CELEBRATING 50 YEARS OF THE APPLIED PROBABILITY TRUST

Edited by S. ASMUSSEN, P. JAGERS, I. MOLCHANOV and L. C. G. ROGERS

Part 7. Stochastic geometry

CONTINUUM AB PERCOLATION AND AB RANDOM GEOMETRIC GRAPHS

MATHEW D. PENROSE, University of Bath

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK. Email address: m.d.penrose@bath.ac.uk

CONTINUUM AB PERCOLATION AND AB RANDOM GEOMETRIC GRAPHS

BY MATHEW D. PENROSE

Abstract

Consider a bipartite random geometric graph on the union of two independent homogeneous Poisson point processes in d-space, with distance parameter r and intensities λ and μ . We show for $d \geq 2$ that if λ is supercritical for the one-type random geometric graph with distance parameter 2r, there exists μ such that (λ, μ) is supercritical (this was previously known for d=2). For d=2, we also consider the restriction of this graph to points in the unit square. Taking $\mu=\tau\lambda$ for fixed τ , we give a strong law of large numbers as $\lambda\to\infty$ for the connectivity threshold of this graph.

Keywords: Bipartite geometric graph; continuum percolation; connectivity threshold

2010 Mathematics Subject Classification: Primary 60D05; 05C80

Secondary 82B43; 05C40; 60K35

1. Introduction and statement of results

The continuum AB percolation model, introduced by Iyer and Yogeshwaran [3], goes as follows. Particles of two types, A and B, are scattered randomly in Euclidean space as two independent Poisson processes, and edges are added between particles of opposite type that are sufficiently close together. This provides a continuum analogue of lattice AB percolation which is discussed in, e.g. [2]. Motivation for considering continuum AB percolation is discussed in detail in [3]; the main motivation comes from wireless communications networks with two types of transmitter.

Another type of continuum percolation model with two types of particle is the *secrecy random graph* [9] in which the type-B particles (representing eavesdroppers) inhibit percolation; each type-A particle may send a message to every other type-A particle lying closer than its nearest neighbour of type B. See also [7]. Such models are not considered here; they are complementary to ours.

To describe continuum AB percolation more precisely, we make some definitions. Let $d \in \mathbb{N}$. Given any two locally finite sets $\mathcal{X}, \mathcal{Y} \subset \mathbb{R}^d$, and given r > 0, let $G(\mathcal{X}, \mathcal{Y}, r)$ be the bipartite graph with vertex sets \mathcal{X} and \mathcal{Y} , and with an undirected edge $\{X, Y\}$ included for each $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ with $\|X - Y\| \le r$, where $\|\cdot\|$ is the Euclidean norm in \mathbb{R}^d (our parameter r would be denoted 2r in the notation of [3]). Also, let $G(\mathcal{X}, r)$ be the graph with vertex set \mathcal{X} and with an undirected edge $\{X, X'\}$ included for each $X, X' \in \mathcal{X}$ with $\|X - X'\| \le r$.

For λ , $\mu > 0$, let \mathcal{P}_{λ} and \mathcal{Q}_{μ} be independent homogeneous Poisson point processes in \mathbb{R}^d of intensity λ and μ , respectively, where we view each point process as a random subset of \mathbb{R}^d . Our first results are concerned with the bipartite graph $G(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r)$.

Let \mathcal{I} be the class of graphs having at least one infinite component. By a version of the Kolmogorov zero—one law, given parameters r, λ, μ (and d), we have $\mathbb{P}[G(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r) \in \mathcal{I}] \in \{0, 1\}$. Provided r, λ , and μ are sufficiently large, we have $\mathbb{P}[G(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r) \in \mathcal{I}] = 1$; see [3],

[©] Applied Probability Trust 2014

or the discussion below. Set

$$\mu_c(r, \lambda) := \inf\{\mu : \mathbb{P}[G(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r) \in \mathcal{I}] = 1\},\$$

with the infimum of the empty set interpreted as $+\infty$. Also, for the more standard one-type continuum percolation graph $G(\mathcal{P}_{\lambda}, r)$, define

$$\lambda_c(2r) := \inf\{\lambda \colon \mathbb{P}[G(\mathcal{P}_\lambda, 2r) \in \mathcal{I}] = 1\},\$$

which is well known to be finite for $d \ge 2$ [2, 5], but is not known analytically. By scaling (see Proposition 2.11 of [5]), $\lambda_c(2r) = r^{-d}\lambda_c(2)$, and explicit bounds for $\lambda_c(2)$ are provided in [5]. Simulation studies indicate that $1 - e^{-\pi\lambda_c(2)} \approx 0.67635$ for d = 2 [8] and $1 - e^{-(4\pi/3)\lambda_c(2)} \approx 0.28957$ for d = 3 [4].

