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STRUCTURE OF SOME NOETHERIAN
INJECTIVE MODULES

B. SARATH

Introduction. The main object of this paper is to study when injec-
tive noetherian modules are artinian. This question was first raised by
J. Fisher and an example of an injective noetherian module which is not
artinian is given in [9]. However, it is shown in [4] that over commutative
rings, and over hereditary noetherian P.I rings, injective noetherian does
imply artinian. By combining results of [6] and [4] it can be shown that
the above implication is true over any noetherian P.I ring. It is shown in
this paper that injective noetherian modules are artinian over rings
finitely generated as modules over their centers, and over semiprime rings
of Krull dimension 1. It is also shown that every injective noetherian
module over a P.I ring contains a simple submodule. Since any noetherian
injective module is a finite direct sum of indecomposable injectives it
suffices to study when such injectives are artinian. If Q is an injective
indecomposable noetherian module, then Q contains a non-zero sub-
module Qo such that the endomorphism rings of Q, and all its submodules
are skewfields. Over a commutative ring, such a Q is simple. In the non-
commutative case very little can be concluded, and many of the difhculties
seem to arise here.

All rings in this paper have a unit. All properties are left properties
unless otherwise specified, and homomorphisms are written opposite
scalars. Finally, I would like to thank Dr. K. Varadarajan for the dis-
cussions I had with him, and the referee for his many helpful and in-
structive comments.

1. Noetherian injective modules. We recall some definitions and
results, and introduce some notation.

Definition 1.1. Let 0 # M be an R-module. Then M is called a mono-
form if for every N € M and homomorphism f : N — M, f is either zero
or a monomorphism.

Definition 1.2. Let M be an R-module, S a subset of M;
(1) E(M) denotes the injective hull of M.
(i1) I(S) = {a¢ € R| aS = 0} is the (left) annihilator of .S.
(iii) S C M means S is contained in but not equal to M.
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Definition 1.3. Let M be an R-module. M is said to have ¢.f.d. (homo-

morphic images of finite (Goldie) dimension) if every independent family
of non-zero submodules of any factor module of M is finite.

A more special notation which will be adhered to for the rest of this
paper is the following:

Definition 1.4. Let Q be an injective indecomposable R-module. Then
Qo =1{q € Q| gs = 0forevery s € Endg Q with ker s # 0}.

The next proposition summarizes material contained in [8, 2.6] and

(5, 2.6].

ProposITION 1.5. Let Q be an injective indecomposable module 0 % C C Q

a monoform submodule.
(i) Q s uniform;

(ii) Q = E(C);

(iii) S = Endg Q is a local ring with maximal 1deal {s € S| ker s # 0};

(iv) Qo s the socle of Q when Q s considered as « right S-module;

(v) Qo s monoform with C < Q;

(vi) If N € Qoand Ns & N for every s € S then Endg N s a skewfield.
In particular Endg Qo 1s a skewfield.

Proof. (1), (ii) and (iii) are implied in (8, 2.6]. (iv) is simply the defini-
tion. (v) C C Q, follows from [5, 2.6]. If f: N — Qo is given with
ker f # 0, we can extend f to a map g: Q — Q whose kernel is then
automatically non-zero. Hence Q¢ = 0 by definition and since N C Q,,
f = 0. So f is either zero or monic and Qq is a monoform. (vi) If Ns C N
for every s € S, then the restriction map induces a ring homomorphism
from S = Endg Q to Endi N. This map is onto since Q is injective and its
kernel is the maximal ideal of S hence Endy N is a skewfield. Since Q, is
an S-submodule of Q from (iv), Qos < Q, for every s € S.

The above proposition yields a generalisation of [8, 2.5] which is perhaps
of independent interest.

COROLLARY 1.6. Let H be an injective module over R and suppose that the
collection of annihilator ideals of subsets of H satisfies the ascending chain
condition. Then H = @euc; E(T.) where J is some arbitrary indexing set
and each T, is monoform.

