For a graph G, define the bisection width $bw(G)$ of G as $\min \{ e_G(A, B) : \{A, B\} \text{ partitions } V(G) \text{ with } |A| - |B| \leq 1 \}$ where $e_G(A, B)$ denotes the number of edges in G with one end in A and one end in B. We show almost every cubic graph G of order n has $bw(G) \geq n/11$ while every such graph has $bw(G) \leq (n + 138)/3$. We also show that almost every r-regular graph G of order n has $bw(G) \geq c_r n$ where $c_r \to r/4$ as $r \to \infty$. Our last result is asymptotically correct.

1. INTRODUCTION

For a graph G, define the bisection width $bw(G)$ of G by

$bw(G) = \min \{ e_G(A, B) : \{A, B\} \text{ partitions } V(G) \text{ with } |A| - |B| \leq 1 \}$

where $e_G(A, B)$ denotes the number of edges in G with one end in A and one end in B.

The problem of finding the bisection width of a graph is of fundamental importance in many divide-and-conquer stratagems and, as such, is the subject of an extensive literature. (See [4, 9, 10, 13, 15, 18] for general results and [6, 11] for results regarding VLSI design.)

Unfortunately, the bisection problem for graphs, in general, is NP-complete [12] and remains so for r-regular graphs [9]. Polynomial-time algorithms which give exact solutions are known only for trees and bounded-width planar graphs [9] while polynomial-time algorithms which give approximate solutions may give solutions which are far from exact [18]. Consequently, heuristic algorithms which hopefully give nearly exact solutions most of the time have been developed in [9, 13, 14, 16, 18].

In [9] a method was given for transforming a regular graph G of order n into a cubic graph G^* of order $O(n^5)$ so that any minimum bisection of G^* uses only edges of G. As a result, we content ourselves mainly with an examination of cubic graphs. As usual, we say that almost every graph has a property Q provided the probability that a graph of order n has property Q tends to 1 as $n \to \infty$.

We show that almost every cubic graph G of order n has $bw(G) \geq n/11$ while every such graph has $bw(G) \leq (n + 138)/3$. We also show that almost every r-regular...
graph G of order n has $bw(G) \geq c_r n$ where $c_r \to r/4$ as $r \to \infty$. (Note that absolute lower bounds for the bisection width of a graph are not particularly informative, since they must be nearly zero.)

Our notation and terminology follows Bollobás [7].

2. An Upper Bound for the Bisection Width of a Cubic Graph

We give now an upper bound for the bisection width of a cubic graph.

Theorem 1. Every cubic graph G of order n has $bw(G) \leq (n + 138)/3$.

Proof: Let $\{A, B\}$ be an equisized partition of $V(G)$ with $bw(G) = e_G(A, B)$. Set $A_i = \{v \in A : e_G(v, B) = i\}$ for $0 \leq i \leq 3$ and $A_{i1} = \{v \in A : e_G(v, A - A_1) = i\}$ for $0 \leq i \leq 2$. (Define B_i and B_{i1} similarly.)

Suppose $x \in A_3$ and $y \in B_1 \cup B_2 \cup B_3$ with $xy \notin E(G)$; exchanging x with y shows $\{A, B\}$ is not an optimal partition, which is a contradiction. Consequently, $|B_1 \cup B_2 \cup B_3| \leq 3$ and $bw(G) \leq 9 \leq (n + 138)/3$. We assume $|A_3| = |B_3| = 0$.

Suppose $|B_2| \geq 4$. When $|A_2| \neq 0$, there exists $x \in A_2$ and $y \in B_2$ with $xy \notin E(G)$; exchanging x with y shows $\{A, B\}$ is not an optimal partition. Consequently, $|A_2| = 0$. When $G[A_{10} \cup A_{11}]$ is empty, we have $|A_{10} \cup A_{11}| \leq 1$. Then

$$3|A_0| \geq e_G(A_0, A_1) \geq 2|A_1| - 2$$

so that

$$n/2 = |A_0| + |A_1| \geq (5|A_1| - 2)/3$$

and

$$bw(G) \leq (3n + 4)/10 \leq (n + 138)/3.$$

When $G[A_{10} \cup A_{11}]$ is nonempty, there exist an edge x_1x_2 in $G[A_{10} \cup A_{11}]$ and $y_1, y_2 \in B_2$ with $e_G(\{x_1, x_2\}, \{y_1, y_2\}) = 0$; exchanging $\{x_1, x_2\}$ with $\{y_1, y_2\}$ shows $\{A, B\}$ is not an optimal partition. We assume $|A_2|, |B_2| \leq 3$.