Obviously, if $G(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r) \in \mathcal{I}$ then also $G(\mathcal{P}_{\lambda}, 2r) \in \mathcal{I}$, and, therefore, a necessary condition for $\mu_c(r, \lambda)$ to be finite is that $\lambda \geq \lambda_c(2r)$. In other words, for any r > 0, we have

$$\lambda_c^{AB}(r) := \inf\{\lambda \colon \mu_c(r,\lambda) < \infty\} \ge \lambda_c(2r). \tag{1.1}$$

For d=2 only, Iyer and Yogeshwaran [3] showed that the inequality in (1.1) is in fact an equality. For general $d\geq 2$, they also provided an explicit finite upper bound, here denoted by $\tilde{\lambda}_c^{AB}$, for $\lambda_c^{AB}(r)$, and established explicit upper bounds on $\mu_c(r,\lambda)$ for $\lambda>\tilde{\lambda}_c^{AB}(r)$. Note that even for d=2, their explicit upper bounds for $\mu_c(r,\lambda)$ are given only when $\lambda>\tilde{\lambda}_c^{AB}(r)$, with $\tilde{\lambda}_c^{AB}(r)>\lambda_c(2r)$ for all $d\geq 2$; for the case with d=2 and $\lambda_c(2r)<\lambda\leq \tilde{\lambda}_c^{AB}(r)$, their proof that $\mu_c(r,\lambda)<\infty$ does not provide an explicit upper bound on $\mu_c(r,\lambda)$.

In our first result, proved in Section 2, we establish for all dimensions (and all r > 0) that the inequality in (1.1) is an equality, and provide explicit asymptotic upper bounds on $\mu_c(r, \lambda)$ as λ approaches $\lambda_c(2r)$ from above. Let π_d denote the volume of the ball in d dimensions with unit radius.

Theorem 1.1. Let d > 2 and r > 0. Then

- (i) $\lambda_c^{AB}(r) = \lambda_c(2r)$, and
- (ii) with $\lambda_c = \lambda_c(2r)$,

$$\limsup_{\delta \downarrow 0} \left(\frac{\mu_c(r, \lambda_c + \delta)}{\delta^{-2d} |\log \delta|} \right) \le \left(\frac{4\lambda_c^2}{r} \right)^d d^{3d} (d+1)\pi_d. \tag{1.2}$$

Our proof (see Section 2) is based on the classic elementary continuum percolation techniques of discretization, coupling, and scaling. We also indicate how, for any given $\lambda > \lambda_c(2r)$, we can compute an explicit upper bound for $\mu_c(r, \lambda)$ (see (2.7) below).

It would be interesting to try to find complementary *lower* bounds for $\mu_c(r, \lambda)$. An analogous problem in the lattice is mixed bond-site percolation, which similarly has two parameters. For that model, similar questions have been studied by Chayes and Schonman [1], but it is not clear to what extent their methods can be adapted to the continuum.

Our second result concerns full connectivity for the *AB random geometric graph*, i.e. the restriction of the AB percolation model to points in a bounded region of \mathbb{R}^d . For $\lambda > 0$, let $\mathcal{P}^F_{\lambda} := \mathcal{P}_{\lambda} \cap [0, 1]^d$ and $\mathcal{Q}^F_{\lambda} := \mathcal{Q}_{\lambda} \cap [0, 1]^d$ (these are finite Poisson processes of intensity λ ; hence, the superscript F). Given also $\tau > 0$ and r > 0, let $\mathcal{G}^1(\lambda, \tau, r)$ be the graph on the vertex set \mathcal{P}^F_{λ} , with an edge between each pair of vertices sharing at least one common neighbour in $G(\mathcal{P}^F_{\lambda}, \mathcal{Q}^F_{\tau^1}, r)$.