Proof. We follow [8, 2.5]. From [11], direct sums of independent
families of injective submodules of H are injective. It therefore suffices to
show that if 0 # 7" C H then E(T) contains a monoform submodule.
Let x € E(T) be such that /(x) is maximal among annihilators of non-
zero elements of E(T"). Let N € Rx,0 # f: N — Rx. Suppose ker f # 0.
Let a ¢ I(x), axf = 0. Extend f to a map g: E(T) — E(T). Then
axf = 0 implies axg = 0 and hence that /(x) C I(xg), a contradiction.
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For the rest of this paper Q denotes a Noetherian injective indecom-
posable module, Q, the corresponding submodule. Every non-zero
noetherian module contains a non-zero monoform submodule, hence

Qo #= 0 [5].

The next theorem is useful in investigating noetherian injective
modules.

THEOREM 1.7. With Q, Qo as above, Endg N is a skewfield for every
N C Q..

Proof. Let 0+ f € Endg N. From (1.4(v)) f is monic. Suppose
Nf C N. Then there exists a map ¢ : Q — Q with g|N = f. ¢ is monic
since Q is uniform, and g is an isomorphism since Q is injective and
indecomposable. Let = = g~'. Then

NE*1 D Nfh*tt = Nh"

So we have N C Nh C Nh*... contradicting Q noetherian. Hence
Nf = N and f is a unit so Endg N is a skewfield.

Itis known thatS = Endg Qisaright and left perfect ring [3]. Hence Q
has an ascending S-socle series Qo C Q1 C Q2. .. C Q; thatis Qi41/Q; is
semisimple as right S-modules (1, Theorem P]. The submodules Q; are
invariant under right S-endomorphism of Q and in particular under
multiplication by elements of R. Hence the terms in the socle series are
R — S bimodules. This yields the following.

ProposiTION 1.8. Let Qo C Q1 C ... be the S-socle series of Q, where
S = Endz Q and Q is considered as a right S-module. Then (i) [3, 2.5]
Q = Q, for some n;

(i1) If P = 1(Qv), then P*'Q = 0 where n is such that Q, = Q.

Proof. (i) Since Q is R-noetherian, the sequence Qo C Q; C ... Q is
stationary past some #n. From [1, Theorem P] this is possible only if
Q. = Q. (ii) We show that for p € P,

p0: € Qi1 1 =27 = m

Since pQ1 = Q1/(Q1 M ker p) as right S-modules, and pQ, = 0, it follows
that pQ; is semisimple as a right S-module; hence pQ1 € Q. If pQ;: € Qi1
for 1 < 7 = 7, then p induces a map from Q,,1/Q, onto pQ,11/pQ-, but
Q:41/Q; is semisimple and pQ, C Q,_1 hence pQ,,1/Q,-1 is semisimple. So
Q.41 € Q,, and the proof is completed by induction and by noting that

P1Q = P*1Q, = PQ, = 0.
COROLLARY 1.9. If R/I(Qo) is artinian then Q is artinian.
Proof. Let 1(Qo) = P. Observe that in the exact sequence
0 — P'Q/P™'Q — Q/P™Q — Q/P'Q — 0,
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PiQ/PH1Q is artinian from [12, 6]. A simple induction and the fact that
P+1(Q = 0 completes the proof.

The next theorem requires a modification of the main theorem in [7]
which we state as a proposition.

ProrosiTION 1.10. [7]. Let g Msbe an R — S bimodule, with M noetherian
both as an R-module and as an S-module. If M is S-artinian then M is
R-artinian and R/I(M) is a two sided artinian ring.

Proof. 1t is easily verified from the finite generation of M as both R
and .S modules that R/I(M), S/Q(M) are noetherian where

QM) = {s €S| Ms =0}

Letting R = R/I(M), S = S/Q(M) and passing to the situation zMs3, it
is straightforward to modify the proof of [7] to complete the proof of this
proposition.

TaeoreM 1.11. Let M £ Qo, D = Endg Qo. Then MD finite dimensional
as a D-vector space implies that M is R-artinian and R/I(M) is artinian. In
particular if Qo is finite dimenstional over D then Q 1s artinian.

Proof. Since (MD) is both noetherian and artinian as a D module and
MD is noetherian as an R-module we have that MD is artinian as an
R-module and R/I(MD) is artinian from (1.10). Hence M and R/I(}M) are
artinian. If Qy is finite dimensional over D, then R/I((Q,) is artinian and by
(1.9) Q is artinian.

Remark 1.12. The converse to (1.11) does not hold; that is, Q artinian
does not imply that Q is finite dimensional over D. To see this let R be the
differential polynomial ring studied in [2]. Let Q be its unique injective
simple module. Then Q = Qo and an application of (4.1) shows that Q is
infinite dimensional over Endg Q. ([2] considers right modules, but is
valid, with the obvious modifications, for left modules.)

