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ON THE STRUCTURE OF AN ENDOMORPHISM NEAR-RING

by GARY L. PETERSON
{Received Sth October 1987)

If G is an additive (but not necessarily abelian) group and S is a semigroup of
endomorphisms of G, the endomorphism near-ring R of G generated by S consists of all
the expressions of the form &;s,+ - - +¢,s, where ¢;=+1 and s5;eS for each i. When
functions are written on the right, R forms a distributively generated left near-ring under
pointwise addition and composition of functions. A basic reference on near-rings which
has a substantial treatment of endomorphism near-rings is [6].

If the group of inner automorphisms of G is contained in S, the near-ring generated
by S is said to be tame. Throughout this paper we shall restrict our attention to tame
endomorphisms near-rings. ,

In Section 1, we shall obtain a more explicit description of the minimal R-subgroups
of G than has previously appeared in the literature and will give a description of
R/J,(R) when R satisfies the descending chain condition on right ideals. The second
section is involved with local endomorphism near-rings satisfying the descending chain
condition on right ideals. Here we obtain results about the structure of G and R/J,(R)
when R is local which extend results obtained in [2] for finite groups. We also obtain a
necessary condition for a tame endomorphism near-ring satisfying the descending chain
condition on right ideals to be local.

I wish to thank Professor C. G. Lyons for many useful conversations on endomor-
phism near-rings and, in particular, pointing out a flaw in an earlier proof of part (iii) of
Theorem 2.1.

1. General structure results

If R is a tame endomorphism near-ring of G and H is a minimal R-subgroup of G,
then it is known ([6, Corollary 10.18 and Theorem 10.30]) that H is either: (1) an
elementary abelian p-group, (2) a divisible abelian group, or (3) a perfect group (ie.,
H’'=H). In fact, we can get an even sharper description in case (2). For suppose H is a
minimal R-subgroup of G which is a divisible abelian group. By Theorem 9.13 of [7],
we have that H is a direct sum of copies of the additive group of the rational numbers
and copies of a{p®) for various primes p where a(p*) is the group:

o(p®)=<a,,a,,as,...|pa; =0, pa, =a,,pay=a,,...)
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However, were H to contain copies of o(p™) for some prime p, the elements of order p
in H would form a proper R-subgroup in H. Hence we have:

Proposition 1.1. Let R be a tame endomorphism near-ring of G and H be a minimal R-
subgroup of G. Then H is either an elementary abelian p-group, a direct sum of copies of
the additive group of the rational numbers, or a perfect group.

Now suppose that R satisfies the descending chain condition on right R-ideals. For
the remainder of this paper we shall denote this chain condition by dccr. The socle of G,
Soc(G), is the sum of the minimal R-subgroups of G and we have that Soc(G)=U @ V
where U is the sum of the minimal R-subgroups of G that are abelian and V is the sum
of those that are perfect. Moreover, because R satisfies dccr, V is finite ([6, Lemma
10.39]). The socle series of G is obtained by setting Socy(G)=0 and Soc(G) to be the
inverse image of Soc(G/Soc, _(G)) in G for k>1. We have that Soc,(G) =G for some n
([6, Theorem 10.37]), and throughout we shall use n to denote the smallest such positive
integer for which Soc,(G)=G.

For each 1 £k<n,

Soc(G)/Soc,—(G)=U, @ V,

where U, is the sum of the minimal R-subgroups of G/Soc, _(G) that are abelian and V,
is the sum of those that are perfect. Further, we can write each of these summands as
direct sums

Uk=®ZAki and I/k=®szj
i j

where A,; and B,; are minimal R-subgroups'([6, Theorem 10.20]). Indeed, both the sum
and the R-subgroups B,; for ¥, are finite since V, is finite.
Following Theorem 7.12 of [6], we can write R=R/J,(R) as

m r(i)
R-0 3 (o 1 &)
i=1 Jj=1

where each K;; is a minimal right ideal of R, K,,, K,,,...,K,,; are representatives of
the isomorphism classes of minimal R-modules, and K;,,.K,,,..., K, are isomorphic
R-modules.