Let $\mathcal{G}^2(\lambda, \tau, r)$ be the graph on the vertex set $\mathcal{Q}^F_{\tau\lambda}$, with an edge between each pair of vertices sharing at least one common neighbour in $G(\mathcal{P}^F_{\lambda}, \mathcal{Q}^F_{\tau\lambda}, r)$. Then $G(\mathcal{P}^F_{\lambda}, \mathcal{Q}^F_{\tau\lambda}, r)$ is connected, if and only if both $\mathcal{G}^1(\lambda, \tau, r)$ and $\mathcal{G}^2(\lambda, \tau, r)$ are connected.

Let K be the class of connected graphs, and let

$$\rho_n(\tau) = \min\{r : \mathcal{G}^1(n, \tau, r) \in \mathcal{K}\},\$$

which is a random variable determined by the configuration of $(\mathcal{P}_n, \mathcal{Q}_{\tau n})$. It is a *connectivity threshold* for the AB random geometric graph. Let us assume that \mathcal{P}^F_{λ} and \mathcal{Q}^F_{μ} are coupled for all $\lambda, \mu > 0$ as follows. Let $(X_1, Y_1, X_2, Y_2, \ldots)$ be a sequence of independent uniform random d-vectors uniformly distributed over $[0, 1]^d$. Independently, let $(N_t, t \ge 0)$ and $(N'_t, t \ge 0)$ be independent Poisson counting processes of rate 1. Let $\mathcal{P}^F_{\lambda} = \{X_1, \ldots, X_{N_{\lambda}}\}$ and $\mathcal{Q}^F_{\mu} = \{Y_1, \ldots, Y_{N'_{\mu}}\}$.

In Section 3 we prove the following result, with ' $\stackrel{\text{a.s.}}{\longrightarrow}$ ' denoting almost-sure convergence as $n \to \infty$ (with $n \in \mathbb{N}$).

Theorem 1.2. Assume that d = 2. Let $\tau > 0$. Then

$$\frac{n\pi(\rho_n(\tau))^2}{\log n} \xrightarrow{\text{a.s.}} \max\left(\frac{1}{\tau}, \frac{1}{4}\right). \tag{1.3}$$

Remark 1.1. The restriction to d=2 arises because boundary effects become more important in higher dimensions (and d=1 is a different case). It should be possible to adapt the proof to obtain a similar result to (1.3) in the unit *torus* in arbitrary dimensions $d \ge 2$, namely, $n\pi_d(\rho_n(\tau))^d/\log n \xrightarrow{\text{a.s.}} \max(1/\tau, 2^{-d})$, although we have not checked the details.

Remark 1.2. Iyer and Yogeshwaran [3, Theorem 3.1] gave a.s. lower and upper bounds for $\rho_n(\tau)$ in the torus. The extension of our result mentioned in Remark 1.1 would show that the lower bound of [3] is sharp for $\tau \leq 2^d$, and improve on their upper bound.

Notation. Given a countable set \mathcal{X} , we write $|\mathcal{X}|$ for the number of elements of \mathcal{X} and if also $\mathcal{X} \subset \mathbb{R}^d$, given $A \subset \mathbb{R}^d$, we write $\mathcal{X}(A)$ for $|\mathcal{X} \cap A|$. Also, for a > 0, we write aA for $\{ay \colon y \in A\}$. Let ' \oplus ' denote the Minkowski addition of sets (see, e.g. [6]).

2. Percolation: proof of Theorem 1.1

Fix r > 0, and let $\lambda > \lambda_c(2r)$. We first prove that $\mu_c(r, \lambda) < \infty$; combined with (1.1) this shows that $\lambda_c^{AB}(r) = \lambda_c(2r)$, which is part (i) of the theorem. Later we shall quantify the estimates in our argument, thereby establishing part (ii).

Choose s < r and $v < \lambda$ such that $\mathbb{P}[G(\mathcal{P}_v, 2s) \in \mathcal{I}] = 1$. This is possible because decreasing the radius slightly is equivalent to decreasing the Poisson intensity slightly, by scaling (see [5]; also the first equality of (2.5) below). Set t = (r+s)/2, and let $\varepsilon > 0$ be chosen small enough so that any cube of side length ε has Euclidean diameter at most $t-s=\frac{1}{2}(r-s)$. For a>0, let $p_a:=1-\exp(-\varepsilon^d a)$, the probability that a given cube of side length ε contains at least one point of \mathcal{P}_a .