2. Commutative rings. As mentioned in the introduction it has been
shown in [4, 3.3] that over a commutative ring every injective noetherian
module is artinian. This is deductible also from (1.6) and (1.9) and we
give a brief proof.

ProposITION 2.1. [4, 3.3]. Let R be commutative. Then Qq is simple and Q
15 artintan. Hence every injective noetherian R-module is artinian.

Proof. Let 0 # x € Q. Since Endg Rx is a skewfield and R is commu-
tative, Rx is simple. Hence Q, is semisimple and since Q is uniform, Q, is
simple. The result follows from (1.9).

We take a closer look at the annihilator of Q.
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LEMMA 2.2. Let R be commutative, M = 1(Qo), m € M. Then for some
integer n = 1, either m® = 0 or [(m™) & M. In either case, m"Q = 0.

Proof. Suppose that for somem € M, m" % 0and [(m*) C M for every
integer » = 1. Pick an x # 0 in Q, and define f, : Rm" — Q for every
integer n = 1 by

am"f, = ax fora € R.

Since Q is injective, there exists {v,}m1 € Q such that m"y, = x. Let 4,
be the submodule generated by ¥, ..., ¥,. Then

An C An+1
since
m*t14, =0 and 0 x € m"t4,,,,

but this contradicts Q noetherian. If m" = 0 then m"Q = 0. If ¢ ¢ M then
multiplication by @ induces an isomorphism from Q to Q. Hence
I(m™)y € M implies there isan ¢ ¢ M with am"Q = 0 and hence m"Q = 0.

THEOREM 2.3. Let R be commutative, M = 1(Qy),
(1) R semiprime implies Q is simple.
(i1) M finitely generated implies R = T ® M™" for some integer n where T°
s local with maximal (nilpotent) ideal T (M M.

Proof. (i) R semiprime implies R has no nilpotent elements so by (2.2),
I(m™) & M for some integer # for every m € M. However R semiprime
implies [(m) = l(m") for every integer n = 1. So l(m) & M for every
m € M and hence MQ = 0. Since R is commutative M is maximal and Q
is semisimple but then Q is indecomposable and hence simple.

(ii) Let my, ..., m, generate M. Then by (2.2), for a suitably large
n, M"is generated by yy, ..., y, withI(y;) € M1 £ 4 < t. Letoy,; = 0,
v; & M. Then if v =9;,...9, we have (@) v ¢ M and (b) vM" = 0.
Together these imply that

R = Rv ®@ M".
Further if ¢« ¢ M, then
Ra + M" = R.

Soif @ € Rv,a ¢ Rv M M then a is a unit in Rv. Hence Rv is a local ring
with maximal nilpotent ideal Rv M M.

Remark 2.4. Theorem (2.3) shows that over a commutative noetherian
ring R, the only noetherian injective modules that exist come from artin-
ian local direct summands.

LEMMA 2.5. Let R be commutative, M noetherian over R, and s € R such
that sM = M. Then for every m € M, Rsm = Rm.
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Proof. Since sM = M we can define y; € M by
Yo = m, SY; = Yi-1 f0r1/‘ ; 1.

Since M is noetherian
k—1

yp = 2 ryy, forsomek, withr, € R.
=0

Hence
1
m = sy, = > r;s"'m € Rom.
=0
So Rsm = Rm.

TaEOREM 2.6. Let T be a ring, R a subring of the center of T with T
finitely gemerated as an R-module. Let Q be an injective tndecomposable
noetherian 1T-module. Then Q is artinian.

Proof. Q is a noetherian R-module since 7" is finitely generated over R.
Let Py = 1(Qo) in T,and P = Py R. If ¢« € R, a ¢ P then aQy = Qy
since multiplication by @ induces a non-zero map from Q, to Qo and this
has to be an automorphism. Let R = R/P. Then Q, is a noetherian R
module such that aQ, = Q, for every a € R. From 2.5, Q, is semi-
simple artinian as an R and hence as an R-module. Since R is commutative
it follows that R/P is artinian. Finally 7'/P; is finitely generated as an
R-module and hence is artinian. The theorem follows from (1.9).

