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STRUCTURE OF SOME NOETHERIAN 
INJECTIVE MODULES 

B. SARATH 

I n t r o d u c t i o n . The main object of this paper is to s tudy when infec­
tive noetherian modules are art inian. This question was first raised by 
J . Fisher and an example of an injective noetherian module which is not 
art inian is given in [9]. However, it is shown in [4] tha t over commuta t ive 
rings, and over hereditary noetherian P.I rings, injective noetherian does 
imply art inian. By combining results of [6] and [4] it can be shown tha t 
the above implication is true over any noetherian P.I ring. I t is shown in 
this paper t ha t injective noetherian modules are art inian over rings 
finitely generated as modules over their centers, and over semiprime rings 
of Krull dimension 1. I t is also shown tha t every injective noetherian 
module over a P.I ring contains a simple submodule. Since any noetherian 
injective module is a finite direct sum of indecomposable injectives it 
suffices to s tudy when such injectives are artinian. If Q is an injective 
indecomposable noetherian module, then Q contains a non-zero sub-
module Ço such tha t the endomorphism rings of Ço and all its submodules 
are skewfields. Over a commutat ive ring, such a Ço is simple. In the non-
commuta t ive case very little can be concluded, and many of the difficulties 
seem to arise here. 

All rings in this paper have a unit. All properties are left properties 
unless otherwise specified, and homomorphisms are writ ten opposite 
scalars. Finally, I would like to thank Dr. K. Varadarajan for the dis­
cussions I had with him, and the referee for his many helpful and in­
struct ive comments . 

1. N o e t h e r i a n inject ive m o d u l e s . We recall some definitions and 
results, and introduce some notation. 

Definition 1.1. Let 0 ^ M be an i^-module. Then M is called a mono-
form if for every N C M and homomorph i sm/ : N —» M, / is either zero 
or a monomorphism. 

Definition 1.2. Let M be an i^-module, 5 a subset of M\ 
(i) E(M) denotes the injective hull of M. 

(ii) l(S) = {a G R\ aS = 0} is the (left) annihilator of 5. 
(iii) S C M means S is contained in bu t not equal to M. 
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Definition 1.3. Let M be an i?-module. M is said to have q.f.d. (homo-
morphic images of finite (Goldie) dimension) if every independent family 
of non-zero submodules of any factor module of M is finite. 

A more special notation which will be adhered to for the rest of this 
paper is the following: 

Definition 1.4. Let Q be an injective indecomposable i^-module. Then 

Ço = {q G Q\ qs = 0 for every 5 £ End^ Q with ker s ^ 0}. 

The next proposition summarizes material contained in [8, 2.6] and 
[5, 2.6]. 

PROPOSITION 1.5. Let Q be an injective indecomposable module 0 ^ C C Q 
a monoform submodule. 

(i) Q is uniform; 
(ii)<2 = £(C); 

(iii) S = Endfl Q is a local ring with maximal ideal {s £ S\ ker s ^ 0}; 
(iv) Ço is the socle of Q when Q is considered as a right S-module; 
(v) Qo is monoform with C C Q0; 

(vi) If N C Ço and Ns C N for every s £ S then End/e N is a skewfield. 
In particular Endfî Ço is a skewfield. 

Proof, (i), (ii) and (iii) are implied in [8, 2.6]. (iv) is simply the defini­
tion, (v) C C Ço follows from [5, 2.6]. If / : N —> Ço is given with 
ke r / ^ 0, we can extend / to a map g : Q —> Q whose kernel is then 
automatically non-zero. Hence Qog — 0 by definition and since N C Q0l 

f = 0. S o / is either zero or monic and Ço is a monoform. (vi) If Ns C TV 
for every s Ç 5, then the restriction map induces a ring homomorphism 
from S = End# Q to End# iV. This map is onto since Q is injective and its 
kernel is the maximal ideal of 5 hence End^ N is a skewfield. Since Qo is 
an 5-submodule of Q from (iv), Q0s Q Qo for every s £ S. 