Denote a path (cycle) of order n by $P_n(C_n)$. Let

$$a = \max \{|E_1, \ldots, E_t|\}$$

where $\{E_1, \ldots, E_t\}$ is a set of vertex-disjoint subgraphs of $G[A]$ and each $E_i \cong P_3 \subseteq G[A_{10} \cup A_{11}]$ or

$n \leq 3 |G[A_0 \cup A_{11}]|$ with precisely one vertex in A_0 or

$n \leq 4 |G[A_0 \cup A_{10} \cup A_{11}]|$ with precisely one vertex in A_0 and precisely one vertex in A_{10} or

$n \leq 5 |G[A_0 \cup A_{10} \cup A_{11}]|$ with only the centre vertex in A_0 and
let \(A_j^* = \bigcup \{ V(E_i) \cap A_j^* : 1 \leq i \leq a \} \) for \(0 \leq j \leq 1 \). (Define \(b, \{ F_1, \ldots, F_t \} \), \(B_j^* \) for \(0 \leq j \leq 1 \) similarly.)

Claim. \(\min\{a, b\} \leq 5 \).

Suppose \(a, b \geq 6 \). Choose \(e_G(E_i, F_j) = 0 \) with \(|E_i| = |F_j| \) as large as possible, say \(|E_i| \geq |F_j| \). When \(|E_i| = |F_j| \); exchanging \(E_i \) with \(F_j \) shows \(\{ A, B \} \) is not an optimal partition. When \(|E_i| = |F_j| + 1 \); exchanging \(E_i \) with \(F_j \), where \(E_i' \) is the subgraph of \(E_i \) contained in \(G[A_1] \), shows \(\{ A, B \} \) is not an optimal partition. When \(|E_i| = |F_j| + 2 \) then \(|E_i| = 5 \) and \(|F_j| = 3 \). Since \(b \geq 6 \), there exist \(F_k \neq F_j \) with \(e_G(E_i, F_k) = 0 \). By the above, \(|F_k| = 3 \); exchanging \(E_i \) with \(F_j \cup F_k' \), where \(F_k' \) is a subpath of order 2 contained in \(G[B_1] \), shows \(\{ A, B \} \) is not an optimal partition. \[\]

We assume \(a \leq 5 \) so that \(|A_0^*| \leq 5 \) and \(|A_j^*| \leq 20 \).

Claim. \(|A_{10}| \leq 25 \).

Note that \(G[A_{10} \cup A_{11}] \) is a vertex-disjoint set of paths and cycles when \(|A_{10} \cup A_{11}| \neq 0 \), since \(\delta(G[A_{10} \cup A_{11}]) = 1 \) and \(\Delta(G[A_{10} \cup A_{11}]) = 2 \). Consequently, \(|A_{10}| \leq 25 \) since \(a \leq 5 \) (after breaking paths and cycles apart if necessary).

Let \(A_1' = \{ w \in A_1 - A_1^* : vw \in E(G) \text{ for some } v \in A_1^* \} \). Clearly, \(|A_1'| \leq 2 \cdot 5 = 10 \).

Set \(|A_{12}| = c|A_1| \) where \(c \in [0, 1] \).

Then

\[
|A_{11}| + |A_{12}| \geq |A_1| - 25
\]

so that

\[
|A_{11}| \geq (1 - c)|A_1| - 25.
\]

Now

\[
3|A_0| \geq e_G(A_0, A_1) \geq |A_{11}| + 2|A_{12}| - 3
\]

so that

\[
|A_0| \geq [(1 + c)|A_1| - 28]/3.
\]

Then

\[
n/2 \geq |A_0| + |A_1| \geq [(4 + c)|A_1| - 28]/3
\]

so that

\[
|A_1| \leq (3n + 56)/2(4 + c)
\]

and

\[
bw(G) \leq 6 + |A_1| \leq 6 + (3n + 56)/2(4 + c).
\]

Also

\[
|A_{11}| - |A_j^*| - |A_j'| - 5 \leq |A_{11} - (A_j^* \cup A_j')| - 5
\]

\[
\leq |A_0 - A_j^*| = |A_0| - |A_j^*|,
\]
by the maximality of a, so that
\[|A_0| \geq |A_1| - 35 \geq (1 - c)|A_1| - 60. \]
Then
\[n/2 \geq |A_0| + |A_1| \geq (2 - c)|A_1| - 60 \]
so that
\[|A_1| \leq (n + 120)/2(2 - c) \]
and
\[bw(G) \leq 6 + |A_1| \leq 6 + (n + 120)/2(2 - c). \]
Consequently,
\[bw(G) \leq \min\{6 + (3n + 56)/2(4 + c), 6 + (n + 120)/2(2 - c)\} \]
\[\leq (n + 138)/3, \]
since the above minimum is at most $(n + 138)/3$ for $n \geq 184$ and at most $6 + (3n + 56)/8 \leq (n + 138)/3$ for $n \leq 182$.