Consider Bernoulli site percolation on the graph $(\varepsilon \mathbb{Z}^d, \sim)$, where, for u and $v \in \varepsilon \mathbb{Z}^d$, $u \sim v$ if and only if there exists $w \in \varepsilon \mathbb{Z}^d$ with $\|w - u\| \le t$ and $\|w - v\| \le t$. Given p > 0, suppose that each site $u \in \varepsilon \mathbb{Z}^d$ is independently occupied with probability p. Let D_1 be the event that there is an infinite path of occupied sites in the graph, and let $\mathbb{P}_p[D_1]$ be the probability that this event occurs.

Divide \mathbb{R}^d into cubes Q_u , $u \in \varepsilon \mathbb{Z}^d$, defined by $Q_u := \{u\} \oplus [0, \varepsilon)^d$. For $x \in \mathbb{R}^d$, let $z_x \in \varepsilon \mathbb{Z}^d$ be such that $x \in Q_{z_x}$. The Poisson process \mathcal{P}_{ν} may be coupled to a realization of the site percolation process with parameter p_{ν} , by deeming each $z \in \varepsilon \mathbb{Z}^d$ to be occupied if and only if $\mathcal{P}_{\nu}(Q_z) \geq 1$. By the choice of ε , for $X, Y \in \mathcal{P}_{\nu}$, if $\|X - Y\| \leq 2s$ then $\|z_X - z_{(X+Y)/2}\| \leq t$ and $\|z_Y - z_{(X+Y)/2}\| \leq t$, and, hence, $z_X \sim z_Y$. Therefore, with this coupling, if $G(\mathcal{P}_{\nu}, 2s) \in \mathcal{I}$ then there is an infinite path of occupied sites in $(\varepsilon \mathbb{Z}^d, \sim)$. Because we chose ν and s in such a way that $\mathbb{P}[G(\mathcal{P}_{\nu}, 2s) \in \mathcal{I}] = 1$, we must have $\mathbb{P}_{p_{\nu}}[D_1] = 1$.

Now consider a form of lattice AB percolation on $\varepsilon \mathbb{Z}^d$ with parameter pair $(p,q) \in [0,1]^2$ (not necessarily the same as any of the lattice AB percolation models in the literature). Let each of $\{V_u, u \in \varepsilon \mathbb{Z}^d\}$ and $\{W_u, u \in \varepsilon \mathbb{Z}^d\}$ be a family of independent Bernoulli random variables, with parameters p and q, respectively. Let D_2 be the event that there is an infinite sequence u_1, u_2, \ldots of distinct elements of $\varepsilon \mathbb{Z}^d$ and an infinite sequence v_1, v_2, \ldots of elements of $\varepsilon \mathbb{Z}^d$ such that, for each $i \in \mathbb{N}$, we have $V_{u_i}W_{v_i} = 1$ and $\max\{\|u_i - v_i\|, \|v_i - u_{i+1}\|\} \le t$. Let $\widetilde{\mathbb{P}}_{p,q}[D_2]$ be the probability that event D_2 occurs, given the parameter pair (p,q).

Since $\mathbb{P}_{p_{\nu}}[D_1] = 1$, clearly, $\widetilde{\mathbb{P}}_{p_{\nu},1}[D_2] = 1$. Increasing p slightly and decreasing q slightly, we shall show that there exists q < 1 such that

$$\widetilde{\mathbb{P}}_{p_{\lambda},q}[D_2] = 1. \tag{2.1}$$

This is enough to demonstrate that $\mu_c(r,\lambda) < \infty$. Indeed, suppose that such a q exists and choose μ such that $p_\mu = q$. Then, for $u \in \varepsilon \mathbb{Z}^d$, set $V_u = 1$ if and only if $\mathcal{P}_\lambda(Q_u) \geq 1$ and $W_u = 1$ if and only if $\mathcal{Q}_\mu(Q_u) \geq 1$. Suppose that D_2 occurs, and let $u_1, v_1, u_2, v_2, \ldots$ be as in the definition of the event D_2 . Then, for each $i \in \mathbb{N}$, we have $V_{u_i} = 1$, so we can pick a point $X_i \in \mathcal{P}_\lambda \cap Q_{u_i}$, and $W_{v_i} = 1$, so we can pick a point $Y_i \in \mathcal{Q}_\mu \cap Q_{v_i}$. Then, by the choice of ε , for each $i \in \mathbb{N}$, we have