The above proposition yields a generalisation of [8, 2.5] which is perhaps 
of independent interest. 

COROLLARY 1.6. Let H be an injective module over R and suppose that the 
collection of annihilator ideals of subsets of H satisfies the ascending chain 
condition. Then H = 0 a € ( 7 £ ( r a ) where J is some arbitrary indexing set 
and each Ta is monoform. 

Proof. We follow [8, 2.5]. From [11], direct sums of independent 
families of injective submodules of H are injective. It therefore suffices to 
show that if 0 ^ T C H then E(T) contains a monoform submodule. 
Let x Ç E(T) be such that l(x) is maximal among annihilators of non­
zero elements of E(T). Let N Ç Rxy 0 ^ f : N —* Rx. Suppose ke r / ^ 0. 
Let a d l(x), axf = 0. Extend / to a map g : E(T) —> E(T). Then 
axf = 0 implies axg = 0 and hence that l(x) C l(xg), a contradiction. 
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For the rest of this paper Q denotes a Noetherian injective indecom­
posable module, Ço the corresponding submodule. Every non-zero 
noetherian module contains a non-zero monoform submodule, hence 
Qo * 0 [5], 

The next theorem is useful in investigating noetherian injective 
modules. 

THEOREM 1.7. With Q, Ço as above, End^ N is a skewfield for every 
NQQo. 

Proof. Let 0 ^ / G EndR N. From (1.4(v)) / is monic. Suppose 
Nf C N- Then there exists a map g : Q —> Q with g\N = f. g is monic 
since Q is uniform, and g is an isomorphism since Q is injective and 
indecomposable. Let h = g""1. Then 

Nhn+1 D iV/Aw+1 = Nhn. 

So we have TV C Nh C TV&2 • . • contradicting Q noetherian. Hence 
Nf = N and / is a unit so End^ TV is a skewfield. 

It is known that 5 = End^ Q is a right and left perfect ring [3]. Hence Q 
has an ascending S-socle series Ço C Q\ C Qi • • • C Q\ that is Qt+i/Qi is 
semisimple as right 5-modules [1, Theorem P]. The submodules Qt are 
invariant under right S-endomorphism of Q and in particular under 
multiplication by elements of R. Hence the terms in the socle series are 
R — S bimodules. This yields the following. 

PROPOSITION 1.8. Let Q0 C Qi C . . . be the S-socle series of Q, where 
S = Endfl Q and Q is considered as a right S-module. Then (i) [3, 2.5] 
Q = Qnfor some n; 

(ii) If P = /(Ço), then Pn+lQ = 0 where n is such that Qn = Q. 

Proof, (i) Since Q is jR-noetherian, the sequence Ço C Q\ C . . . Q is 
stationary past some n. From [1, Theorem P] this is possible only if 
Qn = (?• 00 We show that for p € P, 

pQt Ç (2,_x 1 S i ^ n . 

Since pQi ~ Qi/(Qi (^\ ker p) as right 5-modules, and pQo = 0, it follows 
that pQi is semisimple as a right S-module ; hence pQi C Q0. If pQt Ç <2z_i 
for 1 ^ i ^ r, then p induces a map from Qr+i/Qr onto pQr+i/pQr, but 
Qr+i/Qr is semisimple and £<2r £ Qr-i hence pQr+i/Qr-i is semisimple. So 
£(?r+i £ (?r, and the proof is completed by induction and by noting that 

pn+lQ = pn+lQn = FQ0 = Q. 

COROLLARY 1.9. If R/l(Q0) is artinian then Q is artinian. 

Proof. Let l(Qo) = P. Observe that in the exact sequence 

0 -> P'Q/P'+iQ -> Q/Pi+1Q -> 0/P*Q -» 0, 
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PiQ/Pi+lQ is ar t inian from [12, 6]. A simple induction and the fact t ha t 
Pi+1Q = 0 completes the proof. 

T h e next theorem requires a modification of the main theorem in [7] 
which we s ta te as a proposition. 