Remark. In general, if $\{A, B\}$ is a partition of the vertices of an r-regular graph G of order n with $bw(G) = e_G(A, B)$, one would hope that either $G[A]$ or $G[B]$ contains a small number of forbidden subgraphs (see definition of a, b in Theorem 1) which, in turn, impose structure on $G[A]$ or $G[B]$ and give $bw(G) \leq c_r n + O(1)$ for some $c_r < r/4$. At present we have only the result of Goldberg and Gardner [13] that, for any such graph G, $bw(G) \leq r(n + \varepsilon n)/4$ where $\varepsilon_n = 1$ for odd n and $\varepsilon_n = n/(n - 1)$ for even n. There are, however, limitations on how small the ratio $bw(G)/n$ can be made for r-regular graphs G of order n.

An r-regular graph G of order n is an (n, r, c)-expander if $|N(X) - X| \geq c|X|$ for all $X \subseteq V(G)$ with $|X| \leq n/2$. (These and similar graphs have an extensive literature; see the references in [1].) Clearly, any (n, r, c)-expander G has $bw(G) \geq c[n/2]$.

Let $\lambda_1(G)$ denote the second largest eigenvalue of the adjacency matrix of G in absolute value. Note that $0 < \lambda_1(G) < r$ when G is connected. Alon and Milman [3] have shown that any r-regular graph G of order n is an $(n, r, (r - \lambda_1(G))/2r)$-expander while Alon and Boppana [2] (see also [17]) have shown that $\lim_{n \to \infty} \lambda_1(G_n) \geq 2\sqrt{r - 1}$ for any sequence $\{G_n\}$ of such graphs. Lubotzky, Phillips and Sarnak [17] have shown this last result asymptotically correct by constructing infinite families of r-regular graphs G with $\lambda_1(G) \leq 2\sqrt{r - 1}$ for all primes $r \equiv 1(\mod 4)$.

The above results imply that any r-regular graph G of large order n has $bw(G) \geq cn$ where c, unfortunately, is rather small. We improve this by showing that almost every r-regular graph G of order n has $bw(G) \geq c_r n$ where $c_r \to r/4$ as $r \to \infty$.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 26 Apr 2018 at 17:37:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700003300
3. A LOWER BOUND FOR THE BISECTION WIDTH OF ALMOST EVERY CUBIC GRAPH

Bender and Canfield [5] gave the first formula for the asymptotic number of labelled \(r \)-regular graphs of order \(n \). Bollobás [8] gave a simpler proof of the same formula that, more importantly, contained a model for the set of regular graphs which can be used to study labelled random regular graphs. We describe now this model.

Let \(rn \) be even and \(q = rn/2 \). Let \(V = V_1 \cup \ldots \cup V_n \) be a disjoint union of \(rn \) labelled vertices where \(|V_i| = r \) for \(1 \leq i \leq n \). A configuration is a 1-regular graph with vertex set \(V \). Denote the set of configurations by \(\Phi = \Phi(n, r) \).

\[|\Phi| = (rn)!/2^q q! . \]

A configuration is good if when we shrink each set \(V_i \) to a vertex \(v_i \) we obtain a simple graph. Denote the set of good configurations by \(\Omega = \Omega(n, r) \) and the set of simple \(r \)-regular graphs with vertex set \(\{v_1, \ldots, v_n\} \) by \(\mathcal{G}^{(r)}_n \).

\[|\Omega| = (r!)^n |\mathcal{G}^{(r)}_n| . \]

Now regard \(\Phi \) as a probability space where \(P(F) = |\Phi|^{-1} \) for any configuration \(F \). Bollobás [8] showed that

\[P(\text{configuration } F \text{ is good}) \to e^{(1-r^2)/4} \quad (n \to \infty) \]

and, hence,

\[|\mathcal{G}^{(r)}_n| \sim e^{(1-r^2)/4} |\Phi|/(r!)^n \quad (n \to \infty) . \]

Finally regard \(\mathcal{G}^{(r)}_n \) as a probability space where \(P(G) = |\mathcal{G}^{(r)}_n|^{-1} \) for any \(r \)-regular graph \(G \) with vertex set \(\{v_1, \ldots, v_n\} \). An immediate consequence of the preceding is that if the probability that a configuration has a certain property tends to 1 as \(n \to \infty \) then the probability that an \(r \)-regular graph has the corresponding property also tends to 1 as \(n \to \infty \).

