, but now with ω representing the appropriate prime function.

6.1. Illustrative calculations
Figure 6 shows graphs of λeff as functions of Φ for three no-slip zones with solid fraction
φ = 1/2 so that the circumferential length of each is π/3. This means that Φ takes values in
the interval 0 �Φ �π/2: when Φ → 0, meniscus 1 (shown in blue in figure 5) disappears,
while menisci 2 and 3 have the same circumferential length equal to π/2; when Φ = π/6,
all three menisci and the three solid portions have equal length π/3, and the pipe has
three fold rotational symmetry; when Φ → π/2, menisci 2 and 3 have disappeared, and
the problem reduces to the M = 1 solution with solid fraction φ = 1/2. For each Φ, the
relevant values of q, δ and are found by solving (6.4) with those values, then used in
(4.13) to compute the effective slip length. As a check on the calculation, the open circle
in figure 6 shows the result (1.3) with and when; in this case, the superhydrophobic pipe
has three fold rotational symmetry, and (1.3) applies.

Figure 7 illustrates the axial velocity contour lines for three distinct SHS pipes,
each featuring M = 3 unequal shear-free menisci at |z| = 1, for Φ = 0.24, 0.9, 1.3. The
associated slip lengths for these SHS pipes are indicated in figure 6 by a triangle, a filled
circle and an open square, respectively.
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(a) (b) (c)

Figure 7. Axial velocity field contour lines for SHS pipes with M = 3 unequal shear-free menisci at |z| = 1
with φ = 1/2: (a) Φ = 2.4, (b) Φ = 0.9, (c) Φ = 1.3. The parameters r, q, δ are found by solving the three
equations in (6.4).

7. The N -fold rotationally symmetric pipes with M menisci per sector
Suppose now that there is an N -fold rotationally symmetric array of menisci with a single
meniscus in each sector of opening angle 2π/N . By the assumed rotational symmetry, it
is enough to consider the problem in the sector

− π

N
< arg[z] <

π

N
, (7.1)

where the meniscus is taken to occupy

− Φ < arg[z] < Φ. (7.2)

Under the conformal mapping

Z = zN , (7.3)

this principal sector in the z plane is transplanted to the entire unit disc in a complex Z
plane with the meniscus now corresponding to the sector

− Φ̃ < arg[z] < Φ̃, Φ̃ = NΦ. (7.4)

Figure 8 shows a schematic in the case N = 4 where there is just a single meniscus in the
principal sector.

The original boundary value problem for w(x, y) is a Poisson problem with mixed
boundary conditions and is not therefore conformally invariant. However, the solution for
the N -fold symmetric generalisation can still be written as (2.4), but with h(z) now sought
as a function of Z , i.e.

h(z) =H(Z). (7.5)

By the rotational symmetry of the original boundary value problem, H(Z) will be analytic
and single-valued in |Z|� 1. On the solid portions, it is still necessary that

Re[H(Z)] = 0. (7.6)

However, on the no-shear portions, the boundary condition differs. This is because, by the
chain rule,

z
∂

∂z
= NZ ∂

∂Z , (7.7)
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1
No-slip

Z plane

Z = z4 

z plane

Meniscus 1Φ

Φ
~

Figure 8. Conformal mapping (7.3) from a 2π/N sector in the z plane to a full circle in a complex Z plane.
The case N = 4 is shown with M = 1 meniscus per 2π/N sector.

so the no-shear condition (2.7) becomes

Re
[
− zz̄

2
+ NZ H′(Z)

]
= 0, or Re

[Z H′(Z)
] = 1

2N
. (7.8)

Letting Z = eiΘ , the chain rule implies

∂

∂Θ
= iZ ∂

∂Z , (7.9)

so that (7.8) can be written as

Im
[

∂

∂Θ
H(Z)

]
= 1

2N
on |Z| = 1 (no shear part). (7.10)

This can be integrated with respect to Θ:

Im [H(Z)] = Θ

2N
on |Z| = 1 (no shear part), (7.11)

where a constant of integration has been set to zero without loss of generality.
This boundary value problem for H as a function of Z can be solved using the

parametric ζ plane because it is now formally the same as the problem already solved
in § 3. Indeed, a parametric representation of the solution is

Z = Z(ζ ), H= 1
2N

(log Z(ζ ) − log R(ζ )) , (7.12)

where Z(ζ ) and R(ζ ) are given by (3.2) and (3.6), but now with α = ir , where

r = tan(Φ̃/4). (7.13)

The important point is that given any solution for M � 1 no-shear menisci such as those
derived in § 3 for M = 1, in § 5 for M = 2, and for M = 3 in § 6, it can be composed
with a mapping of the form (7.3) for any N > 1 to generalise that solution to the N -fold
rotationally symmetric case. This means that the methodology of this paper provides a
solution strategy for a wide class of superhydrophobic patternings.