PROPOSITION 1.10. [7]. Let RMS beanR — Sbimodule, with M noetherian 
both as an R-module and as an S-module. If M is S-artinian then M is 
R-artinian and R/l(M) is a two sided artinian ring. 

Proof. I t is easily verified from the finite generation of M as both R 
and 5 modules t h a t R/l(M), S/ti(M) are noetherian where 

Q(M) - {s G S\ Ms = 0}. 

Let t ing R = R/l(M), S = S'/to (M) and passing to the si tuation RMS, it 
is straightforward to modify the proof of [7] to complete the proof of this 
proposition. 

T H E O R E M 1.11. Let M ^ QQ, D = End# Q0. Then AID finite dimensional 
as a D-vector space implies that M is R-artinian and R/l(M) is artinian. In 
particular if Q0 is finite dimensional over D then Q is artinian. 

Proof. Since (MD) is both noetherian and ar t inian a s a D module and 
MD is noetherian as an i^-module we have t h a t MD is ar t inian as an 
i^-module and R/l(MD) is ar t inian from (1.10). Hence M and R/l{M) are 
art inian. If Qo is finite dimensional over D, then R/l(QQ) is ar t inian and by 
(1.9) Q is ar t inian. 

Remark 1.12. T h e converse to (1.11) does not hold; t h a t is, Q ar t inian 
does not imply t h a t Q0 is finite dimensional over D. T o see this let R be the 
differential polynomial ring studied in [2]. Let Q be its unique injective 
simple module. Then Q = Qo and an application of (4.1) shows t ha t Q is 
infinite dimensional over End# Q. ([2] considers r ight modules, bu t is 
valid, with the obvious modifications, for left modules.) 

2. C o m m u t a t i v e r i n é s . As mentioned in the introduct ion it has been 
shown in [4, 3.3] t h a t over a commuta t ive ring every injective noetherian 
module is ar t inian. This is deductible also from (1.6) and (1.9) and we 
give a brief proof. 

PROPOSITION 2.1. [4, 3.3]. Let R be commutative. Then Qo is simple and Q 
is artinian. Hence every injective noetherian R-module is artinian. 

Proof. Let 0 ^ x G ft. Since End^ Rx is a skewfield and R is commu­
tat ive, Rx is simple. Hence Q0 is semisimple and since Q is uniform, Q0 is 
simple. T h e result follows from (1.9). 

W e take a closer look a t the annihilator of Co-
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LEMMA 2.2. Let R be commutative, M = l(Qo), m £ M. Then for some 
integer n ^ 1, either mn = 0 or l(mn) Çt if. In either case, mnQ = 0. 

Proof. Suppose that for some m G M,mn 9e 0 and l(mn) C i f for every 
integer w ̂  1. Pick an x F^ 0 in Ço and define fn : Rmn —» Ç for every 
integer w ^ 1 by 

amnfn = ax for a £ R. 

Since Q is injective, there exists {;yn}?=i £ ( ? s u c n that mwyn = x. Let ^4n 

be the submodule generated by yiy . . . , 3V Then 

since 

raw+M„ = 0 and 0 ^ x e mn+1An+1, 

but this contradicts Q noetherian. \imn = 0 then mnQ = 0. If a G i f then 
multiplication by a induces an isomorphism from Q to Q. Hence 
l(mn) (£ i f implies there is an a G i f with awwÇ = 0 and hence mw() = 0. 

THEOREM 2.3. Z ^ i? be commutative, M = /(Ço); 
(i) R semiprime implies Q is simple. 

(ii) M finitely generated implies R = T © Mn for some integer n where T 
is local with maximal (nilpotent) ideal T C\ if. 

Proof, (i) R semiprime implies R has no nilpotent elements so by (2.2), 
l(mn) <2 i f for some integer n for every m G if. However R semiprime 
implies l(m) = l(mn) for every integer n ^ 1. So /(m) ^ i f for every 
m G i f and hence i f Ç = 0. Since i^ is commutative i f is maximal and Q 
is semisimple but then Q is indecomposable and hence simple. 