For \(r \geq 3 \), let \(c = c_r \) be the unique real number in \((0, r/4)\) with \(2(2-r)r^r = (2c)^2c(r-2c)^{(r-2c)} \). The constant exists since \(x^x(r-x)^{r-x} \) monotonically decreases on \([0, r/2]\). Note that \(c_3 = 0.0922357 \ldots \in (1/11, 1/10) \). We denote \(t(t-1)\ldots(t-k+1) \) by \((t)_k \).

We give now

Theorem 2. Almost every cubic graph \(G \) of order \(n \) has \(bw(G) \geq n/11 \).

Proof: Let \(n = 2m \). Fix a partition \(\{A, B\} \) of \(\{1, \ldots, n\} \) with \(|A| = |B| = m \). Let \(V_A = \bigcup\{V_i : i \in A\} \) (Define \(V_B \) similarly). Note that the event \(e_F(V_A, V_B) = j \)
is a nonempty subset of Φ if and only if $3m$ and j have the same parity. Put $p_j = (3m - j)/2$. Then

$$P(e_F(V_A, V_B) = j) = \frac{(3m)_j^2}{j!} \left[\frac{(3m - j)!}{2^j p_j!} \right]^2 |\Phi|^{-1}$$

$$= \frac{[(3m)!]^2 (2j)!}{j! p_j! (2^{3n})!},$$

where the left factor of (1) is the number of ways of labelling the ends of the j edges between V_A and V_B and the middle factor of (1) is the number of ways of completing the 1-factor in both V_A and V_B.

For $j \geq 2$, we have

$$P(e_F(V_A, V_B) = j - 2) = \frac{j(j-1)}{(3m-j+2)^2} P(e_F(V_A, V_B) = j)$$

where $j(j-1)/(3m-j+2)^2$ increases with j. For even $3m$ and $2k \leq [c_3 n]$, we have

$$P(e_F(V_A, V_B) \leq 2k) = \sum_{\text{even } j \leq 2k} P(e_F(V_A, V_B) = j) \leq P(e_F(V_A, V_B) = 2k)(1 + \alpha + \cdots + \alpha^k),$$

where $\alpha = 2k(2k-1)/(3m-2k+2)^2$. Since $\alpha \leq (2c_3/3 - 2c_3)^2 \leq 1/2$, we have

$$P(e_F(V_A, V_B) \leq 2k) \leq 2P(e_F(V_A, V_B) = 2k).$$

Then

$$P(bw(F) \leq 2k) = P(e_F(V_A, V_B) \leq 2k \text{ for some } \{A, B\}) \leq \sum_{\{A, B\}} P(e_F(V_A, V_B) \leq 2k) \leq \binom{n}{m} \frac{[(3m)!]^2 (2k)! p_{2k}! (2^{3n})!}{(2k)! [p_{2k}!]^2 (3n)!}.$$

From $\binom{n}{m} = O(2^m m^{-1/2})$ and Stirling’s Formula, we obtain

$$P(bw(F) \leq 2k) = O\left(\frac{2^{-m} 3^m m^{3m+1/2}}{(2k)^{2k+1/2} (3m-2k)^{3m-2k+1}} \right).$$

Now write $2k = 2cm \leq [c_3 n]$ and we have

$$P(bw(F) \leq cn) = O\left(\frac{1}{n} \right).$$
For odd $3m$, a similar calculation with $2k$ replaced by $2k + 1$ gives the same result. Then
\[P\left(bw\left(F\right) \leq \left\lfloor c_3n \right\rfloor \right) \to 0 \quad (n \to \infty) \]
and, consequently,
\[P\left(bw\left(G \in G_n^{(3)} \right) \geq c_3n \right) \to 1 \quad (n \to \infty). \]

Remark. In general, a similar calculation shows that
\[P\left(bw\left(G \in G_n^{(r)} \right) \geq c_r n \right) \to 1 \quad (n \to \infty). \]

Since $(2d)^2d(1-2d)^{1-2d}$ monotonically decreases to $1/2$ on $[0,1/4]$, we have
\[(2d)^2d(1-2d)^{1-2d} \geq 2^2/r/2 \]
for fixed $d \in (0,1/4)$ and all sufficiently large r. Consequently, $c_r \geq rd$ so that $c_r \to r/4$ as $r \to \infty$. We summarize this now.

Theorem 3. Almost every r-regular graph G of order n has $bw(G) \geq c_r n$. Moreover, $c_r \to r/4$ as $r \to \infty$.

In view of the upper bound for the bisection width given by Goldberg and Gardner [13], this last result is asymptotically correct.

References

L.H. Clark,
Department of Mathematics,
The University of New Mexico,
Albuquerque, NM. 87131
United States of America.

R. Entringer,
Department of Mathematics,
The University of New Mexico,
Albuquerque, NM. 87131
United States of America.