The formula (4.13) for the effective slip length has to be modified by a simple
multiplicative prefactor when N > 1. Let ∂ Dz denote the pipe boundary of an N -fold
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rotationally symmetric pattern with M menisci in each 2π/N sector. Let D̃z denote the
principal sector (or pie slice), and let ∂ D̃z denote the part of its boundary on |z| = 1. The
quantity Qh is

Qh = Re
[∫

Dz

h(z) dA

]
= N Re

[∫
D̃z

h(z) dA

]
, (7.14)

where the N -fold symmetry has been used. By the complex form of Stokes’ theorem,

Qh = N Re
[

1
2i

∫
∂ D̃z

h(z) z dz

]
, (7.15)

where the contributions from the two ‘edges’ of the sector can be shown to cancel out by
the rotational symmetry. But now

Qh = N Re
[

1
2i

∫
∂ D̃z

h(z)
dz

z

]
, (7.16)

where the fact that z = 1/z on ∂ D̃z has been used. Now this contour integral can be
transformed to the Z plane:

Qh = N Re
[

1
2i

∫
∂ D̃Z

H(Z)
dZ
NZ

]
= Re

[
1
2i

∫
∂ D̃Z

H(Z)
dZ
Z

]
, (7.17)

where ∂ D̃Z denotes the image of ∂ D̃z under the mapping (7.3). This equation is now
identical to (4.10), the only difference being that the solution for H(Z) as a function of Z
is now a factor of 1/N times the solution for h(z) as a function of z; this is readily seen by
comparing (7.12) with (3.11). It follows, on comparing (4.10) and (7.17) and making use of
(4.9), that the slip length is also multiplied by a factor of 1/N , yielding

λeff = 2
N

log
∣∣∣∣ω(α, 1/α)

ω(α, 1/α)

∣∣∣∣ . (7.18)

This is consistent with (1.3) and (4.14) for the M = 1 case considered by Philip (1972).
The point is that having found the slip length λeff for M menisci in general position

around a superhydrophobic pipe, the slip length associated with flow in another pipe where
this M-menisci pattern is repeated N times around the pipe in a rotationally symmetric
pattern is simply λeff/N . This quantity clearly decreases with increasing N , so there is a
deterioration in slip that comes from adding higher-order symmetry in the patterning, a
feature that has been noticed elsewhere (Crowdy 2021b).

8. Discussion
This paper concerns the modelling of a pressure-driven, longitudinal, laminar flow through
superhydrophobic pipes, where the aim of the analysis is similar to that of Crowdy (2011),
namely to take another solution of Philip’s original paper (Philip 1972) and to generalise
it to a more diverse class of no-shear surface patterning. It has been shown that the
longitudinal flow (0, 0, w(x, y)) associated with a wide range of superhydrophobic pipes
can be written parametrically as

w(x, y) = 1
4

(
1 − |z|2

)
+ log

∣∣∣∣ω(ζ, 1/α)

ω(ζ, 1/α)

∣∣∣∣ , z = x + iy, (8.1)
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with

z = −ω(ζ, α) ω(ζ, 1/α)

ω(ζ, α) ω(ζ, 1/α)
, (8.2)

where the parametric complex variable ζ takes values in some upper half circular
domain D+

ζ , and ω(·, ·) is a (generally transcendental) prime function associated with
the parametric circular domain Dζ made up of D+

ζ and its reflection in the real ζ -axis.
The domain D+

ζ , its associated prime function, and the point α ∈ D+
ζ are all determined

by the no-shear pattern of the pipe in the manner exemplified in this paper. Moreover, the
diagnostic quantity known as the effective slip length associated with these flows is given
in terms of the prime function as

λeff = 2 log
∣∣∣∣ω(α, 1/α)

ω(α, 1/α)

∣∣∣∣ . (8.3)

The prime functions are readily calculated, for example by using freely available
MATLAB codes (ACCA 2016). Notice that no square-root branch points appear explicitly
in the parametric formulae (8.1) and (8.2). They would, however, appear if the parametric
variable ζ is eliminated between these formulae to find w(x, y) as a function of (x, y).
However, except in the M = 1 case carried out explicitly in Appendix A, this is not
generally possible analytically.