(ii) Let Wi, . . . ,mr generate if. Then by (2.2), for a suitably large 
n, Mn is generated by 3/1, . . . , yt with /(;yz) $£ i f 1 ^ i ^ /. Let vtyi = 0, 
fli G if. Then if v = vx . . . vt we have (a) Ï; G i f and (b) z;ifw = 0. 
Together these imply that 

R = Rv ® Mn. 

Further if a £ M, then 

Ra + Mn = R. 

So if a G ifo, a Q Rv C\ M then a is a unit in ffr. Hence Rv is a local ring 
with maximal nilpotent ideal Rv H if. 

Remark 2.4. Theorem (2.3) shows that over a commutative noetherian 
ring R, the only noetherian injective modules that exist come from artin-
ian local direct summands. 

LEMMA 2.5. Let R be commutative, M noetherian over R, and s G R such 
that s M = M. Then fer every m G if, Rsm = Rm. 

https://doi.org/10.4153/CJM-1980-097-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-097-2


1282 B. SARATH 

Proof. Since s M = M we can define yt £ M by 

y0 = m, sy* = 3>z-_i for i ^ 1. 

Since M is noetherian 
fc-i 

yk = ^2 rjy3 f° r s o m e k, with tj Ç i?. 

Hence 

w = ^ & = 22 rjSk~jm G ifom. 

So i^sm = l^m. 

THEOREM 2.6. Le/ 7' fre a ring, R a subring of the center of T with T 
finitely generated as an R-module. Let Q be an infective indecomposable 
noetherian T-module. Then Q is artinian. 

Proof. Q is a noetherian i^-module since T is finitely generated over R. 
Let P i = /(Ço) in T, and P = Px f^ R. lî a £ R, a £ P then aQ0 = Q0 

since multiplication by a induces a non-zero map from Ço to Ço and this 
has to be an automorphism. Let R = R/P. Then Ço is a noetherian L* 
module such that aQ0 = Q0 for every a £ R. From 2.5, Ço is semi-
simple artinian as an R and hence as an P-module. Since R is commutative 
it follows that R/P is artinian. Finally T/P\ is finitely generated as an 
P-module and hence is artinian. The theorem follows from (1.9). 

3. Semiprime rings with Krull dimension. The advantage of 
working over semiprime rings is that if an ideal I C R has endomorphism 
ring a skewfield, then I is simple. The proof is given below for complete­
ness. 

LEMMA 3.1. Let Rbe a semiprime ring. Then End^ I is a skewfield if and 
only if I is simple. 

Proof. If I is simple Endfl / is a skewfield. Conversely let 0 9^ i G L 
Then iri ^ 0 for some r £ R. The m a p / : I —* I induced by right multi­
plication by ri is not zero, hence Iri = I. So Ri = 7, and this shows I is 
simple. 

LEMMA 3.2. Let Rbe a semiprime ring. If l(x) is not essential for some 
00 £ Ço, then Q contains a simple module. 

Proof. Suppose x £ Ço and I C\l(x) = 0 for some 0 ^ I C R. Then 
Ix = I and Endfl Ix is a skewfield by (1.6), and so I is simple by (3.1). 
Hence Ix Ç Q is simple. 

We state the next proposition without proof. All the material is con­
tained in [5, Chapters 1 and 3]. 

PROPOSITION 3.3. Let Rbe a semiprime ring with Krull dimension a, Ma 
finitely generated R-module, 
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(i) If x £ M and l(x) is essential, then l(x) contains a regular element 
and Krull dime?ision Rx < a. 

(ii) If Krull dimension Rx < a for every x G M then Krull dimension 
M < a. 

T H E O R E M 3.4. Let Rbe a semiprime ring of Krull dimension a ^ 1. Then 
Krull dimension Q < a. In particular if a is 1, Q is artinian. 