$$\max\{\|X_i - Y_i\|, \|Y_i - X_{i+1}\|\} \le t + (t - s) = r,$$

and, hence, $G(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r) \in \mathcal{I}$. Hence, by (2.1) we have $\mathbb{P}[G(\mathcal{P}_{\lambda}, \mathcal{Q}_{\mu}, r) \in \mathcal{I}] = 1$. Therefore, $\mu_{c}(r, \lambda) \leq \mu < \infty$, as asserted.

To complete the proof of part (i), it remains to prove that (2.1) holds for some q < 1. Let $\{T_u, u \in \varepsilon \mathbb{Z}^d\}$ be independent Bernoulli variables with parameter p_{λ} . For each ordered pair $(u, v) \in (\varepsilon \mathbb{Z}^d)^2$ with $0 < \|u - v\| \le t$, let $U_{u,v}$ be independent Bernoulli random variables with parameter $(p_v/p_{\lambda})^{1/\Delta}$, where we set

$$\Delta := |\{u \in \varepsilon \mathbb{Z}^d : 0 < ||u|| \le t\}|. \tag{2.2}$$

Assume that the variables $U_{u,v}$ and T_u are all mutually independent, and, for $u, v \in \varepsilon \mathbb{Z}^d$, define the Bernoulli variables

$$V_{u} := T_{u} \prod_{\{v \in \varepsilon \mathbb{Z}^{d} : 0 < \|v - u\| \le t\}} U_{u,v},$$

$$W_{v} := 1 - \prod_{\{u \in \varepsilon \mathbb{Z}^{d} : 0 < \|v - u\| \le t\}} (1 - U_{u,v}).$$

Then each of $\{V_u\}_{u\in \varepsilon\mathbb{Z}^d}$ and $\{W_v\}_{v\in \varepsilon\mathbb{Z}^d}$ is a family of independent Bernoulli variables, with respective parameters p_v and

$$q := 1 - \left(1 - \left(\frac{p_{\nu}}{p_{\lambda}}\right)^{1/\Delta}\right)^{\Delta} < 1, \tag{2.3}$$

and each is independent of $\{T_u, u \in \varepsilon \mathbb{Z}^d\}$.

Since $\mathbb{P}_{p_v}[D_1] = 1$, with probability 1, there exists an infinite sequence u_1, u_2, \ldots of distinct elements of $\varepsilon \mathbb{Z}^d$ with $u_i \sim u_{i+1}$ for all $i \in \mathbb{N}$, and with $V_{u_i} = 1$ for each $i \in \mathbb{N}$. By the definition of the relation ' \sim ', we can choose a sequence v_1, v_2, \ldots of elements of $\varepsilon \mathbb{Z}^d$ such that, for each $i \in \mathbb{N}$, we have $\max(\|v_i - u_i\|, \|v_i - u_{i+1}\|) \le t$. Then, for each i, since $V_{u_i} = 1$, we have $U_{u_i,v_i} = 1$, and, therefore, $W_{v_i} = 1$; also, $T_{u_i} = 1$. Hence, (2.1) holds as required, establishing that $\mu_{\varepsilon}(r, \lambda) < \infty$. We have proved part (i).