3. Semiprime rings with Krull dimension. The advantage of
working over semiprime rings is that if an ideal / C R has endomorphism
ring a skewfield, then I is simple. The proof is given below for complete-
ness.

LEMMA 3.1. Let R be a semiprime ring. Then Endg I 1s a skewfield if and
only if I is simple.

Proof. If I is simple Endg I is a skewfield. Conversely let 0 # ¢ € I.
Then iri # 0 for some» € R. The map f: I — I induced by right multi-
plication by 77 is not zero, hence Iri = I. So Ri = I, and this shows I is
simple.

LEMMA 3.2. Let R be a semiprime ring. If 1(x) is not essential for some
x € Qo, then Q contains a simple module.

Proof. Suppose x € Qy and I N I(x) = 0 for some 0 3 I C R. Then
Ix = I and Endy, Ix is a skewfield by (1.6), and so I is simple by (3.1).
Hence Ix C Q is simple.

We state the next proposition without proof. All the material is con-
tained in (5, Chapters 1 and 3].

ProposiTION 3.3. Let R be a semiprime ring with Krull dimension o, M a
Sfinitely generated R-module,
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(1) If x € M and l(x) is essential, then 1(x) contains a regular element
and Krull dimension Rx < a.

(i) If Krull dimension Rx < o for every x € M then Krull dimension
M < e

THEOREM 3.4. Let R be a semiprime ring of Krull dimension o = 1. Then
Krull dimension Q < a. In particular if o is 1, Q 1s artinian.

Proof. Suppose Krull dimension R = « and that if x € Q, then I(x) is
essential. Let ¢ € Q. Since {a € R| ag € Qy} is essential, there is a regular
d € R with dg € Q,, (3.3(1)). Since [(dq) is essential, there is a regular
¢ € I(dg), and hence cd € I(q) is regular. Hence [(q) is essential, and so
Krull dimension Rqg < « by (3.3(i)), and Krull dimension of Q < a by
(3.3(i1)). If I(x) is not essential for some x € Q,, then Q contains a simple
module 7. For any g € Q,

I(qg) ={a € Rl ag€ T}
is essential. From the exact sequence
0— I(q)/i(g) — R/L(g) — R/I(q) — 0,

and the fact that I(q)/l(q) is simple, while Krull dimension R/I(g) < «,
it follows that Krull dimension Rg < «. Again by (3.3(ii)), Krull dimen-
sion Q < a.

4. P.I. Rings. A ring R is called a P.I ring if it satisfies a non trivial
polynomial identity over its centre. In such a case, by using [10, 1I; 4.1]
and the linearization process given in [10, I; 3.11], we can conclude that
the polynomial identity is of type

2 Ko - Ko
c€S

where S is some subset of the group of permutations on % letters.
We present some technical lemmas, the first of which is [8, 2.8].

LemMA 4.1. Let D = Endg Qo, %1, . . ., %0, ¥ € Qo. Then y € D4y x,D
if and only if
Iy) Dlx) N .o N Uxy,).

Proof. If y € D%y x:D then clearly 1(x;) N ... N I(x,) € 1(y).
Suppose

1) N NV @) S 1),

We proceed by induction on #. If # = 1 define ¢ : Rx; — Ry by axip = ay
and extend to a ¥ : Qo — Qo. Then y = x1¢¥. Now suppose the lemma is
true for » £ n — 1. Then define

@t (1) Mo M )], = [20) MY oMY (1))
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ax,p = ay.
Again extend ¢ to a ¢ : Qo — Qp and then
Iy — x) D 1(xs) Moo OV (%),

Hence by induction

y = Zl Xi@i.
The following is (12, Lemma 6].

LEMMA 4.2. Let M be a module over a ring R and suppose that for every
m € M, Rm is artinian. Then M has q.f.d. implies M is artinian.

Proof. Suppose M is not artinian. Then M has a proper non-artinian
submodule N, and there is an x; € M with x; ¢ N. Suppose we have
already constructed x1,...,%x, € M, Ny, ..., N, submodules of M such
that x; ¢ Ny, x; € Nyforj# 4,1 £14,j < rand Nj=; N, not artinian.
Let M = M/Y Rx;and 5 : M — M the cannonical quotient map. Then
7((Ni=1 IV;) is not artinian (since ZLI Rx,is artinian) and hence, we can
pick

NC n(ﬂ Ni) .
=1

Let N,., = n~ (V) and pick x,41 € Nj=1 N, with n(x,41) € N. Hence we
can construct a set {x;}%: € M, {NJ}%, submodules of M with
(a) Xy @ Niy (b) Xy S N]‘,j # 1. Let

VM- ][] M/N,
i=1

be the map induced by the canonical quotient maps from M — M/N;. It
is easily verified that \I/(Z‘i;l Rx;) does not have finite uniform dimen-
sion.