We have that there are at most a finite number of R-isomorphism (or R-isomorphism)
classes of the R-modules A4,; and B,;. Let us denote these by 4,,...,4,, B,,..., B, where
each A, is abelian and each B; is perfect. We will assume that the notation is arranged
so that 4,~K;; and B;~K,,; ;. We must have s+t=m, for suppose s+t <m. Then

s+t

ﬂ Anng(K,,)#0
k=1
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and since
Anngz(A4;)=Anng(K;,) and Anng(B;)=Anng(K,, ;)

we have that the annhilator of the socle series of G properly contains J,(R)
contradicting Lemma 2.5 of [1].
We now give a description of the minimal R-ideals

r(i)
R,’-_— @ Z KU
j=1

Suppose 1<i<s. Then R;=R/Anng(A;) and A4; is a 2-primitive R;-module. As R; is an
endomorphism near-ring of an abelian group, we have that R; is a ring. It then follows
from ring theory R; is a matrix ring over the division ring

D,=Endk"(A')=EndR(Al).
Let us denote this matrix ring as Mat, (D) where k; is the dimension of A; over D, If

s<i<m, then R;=R/Anng(B;_,) and R;=M(B;_,) by Theorem 10.21 of [6].
Let us summarize our observations as follows:

Theorem 1.2. Let R be a tame endomorphism near-ring of a group G satisfying dccr
and A,,...,A,, B,,...,B, be a complete set of representatives of the isomorphism classes
of minimal R-subgroups occurring in the factors of the socle series of G where each A; is
abelian and each B; is perfect. Then A,,...,A,, By,....,B, form a set of representatives
of all the isomorphism classes of R-modules of type 2 and

R/J,(R)=Mat, (D,)® - @ Mat, (D,) ® M(B,) @ - @ M(B)

where D;=Endg(A,) and k; is the dimension of A; over D,.

2. Local endomorphism near-rings

Throughout this section R will be a tame endomorphism near-ring of G satisfying
decr, :

0<Soc,(G)=Soc,(G)= --- =Soc,(G)=G
will be the socle series of G, and for each i we will write

Soc{G)/Soc;—(G)=® Y. My,

where each M;; is a minimal R-module.
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As defined in [4] (only modified to left near-rings), a near-ring R with identity is local
if

L={reR]|r does not have a right inverse}

is a right R-subgroup of R. Having R local is equivalent to having L=J,(R) by
Theorem 2.10 of [4].

We first obtain a description of the structure of G and R/J,(R) when R is local. This
result is essentially an extension of Theorem 2.2 of [2] which deals with the case when
G is finite, only here we work with the minimal summands of the socle series instead of
factors of a principal series.

Theorem 2.1. Let R be a tame endomorphism near-ring of G satisfying dccr. If R is
local, then:
(i) M;;=~R/J,(R) as R-modules for all i and j.
(ii) Either Soc{G)/Soc;_(G) is an elementary abelian p-group or is a direct sum of

copies of the additive group of the rational numbers for every i. Moreover, G is a
p-group of exponent p" in the former case.

(iit) G is nilpotent.
(iv) The socle series is a central series.

Proof.

(i) Let m be a nonzero element of M;;. Then
Anng(m)2 Anng(M ;) 2J(R)

As J,(R)=L is the maximal right R-subgroup of R ([4, Theorem 2.2]), these
containments are in fact equalities. Hence

M;;=mR~R/Anng(m)=R/J,(R).

(i) If M;; is perfect, R/J,(R)=MM;) by Theorem 1.2. But R/J,(R) must be a
near-field ([4, Corollary 2.11]). As My(M,)) is a near-field if and only if M;;~Z,,
M;; cannot be perfect. Hence M,;; is abelian and (ii) now follows from
Proposition 1.1.

(i) Let A be any one of the M;; It follows from the last corollary in [3] that G
contains a nilpotent R-subgroup P such that [G:P] is finite since every minimal
factor of G is abehan as all such factors are isomorphic to A. Indeed, this
subgroup P in [3] is the intersection of the near-ring centralizers of the minimal
factors of G where the near-ring centralizer of a factor H of G is the R-submodule

NCg(H)={geG|[gR,H]=0}
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of G. Note that the near-ring centralizer NCg(H) is a subgroup of the usual
group centralizer Co(H)={ge G|[g, H]=0}. Since all minimal factors of G are
isomorphic to A, we have P=NC(A).