To prove part (ii), we need to quantify the preceding argument. First note that the value of μ associated with q given by (2.3) (i.e. with $p_{\mu}=q$) has $\exp(-\mu \varepsilon^d)=(1-(p_{\nu}/p_{\lambda})^{1/\Delta})^{\Delta}$, so that, since $\varepsilon^d \Delta \leq \pi_d r^d$ by (2.2), we have

$$\mu_{c}(r,\lambda) \leq \mu = \varepsilon^{-d} \Delta \log \left(\frac{1}{1 - (p_{\nu}/p_{\lambda})^{1/\Delta}} \right) \leq \varepsilon^{-2d} \pi_{d} r^{d} \log \left(\frac{1}{1 - (p_{\nu}/p_{\lambda})^{(\varepsilon/r)^{d}/\pi_{d}}} \right). \tag{2.4}$$

From now on, set $\lambda_c := \lambda_c(2r)$ and $\lambda = \lambda_c + \delta$ for some $\delta > 0$. We need to choose s < r and $\nu < \lambda$ such that $\mathbb{P}[G(\mathcal{P}_{\nu}, 2s) \in \mathcal{I}] = 1$. Choose $\alpha, \beta > 0$ with $\alpha + \beta < 1$, and also let $\alpha' \in (0, \alpha)$ and $\beta' \in (0, \beta)$. Set

$$s := r \left(1 + \frac{\alpha \delta}{\lambda_c} \right)^{-1/d}$$
 and $\nu := \lambda_c + (1 - \beta)\delta$.

By scaling (see [5, Proposition 2.11]) and our choice of s, we have

$$\lambda_c(2s) = \left(\frac{r}{s}\right)^d \lambda_c(2r) = \lambda_c + \alpha \delta, \tag{2.5}$$

and, hence, $\nu > \lambda_c(2s)$, so $\mathbb{P}[G(\mathcal{P}_{\nu}, 2s) \in \mathcal{I}] = 1$, as required.

Our choice of ε in the discretization needs to satisfy

$$\varepsilon \le \frac{r-s}{2\sqrt{d}} = \frac{r}{2\sqrt{d}} \left(1 - \left(1 + \frac{\alpha \delta}{\lambda_c} \right)^{-1/d} \right),\tag{2.6}$$

and the right-hand side of (2.6) is asymptotic to $\alpha r \delta/(2d^{3/2}\lambda_c)$ as $\delta \to 0$. Hence, taking $\varepsilon = \alpha' r \delta/(2d^{3/2}\lambda_c)$, we have (2.6) provided $\delta \leq \delta_1$ for some fixed $\delta_1 > 0$. Also,

$$\frac{p_{\nu}}{p_{\lambda}} \le \frac{\varepsilon^{d} \nu}{\varepsilon^{d} \lambda \exp(-\varepsilon^{d} \lambda)} = \left(\frac{\lambda_{c} + (1 - \beta)\delta}{\lambda_{c} + \delta}\right) \exp(\varepsilon^{d} \lambda),$$

and so, by Taylor's expansion, there is some $\delta_2 > 0$ such that, provided $0 < \delta \le \delta_2$, taking $\varepsilon = \alpha' r \delta/(2d^{3/2}\lambda_c)$ we have

$$\left(\frac{p_{\nu}}{p_{\lambda}}\right)^{(\varepsilon/r)^d/\pi_d} \leq 1 - \frac{\beta' \delta \varepsilon^d}{\pi_d r^d \lambda_c} = 1 - \frac{\beta' \delta^{d+1}}{\pi_d \lambda_c (2d^{3/2} \lambda_c/\alpha')^d}.$$

Therefore, by (2.4), for $0 < \delta \le \min\{\delta_1, \delta_2\}$, we have

$$\mu_c(r,\lambda) \le \left(\frac{2d^{3/2}\lambda_c}{r\delta\alpha'}\right)^{2d} \pi_d r^d \log \left(\frac{\pi_d \lambda_c (2d^{3/2}\lambda_c/\alpha')^d}{\beta' \delta^{d+1}}\right)$$

and since we can take α' arbitrarily close to 1, (1.2) follows, completing the proof.

For a given value of λ with $\lambda = \lambda_c(2r) + \delta$ for some $\delta > 0$, an explicit upper bound for $\mu_c(r,\lambda)$ could be computed as follows. Choose $\alpha, \beta > 0$ with $\alpha + \beta < 1$, and let ε be given by the right-hand side of (2.6). Then a numerical upper bound for $\mu_c(r,\lambda)$ can be obtained by computing the right-hand side of (2.4). To make this bound as small as possible (given α), we make ν as small as we can, i.e. make β approach $1 - \alpha$ and ν approach $\lambda_c + \alpha\delta$. Taking this limit and then optimizing further over α gives us the upper bound

$$\mu_c(r,\lambda) \le \inf_{\alpha \in (0,1)} \varepsilon(\alpha)^{-2d} \pi_d r^d \log \left(\frac{1}{1 - (p_{\lambda_c + \alpha\delta}/p_\lambda)^{(\varepsilon(\alpha)/r)^d/\pi_d}} \right), \tag{2.7}$$

with $\varepsilon = \varepsilon(\alpha)$ given by the right-hand side of (2.6).