LEmMA 4.3. Let M be a module over aP.1ring R, N < M,0# x € M — N.
Thenthereexistty, ... by € R,J < MJEZ Nwith[(i=1l(t;...t)x]J C N.

Proof. Suppose the contrary. We demonstrate a contradiction of the
fact that R satisfies a P.I by constructing a set {u,}%-o as follows;

(i) Let uy = 1.

(i1) Since [(x)Px £ N by hypothesis, pick #; € R such that
I(x)uwx & N.

(iii) Suppose we have picked uy, . . ., u, such that

r—1
[ﬂ ;... uox)]u,. coux €N and

0

r—2
Uy € [ﬂ uy. . .ztox)] Jr =2
=0
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Then by assumption

r—1 r—2
[ﬂ Hug . .. uox)] [ﬂ Iug. .. uox)]u, oo ux & N.
i=0 i=0

Hence we can pick

Urp1 € [(’\~ ... ztox)]
=0

with

r—1
[ N L(u;. .. uox)]u,+1 cooux & N.
=0

Therefore, by induction, we have a set {u % satisfying

(@) u,...ux #0,
(b) wpy...ux =0 ifj>e41,
(¢) ux =0 ifz= 2

Let R satisfy the polynomial identity

f(x;,...,xn) =xn...x1+Z;ixa(n)...xq(1)
(A

where S C S, does not contain the identity permutation. Then
fe, .. )X = Uy, . .. U
by (b), and

flty, .. )X = 1y ..o ux # 0
by (a), and this contradicts the fact that R satisfies f.

THEOREM 4.4. Let R be a P.1 ring satisfying a non-trivial identity. Then
(1) Q contains a simple module.
(1) If I/I? has q.f.d. for every ideal I < R, then Q is artinian.

Proof. (1) Setting N = 0, M = Qqin (4.3) wegetaJ # 0,x1,...,%, €
Qo with

[é1 [(x,»)]] = 0.

Hence by (4.1) JD is finite dimensional over D = Endg Qy. So by (1.11),

J is artinian and hence J contains a simple submodule and so does Q.
(i) Let A = X {A4; € Qo| 4, is artinian}. Since homomorphic images

of artinian submodules are artinian, 4 is a D-module. Since Qq is

noetherian, 4 is artinian and since R satisfies a polynomial identity,
R = R/I(A) is artinian.
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If Oy = A we are done by (1.9). If Qy # 4, then by (4.3) there exist
X1,...,%, € Qo J € A such that

Ul Moo N U x,)]T C A4.
Let

1(A) = Hay) N .o O L ay),
I ={l(xy) Moo N L (x,) N IA)] 4+ LU).

Then IJ € 4 and hence (I(4)I)J = 0 and so I*J = 0. Hence
2CI(J) and [(A)I < I(J).

From the assumption that I/I2 has q.f.d. and the fact that R is artinian it
follows that I/1(J) is artinian. If I £ [(J) thereisa v, € J with Iy, # 0.
Hence

IDINI(y) DIJ).

Repeating the above argument and using the fact that I//(J) is artinian
we can find vy, ...,vp € J with I N\ I(yy)) N ... Ni(yp) CI{J). It
follows that

) N e OV )] OV @) O OV a)]
Ny N N Iye)] S ).

This implies (1.11) that J € 4, a contradiction. Hence 4 = Q and so Q
is artinian.

Remark 4.5. The condition about I/I? having h.f.d. in Theorem (4.4)
appears somewhat artificial. However, (in the notation of the theorem),
the passage from (I(x;) N ... N\ I(x,))J € A to the fact that JD is
finite dimensional over D appears difficult without some hypothesis on R.
It is also perhaps worth pointing out that (4.3) includes, as special cases,
the known results that over noetherian P.I rings and over V-rings
satisfying a P.I, injective and noetherian implies artinian.
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