Proof. Suppose Krull dimension R = a and tha t if x G Qo, then l(x) is 
essential. Let a G Q. Since {a <E R\ aq G Qo] is essential, there is a regular 
d G R with dq £ Ço, (3.3(i)) . Since l(dq) is essential, there is a regular 
c £ l(dq), and hence cd Ç /(g) is regular. Hence /(g) is essential, and so 
Krull dimension Rq < a by (3.3(i)) , and Krull dimension of Q < a. by 
(3.3(ii)). If /(x) is not essential for some x Ç Ço, then Q contains a simple 
module T. For any q £ Q, 

I(q) = {a G R\ aq£ T\ 

is essential. From the exact sequence 

0 -> / (<? ) /%) - » R/l(q) - » i?/7(g) - 0, 

and the fact t ha t I(q)/l(q) is simple, while Krull dimension R/I(q) < a, 
it follows t ha t Krull dimension Rq < a. Again by (3.3(ii)), Krull dimen­
sion Q < a. 

4. P.I. R i n g s . A ring R is called a P.I ring if it satisfies a non trivial 
polynomial ident i ty over its centre. In such a case, by using [10, I I ; 4.1] 
and the linearization process given in [10, I; 3.11], we can conclude tha t 
the polynomial ident i ty is of type 

y C ± #(T(1) • • • X<r{n) 

where S is some subset of the group of permutat ions on n letters. 
We present some technical, lemmas, the first of which is [8, 2.8]. 

LEMMA 4 .1 . Let D = End# Q0, y G Qo. Then y 6 X)*=i x ^ 
if and only if 

i{y) 3 i(xi) n ... r\i(xn). 
Proof. If y e X X i XiD then clearly l(Xl) H . . . H Z(*n) C / (y) . 

Suppose 

/ ( x ! ) n . . . n / ( x w ) Ql(y). 

We proceed by induction on n. If ?z = 1 define ^ : ifoi —» ify by axi<£> = ay 
and extend to a ^ : Ço —> Co- Then y = xtf. Now suppose the lemma is 
t rue for r ^ n — 1. Then define 

^ : [/(*,) n . . . n z(*n-i)]*» -> [/(xO n . . . n z(*n_i)]y 
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by 
axn(p = ay. 

Again extend <p to a yp : Qo —> (?o and then 

Hy - Xrd) 2 i(xi) r\ . . . r\ /(xn_i). 
Hence by induction 

n 

y = J^XiVi-

T h e following is [12, Lemma 6]. 

LEMMA 4.2. Let M be a module over a ring R and suppose that for every 
m G Mj Rm is artinian. Then M has q.f.d. implies M is artinian. 

Proof. Suppose M is not ar t inian. Then M has a proper non-art inian 
submodule TV, and there is an X\ G M with X\ G TV. Suppose we have 
already constructed Xi , . . . , Xn G M, Nu . . . , Nr submodules of M such 
tha t Xi G Ni, Xi G Nj f o r j ^ h 1 = h j = r a n d Pu=i Nt not ar t inian. 
Let M = M/Y!, Rxt and 77 : I f —> M the cannonical quot ient map. Then 
17(0ï=i ^V"0 is not ar t inian (since]F^=i Rxt is ar t in ian) and hence, we can 
pick 

A^C .(QN). 

Let Nr+1 = 7]~l(N) and pick xr+1 G P u = i N* with ?y(xr+i) G TV. Hence we 
can construct a set {x^j^Li C If, {TV^}?=1 submodules of I f with 
(a) xz- G TVT-, (b) xz- G Njtj ^ i. Let 

* : M -> f l M/TV, 

be the map induced by the canonical quot ient maps from M —» M/Nt. I t 
is easily verified tha t Sfr ( T ^ l i ifo*) does not have finite uniform dimen­
sion. 

LEMMA 4.3. Let M be a module over a P. I ring R, TV ^ M, 0 ^ x G M — TV. 

rAéw /Aere a m / tu...,tneR,J^MJ(£ Nwith [H"=i / (** . . . / i )x]7 C TV. 