It has been shown explicitly how Philip’s solution (1.1)–(1.2) corresponds to D+
ζ being

the upper half unit ζ disc, so that Dζ is the entire unit ζ disc with associated prime function
ω(ζ, a) = ζ − a, and α = i tan(Φ/4), where Φ/π is the no-shear fraction. The analytical
expressions derived in this work are a valuable extension of Philip’s slippery pipe model
(Philip 1972); they permit more flexible geometric configurations to be considered and
designed, with the explicit formula for λeff allowing for easier quantification of the
associated slip properties.

This paper has considered only menisci having the same curvature as the solid no-
slip walls. It may appear that the solutions might be of limited value given that careful
pressure control, for example, would be needed to maintain such a situation, and in
practice, the menisci might have differing curvatures. However, in the case of channel flow
over superhydrophobic surfaces (SHS), it has been shown (Crowdy 2017) how Green’s
second identity can be used, in conjunction with known exact solutions for flat menisci,
to find explicit integral expressions for the leading-order perturbation to the slip length
when the menisci are weakly curved, that is, where they are close to the flat state.
Earlier, for that same channel flow problem, Sbragaglia & Prosperetti (2007) had carried
out a detailed perturbation analysis for weak meniscus curvature to determine the full
perturbation problem for the leading-order modififcation to the velocity, but the later
analysis of Crowdy (2017) shows this to be unnecessary if only the slip length modification
is of interest. By extension, the derivation of similar explicit integral expressions for the
modified slip length in a pipe flow should be possible when the curvature of the menisci
considered here deviate modestly from that of the no-slip walls. Following Crowdy (2017),
deriving such explicit integrals will involve use of integral identities combined with the
exact solutions found here.

The new results add to an extensive literature on pressure-driven flow in pipes; the
classic monograph by Shah & London (2014), where the principal interest is in quantifying
heat transfer diagnostics such as Nusselt numbers, features a comprehensive survey of the
many results in this general area. Being a relatively modern concept, superhydrophobic
pipes are not a focus of Shah & London (2014), but recent work has shown (Broadbent &
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Crowdy 2022) that some, but not all, superhydrophobic pipes allow for an enhancement
of the heat transfer properties. This result was unexpected since earlier studies had failed
to find any such enhancement (Kirk, Hodes & Papageorgiou 2017) in other flow situations
such as channel flows over SHS. This heat transfer application, where details of the
geometry of the pipe no-shear patterning is a crucial determinant of performance, shows
the value in having available an analytical strategy for solving for flow in more general
superhydrophobic pipes with arbitrary no-shear patterning. In particular, the SHS models
presented allow for a conceivable scenario in which heat is supplied to the fluid via a
larger contiguous solid wall fraction, while lubrication is provided by an array of shear
free interfaces situated along the remaining boundary. The design space has therefore been
opened up considerably by the solutions herein.

Finally, as mentioned earlier, these solutions (to boundary value problems for Poisson’s
equation with a constant forcing and mixed Dirichlet-type and Neumann-type boundary
conditions) have much broader significance beyond the particular application to slippery
pipe flows. Bazant (2016) has identified no less than 17 physical analogies sharing the
same mathematical structure as that of pressure-driven pipe flow. The solutions found
here are potentially applicable to all those other areas. For example, a recent study
by Skvortsov (2020) investigates the so-called mean first-passage time associated with
Brownian diffusion of a particle in a planar disc where the boundary has two unequal
absorbing regions, the remainder of the boundary being reflecting. That problem is
governed by a boundary value problem that is essentially the M = 2 scenario of the present
paper. Skvortsov (2020) uses a different analytical construction that does not leverage the
prime function machinery (Crowdy et al. 2016; Crowdy 2020), but the results here for
the M = 2 case are essentially a rederivation of Skvortsov’s solutions within a different
function theoretic framework. Moreover, the solutions herein automatically generalise that
study to any number of absorbing boundary segments.