If P=G, we are done, so suppose that this is not the case. Since any principal
R-series of G/P has factors isomorphic to A4, it follows from (ii) that G/P and A4
are finite p-groups. Let B be a minimal R-subgroup of G/P. Because [gR, B] is an
R-subgroup of G/P for any ge G and G/P is nilpotent, [gR, B] is an R-subgroup
of B properly contained in B. Hence [gR, B] =0 which gives us NCg4(B)=G. But
then, as A~B, P=NC4;A)=NCqyzB)=G so that the case P< G does not occur.

(iv) Again let A denote any one of the M;. From the proof of (iii), we see that
NC4(A)=G and consequently Cg(A4)=G. Since each factor of the socle series is a
direct sum of R-modules isomorphic to A, it follows that the socle series is
central.

We will conclude this paper by showing that the converse to (i) of Theorem 2.1.
holds. In doing so, we will need a result relating idempotents and local near-rings. In
[4] (Theorem 4.2) it was shown that the only idempotents in a local near-ring R with
identity are the trivial idempotents O and 1. Then it was shown in [§] (Theorem II.1)
that the converse aiso holds when the near-ring R is a finite near-ring. However, as the
interested reader can check, the proof of the converse given in [5] still applies if R
satisfies the descending chain condition on right R-subgroups and hence we have:

Lemma 2.2. Let R be a near-ring satisfying the descending chain condition on right R-
subgroups. Then R is local if and only if R contains only the trivial idempotents 0 and 1.

Theorem 2.3. Let R be a tame endomorphism near-ring of G satisfying dcer. If
M;;~R/J5(R) for all i and j, then R is local.

Proof. As we have done before, let A denote one of the M;;. Then J,(R)=Anng(A).
We will proceed by induction on the length n of the socle series. If n=1, G is a direct
sum of copies of 4 and hence J,(R)=0 since G is a faithful R-module. Thus R~A4 as
R-modules and hence R is an R-module of type 2. By Theorem 1.2, R either is a matrix
ring over a division ring D or is M(A). Considering these possibilities, we see that the
only way R can be of type 2 is for R to be a matrix ring of dimension 1, so R=D and
clearly R is local.

Now consider the induction step. Let R = R/Anng(G/Sod(G)). Since

Anng(G/Soc(G)) S Anng(A)=J,(R)
we have that J,(R)=J,(R)/Anng(G/Soc(G)). It then follows that R is an endomorphism
near-ring on G/Soc(G) satisfying the hypothesis of the theorem. Consequently R is local.

Applying Theorem 2.1, we get that G/Soc(G) is nilpotent and, if we view 4 as being a
summand of Soc,(G)/Soc(G), G/Soc(G) acts trivially on 4 when we let G/Soc(G) act on
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A by conjugation. But this then gives us that G acts trivially on A4 under conjugation as
well. Since Soc(G) is a direct sum of R-subgroups isomorphic to 4 and R is tame, we
have that G acts trivially on Soc(G) under conjugation and hence Soc(G) is contained in
the center of G. :

Let e be a nonzero idempotent in R. We have from Theorem 5.7 of [8] that a tame
endomorphism near-ring, satisfying dccr actually satisfies the stronger condition of
having the descending chain condition on right R-subgroups. Hence it will follow from
Lemma 2.2 that R is local if we can show that e=1. Since AnnG/Soc(G))=J,(R) and
J»(R) is nilpotent ([6, Theorem 10.32]), the image of e in R, ¢, is a nonzero idempotent
of R. Since R is local, e is the identity on G/Soc(G) by Lemma 2.2. But this forces e to
act as the identity on A. Hence e acts as the identity on Soc(G).

Now let ge G. Since e acts as the identity on G/Soc(G), we have

ge=g+h
for some he Soc(G). Suppose that
e=gS;+  +&S5

where each ¢;=+1 and each s; is an element of the semigroup of endomorphisms
generating R. Then

(g+he=(g+h)(es;+ - +&s)
=g (g+h)s,+ - +elg+h)s,.
Since he Soc(G) and Soc(G) is in the centre of G, we can rewrite this as
(g+h)e=¢e,gs,+¢& hs;+ - +egs,+hs,
=&,85,+ - +egsytehs, + - +ehs,

=ge+he=ge+h.
Thus
gel=(g+he=ge+h
=ge
and h=0. But then ge=g for all ge G so e=1 and the proof is complete.
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