Proof. Suppose the contrary. We demonst ra te a contradict ion of the 
fact t ha t R satisfies a P.I by constructing a set {̂ z-}T=o as follows; 

(i) Let UQ = 1. 
(ii) Since l(x)Px $£ TV by hypothesis, pick Ui £ R such tha t 

l(x)uix <£ TV. 
(iii) Suppose we have picked Wi, . . . , ur such tha t 

r - l 

H l{Ui . . . UQX) 
* = o 

~ r - 2 

Mr G n K^i... ôx) 
L i=0 

ur . . . u\x <£ TV and 

, r è 2. 
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Then by assumption 

r - l 

Pi l(Uf . . . uox) 
i=0 

Hence we can pick 

r -2 

n i(ui... uox) 
i=0 

ur . . . u\% <£ N. 

Ur+1 G 

r - 2 

with 

r - l 

n i(ui... uox) ur+i. . . U\x Çt N. 

Therefore, by induction, we have a set {wz}T=o satisfying 

(a) ur . . . U\X ^ 0, 
(b) iijiii . . . U\X = 0 if j > i + 1, 
(c) utx = 0 if i ^ 2. 

Let i? satisfy the polynomial identi ty 

J\Xlj • • • > *^w/ "̂ w • • • ^ 1 ~T~ • v ^ t -^(TCW) • • • X(f(L) 

aes 

where S Q Sn does not contain the identi ty permutat ion. Then 
f(Ui, . . . , Un)x = Un . . . U\X 

by (b), and 

f(ui, . . . , un)x = un . . . ^i% ^ 0 

by (a), and this contradicts the fact tha t R satisfies/. 

T H E O R E M 4.4. Let R be a P.I ring satisfying a non-trivial identity. Then 
(i) Q contains a simple module. 

(ii) If I/P has q.f.d. for every ideal I ^ R, then Q is artinian. 

Proof, (i) Sett ing N = 0, M = Q0 in (4.3) we get a / ^ 0, xu . . . , xn £ 
Ço with 

n /(*<) 7 = 0. 

Hence by (4.1) JD is finite dimensional over D = End/g Qo- So by (1.11), 
/ is art inian and hence / contains a simple submodule and so does Q. 

(ii) Let A = ^2 {A ^ Q Q0\ A t is art inian}. Since homomorphic images 
of ar t inian submodules are art inian, A is a D-modu\e. Since Qo is 
noetherian, A is art inian and since R satisfies a polynomial identi ty, 
R = R/l(A) is art inian. 
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If Ço = A we are done by (1.9). If Qo ̂  A, then by (4.3) there exist 
Xi, . . . , xn Ç Qo, J Çt A such that 

[i(xi) P . . . r\i(xn)]j QA. 

Let 

/U) = i(ch) p . . . P / ( 0 , 

/ = [/(Xl) n ... n /(xj p z(̂ )] + /(/). 
Then J / C i and hence (1(A) I) J = 0 and so I 2 J = 0. Hence 

PQl(J) and l(A)IQl(J). 

From the assumption that J / / 2 has q.f.d. and the fact that R is artinian it 
follows that I/l(J) is artinian. If I =4 I (J) there is a 71 6 / with Iyi 7̂  0. 
Hence 

1^1 H / ( 7 l ) D / ( / ) . 

Repeating the above argument and using the fact that I/l(J) is artinian 
we can find yu . . . , yP Ç J with I P Z(7l) Pi . . . P l(yP) Q l(J). It 
follows that 

[i(Xl) n . . . n i(xn)} r\ [i(ai) n . . . n /(an)] 
p [ / ( 7 i ) n . . . n / ( 7 p ) ] Qi(J). 

This implies (1.11) that / Ç ^4, a contradiction. Hence 4̂ = Qo and so Q 
is artinian. 

Remark 4.5. The condition about I/P having h.f.d. in Theorem (4.4) 
appears somewhat artificial. However, (in the notation of the theorem), 
the passage from (l(%i) P . . . P l(xn))J Ç A to the fact that JD is 
finite dimensional over D appears difficult without some hypothesis on R. 
It is also perhaps worth pointing out that (4.3) includes, as special cases, 
the known results that over noetherian P.I rings and over F-rings 
satisfying a P.I, injective and noetherian implies artinian. 
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