In fact, Marshall (2016) had earlier solved the Brownian diffusion problem considered
by Skvortsov (2020) using the same prime function machinery used in the present paper,
albeit through the lens of potential theory by making an association with so-called Robin’s
functions. Just as has been done here, Marshall (2016) used the prime functions of higher-
connected circular domains (Crowdy et al. 2016; Crowdy 2020) to solve the problem for
any finite number of absorbing sections, and presented two different representations of the
solution, the second of which – see (3.25) of Marshall (2016) – is essentially the solution
(8.1). In principle, the present paper could have elucidated the mathematical analogy
between pressure-driven pipe flow and the mean first-passage time of Brownian motion,
imported the result (3.25) of Marshall’s paper, and then used it to calculate the effective
slip lengths. However, Marshall (2016) gives only a cursory derivation of his formula
(3.25), and his discussion in terms of potential theory is not strictly necessary. The present
paper has therefore given an alternative, arguably simpler, geometrical construction of
the solutions based on use of conformal slip mappings and directly in the context of the
fluid dynamical pipe flow problem, that construction being a natural generalisation of one
used by Crowdy (2011) to generalise Philip’s solutions for shear flow over SHS. Taken
together, the present work and that of Marshall (2016) furnish the reader with several
complementary views of this important class of mathematical problems.

It is also worth mentioning that the effective slip lengths calculated here are closely
related to global mean first-passage times, which measure the effectiveness of the
absorbing boundary of the planar disc at trapping Brownian particles. Marshall (2016)
mentions these, but he does not compute them; the effective slip lengths of this paper can
thus be reinterpreted as global mean first-passage times in the Brownian motion problem,
adding significance to the results in that separate physical application. And these effective
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slip length quantities will have analogous importance as global quantifiers in the many
other physical contexts set out by Bazant (2016). A final observation is that the extension
in § 7 of the present paper to the N -fold periodic arrangement with M absorbing sections
per sector was not considered by Marshall (2016) and therefore constitutes an extension of
those Brownian motion results.

Funding. We acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation), project-ID 467661067. D.G.C. is partially supported by EPSRC grant EP/V062298/1.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Derivation of Philip’s form of the single-slot solution
It is instructive to show how to retrieve Philip’s formulae (1.1)–(1.2) from the new
parametric form of that particular solution derived here. It follows on use of (3.2) and
(3.6) in (3.11) that

H(ζ ) = 1
2

log
(

ζ − 1/α

ζ − 1/α

)2

= log
(

1/α − ζ

1/α + ζ

)
, (A1)

where the right hand side has been chosen to ensure Im[H(i)] = 0; recall from (3.3) that
ζ = i is the pre-image of the midpoint of the meniscus. It follows that

1/α − ζ

1/α + ζ
= eH , (A2)

which can be rearranged to give

ζ = 1
α

(
1 − eH

1 + eH

)
. (A3)

On taking a logarithm of (3.2), it follows that

log(−z) = log
(

ζ − α

ζ + α

)
+ H − iπ. (A4)

Now introduce

κ = − i
2

log z, so that log(−z) = 2iκ + iπ, (A5)

and consequently,

2iκ − H + 2πi = log
(

ζ − α

ζ + α

)
. (A6)

After exponentiation, it follows that

ζ − α

ζ + α
= e2iκ−H , (A7)

which can be rearranged to give

ζ = α

(
1 + e2iκ−H

1 − e2iκ−H

)
. (A8)
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The two expressions for ζ in (A3) and (A8) can now be set equal to eliminate ζ and provide
a relationship between z and h(z):

1
α

(
1 − eH

1 + eH

)
= α

(
1 + e2iκ−H

1 − e2iκ−H

)
. (A9)

It follows that

1
α2 =

(
1 + e2iκ−H

1 − e2iκ−H

) (
1 + eH

1 − eH

)
= cos κ + cos(κ + iH)

cos κ − cos(κ + iH)
. (A10)

But

1
α2 = − 1

r2 = − cot2(Φ/4) = −cos2(Φ/4)

sin2(Φ/4)
= cos(Φ/2) + 1

cos(Φ/2) − 1
, (A11)

where (3.5) has been used, and familiar trigonometric identities in the last step. On
comparison of (A10) and (A11), it is clear that

cos κ

cos(κ + iH)
= cos(Φ/2), or κ + iH = cos−1

(
cos κ

cos(Φ/2)

)
. (A12)

Finally, on taking the imaginary part of this equation to find H(ζ ) = h(z), Philip’s
formulae (1.1)–(1.2) with N = 1 are retrieved on substitution of h(z) into (2.4).

Appendix B. Evaluation of the prime function
Analytical formulae for the solutions have been derived in terms of the prime function
ω(·, ·) of a multiply connected circular domain. Given such a circular domain, the most
numerically efficient method to compute the associated prime function is to make use of
freely available MATLAB codes (ACCA 2016; Crowdy 2020). These codes are based on a
numerical algorithm described in detail in Crowdy et al. (2016), which extends an earlier
one proposed by Crowdy & Marshall (2007).

For a triply connected domain such as that used in § 6, however, it is also known (see
Chapter 14 of Crowdy 2020) that the infinite product representation

ω(z, ζ ) = (z − ζ )
∏

Θ∈Θ ′′

(Θ(z) − ζ )(Θ(ζ ) − z)

(Θ(z) − z)(Θ(ζ ) − ζ )
(B1)

is convergent; here, each function Θ lies in the set of Möbius maps Θ ′′ that denotes all
elements of the free Schottky group generated by the basic Möbius maps

Θ1(ζ ) ≡ δ + q2ζ

1 − δζ
, Θ2(ζ ) ≡ −δ + q2ζ

1 + δζ
, (B2)

except for the identity and excluding all inverses (Crowdy & Marshall 2007; Crowdy
2020). For numerical purposes of evaluation, it is necessary to truncate this product, and
the natural way to do so is to include all Möbius maps up to a chosen level; see Crowdy &
Marshall (2007) and Crowdy (2020) for more details. Use of this infinite product is feasible
for most superhydrophobic pipe geometries, but maintaining a required degree of accuracy
requires truncation at increasingly high levels as the radii of C1 and C2 get larger, or these
circles get close together, and convergence of the product can become unacceptably slow.
In such cases, use of the MATLAB code from ACCA (2016) is preferred and advised.

1009 A6-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

17
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.179


S. Zimmermann, C. Schönecker and D.G. Crowdy

REFERENCES

ACCA 2016 Source MATLAB codes. Available at https://github.com/ACCA-Imperial.
ASMOLOV, E.S., NIZKAYA, T.V. & VINOGRADOVA, O.I. 2018 Enhanced slip properties of lubricant-infused

grooves. Phys. Rev. E 98 (3), 033103.
BAZANT, M.Z. 2016 Exact solutions and physical analogies for unidirectional flows. Phys. Rev. Fluids 1 (2),

024001.
BELYAEV, A.V. & VINOGRADOVA, O.I. 2010 Effective slip in pressure-driven flow past super-hydrophobic

stripes. J. Fluid. Mech. 652, 489–499.
BROADBENT, H.R. & CROWDY, D.G. 2022 Superhydrophobicity can enhance convective heat transfer in

pressure-driven pipe flow. Q. J. Mech. Appl. Maths 75 (4), 315–346.
CASSIE, A.B.D. & BAXTER, S. 1944 Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551.
CROWDY, D.G. 2010 Slip length for longitudinal shear flow over a dilute periodic mattress of protruding

bubbles. Phys. Fluids 22 (12), 121703.
CROWDY, D.G. 2011 Frictional slip lengths for unidirectional superhydrophobic grooved surfaces. Phys. Fluids

23 (7), 072001.
CROWDY, D.G. 2016 Analytical formulae for longitudinal slip lengths over unidirectional superhydrophobic

surfaces with curved menisci. J. Fluid. Mech. 791, R7.
CROWDY, D.G. 2017 Perturbation analysis of subphase gas and meniscus curvature effects for longitudinal

flows over superhydrophobic surfaces. J. Fluid Mech. 822, 307–326.
CROWDY, D.G. 2020 Solving Problems in Multiply Connected Domains. SIAM.
CROWDY, D.G. 2021a Slip length formulas for longitudinal shear flow over a superhydrophobic grating with

partially filled cavities. J. Fluid. Mech. 925, R2.
CROWDY, D.G. 2021b Superhydrophobic annular pipes: a theoretical study. J. Fluid. Mech. 906, A15.
CROWDY, D.G., KROPF, E.H., GREEN, C.C. & NASSER, M. 2016 The Schottky–Klein prime function: a

theoretical and computational tool for applications. IMA J. Appl. Maths 81 (3), 589–628.
CROWDY, D.G. & MARSHALL, J.S. 2006 Conformal mappings between canonical multiply connected

domains. Comput. Meth. Funct. Theor. 6 (1), 59–76.
CROWDY, D.G. & MARSHALL, J.S. 2007 Computing the Schottky–Klein prime function on the Schottky

double of planar domains. Comput. Meth. Funct. Theor. 7 (1), 298–308.
DAVIS, A.M.J. & LAUGA, E. 2009 Geometric transition in friction for flow over a bubble mattress. Phys.

Fluids 21 (1), 011701.
KIRK, T.L., HODES, M. & PAPAGEORGIOU, D.T. 2017 Nusselt numbers for Poiseuille flow over isoflux

parallel ridges accounting for meniscus curvature. J. Fluid Mech. 811, 315–349.
LAUGA, E. & STONE, H.A. 2003 Effective slip in pressure-driven Stokes flow. J. Fluid. Mech. 489, 55–77.
LIRAVI, M., PAKZAD, H., MOOSAVI, A. & NOURI-BORUJERDI, A. 2020 A comprehensive review on recent

advances in superhydrophobic surfaces and their applications for drag reduction. Prog. Org. Coat. 140,
105537.

MARSHALL, J.S. 2016 Analytical solutions for an escape problem in a disc with an arbitrary distribution of
exit holes along its boundary. J. Stat. Phys. 165 (5), 920–952.

PHILIP, J.R. 1972 Flows satisfying mixed no-slip and no-shear conditions. Z. Angew. Math. Phys. 23 (3),
353–372.

ROTHSTEIN, J.P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42 (1), 89–109.
SBRAGAGLIA, M. & PROSPERETTI, A. 2007 A note on the effective slip properties for microchannel flows

with ultrahydrophobic surfaces. Phys. Fluids 19 (4), 043603.
SCHNITZER, O. & YARIV, E. 2019 Stokes resistance of a solid cylinder near a superhydrophobic surface.

Part 1. Grooves perpendicular to cylinder axis. J. Fluid. Mech. 868, 212–243.
SCHÖNECKER, C., BAIER, T. & HARDT, S. 2014 Influence of the enclosed fluid on the flow over a

microstructured surface in the Cassie state. J. Fluid. Mech. 740, 168–195.
SCHÖNECKER, C. & HARDT, S. 2013 Longitudinal and transverse flow over a cavity containing a second

immiscible fluid. J. Fluid. Mech. 717, 376–394.
SCHÖNECKER, C. & HARDT, S. 2015 Assessment of drag reduction at slippery, topographically structured

surfaces. Microfluid Nanofluid 19 (1), 199–207.
SHAH, R.K. & LONDON, A.L. 2014 Laminar Flow Forced Convection in Ducts: A Source Book for Compact

Heat Exchanger Analytical Data. Academic Press.
SKVORTSOV, A. 2020 Mean first passage time for a particle diffusing on a disk with two absorbing traps at the

boundary. Phys. Rev. E 102 (1), 012123.
SONG, D., SONG, B., HU, H., DU, X., DU, P., CHOI, C.-H. & ROTHSTEIN, J.P. 2018 Effect of a surface

tension gradient on the slip flow along a superhydrophobic air–water interface. Phys. Rev. Fluids 3 (3),
033303.

1009 A6-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

17
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://github.com/ACCA-Imperial
https://doi.org/10.1017/jfm.2025.179


Journal of Fluid Mechanics

TSAI, P., PETERS, A.M., PIRAT, C., WESSLING, M., LAMMERTINK, R. & LOHSE, D. 2009 Quantifying
effective slip length over micropatterned hydrophobic surfaces. Phys. Fluids 21 (11), 112002.

WANG, D., 2020 Design of robust superhydrophobic surfaces. Nature 582 (7810), 55–59.
ZIMMERMANN, S. & SCHÖNECKER, C. 2024 Analytical models for pressure-driven Stokes flow through

superhydrophobic and liquid-infused tubes and annular pipes. J. Fluid. Mech. 978, A20.

1009 A6-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

17
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.179

	1. Introduction
	2. A boundary value problem of mixed type
	3. A new derivation of the Philip (1972) single slot solution
	4. Effective slip length
	5. Exact solution for M=2 unequal menisci
	5.1. Illustrative calculations

	6. Superhydrophobic pipe with M 2 menisci
	6.1. Illustrative calculations

	7. The N-fold rotationally symmetric pipes with M menisci per sector
	8. Discussion
	References