3. Connectivity: proof of Theorem 1.2

Throughout this section, we assume that d=2. All asymptotics are as $n\to\infty$. Given $a,b\in\mathbb{R}$, we sometimes write $a\vee b=\max\{a,b\}$ and $a\wedge b=\min\{a,b\}$. Fix $\tau>0$. Given τ and r_n , let δ_n denote the minimum degree of $\mathcal{G}^1(n,\tau,r_n)$.

Lemma 3.1. Let $\alpha \in (0, 1/\tau)$. If $n\pi r_n^2/\log n = \alpha$ for $n \ge 2$ then, almost surely, $\delta_n = 0$ for all but finitely many n.

Proof. See [3, Proposition 5.1].

Lemma 3.2. Let $\alpha \in (0, \frac{1}{4})$. If $n\pi r_n^2/\log n = \alpha$ for $n \ge 2$ then, almost surely, $\delta_n = 0$ for all but finitely many n.

Proof. By [6, Theorem 7.8], for this choice of r_n , almost surely, the minimum degree of the (one-type) geometric graph $G(\mathcal{P}_n^F, 2r_n)$ is 0 for all but finitely many n, and, therefore, so is the minimum degree of $\mathcal{G}^1(n, \tau, r_n)$.

Corollary 3.1. Let d=2. Given $\varepsilon>0$, almost surely, $n\pi(\rho_n(\tau))^2/\log n>(1-\varepsilon)\max\{\frac{1}{4},1/\tau\}$ for all but finitely many n.

Proof. Assume that $\varepsilon < 1$. For $n \ge 2$, set $r_n = [(1 - \varepsilon)(\frac{1}{4} \lor 1/\tau) \log n/(n\pi)]^{1/2}$, so $n\pi r_n^2/\log n = (1 - \varepsilon)(\frac{1}{4} \lor 1/\tau)$. Let δ_n be the minimum degree of $\mathcal{G}^1(n, \tau, r_n)$. If the minimum degree of a graph of order greater than 1 is zero, then it is not connected; hence,

$$\left\{ \frac{n\pi(\rho_n(\tau))^2}{\log n} \le (1 - \varepsilon) \left(\frac{1}{4} \vee \frac{1}{\tau} \right) \right\} = \{ \mathcal{G}^1(n, \tau, r_n) \in \mathcal{K} \}
\subset \{ \delta_n > 0 \} \cup \{ \mathcal{P}_n^{\mathrm{F}}([0, 1]^2) \le 1 \},$$

and, by Lemmas 3.1 and 3.2, this occurs for only finitely many n almost surely.

To complete the proof of Theorem 1.2, it suffices to prove the following result.

Theorem 3.1. Suppose for some fixed α that $\{r_n\}_{n\in\mathbb{N}}$ is such that, for all $n\geq 2$,

$$\frac{n\pi r_n^2}{\log n} = \alpha > \max\left\{\frac{1}{\tau}, \frac{1}{4}\right\}. \tag{3.1}$$

Then, almost surely, $\mathcal{G}^1(n, \tau, r_n) \in \mathcal{K}$ for all but finitely many n.

Our proof of this theorem requires a series of lemmas and proceeds by discretization of space. Assume that α and r_n are given, satisfying (3.1). Let $\varepsilon_0 \in (0, \frac{1}{99})$ be chosen in such a way that, for $\varepsilon = \varepsilon_0$, we have both

$$\alpha \tau (1 - 12\varepsilon) > 1 + \varepsilon \tag{3.2}$$

and
$$\alpha(4-12\varepsilon(3+\tau)) > 1+\varepsilon$$
. (3.3)

Given n, partition $[0, 1]^2$ into squares of side $\varepsilon_n r_n$ with ε_n chosen so that $\varepsilon_0 \le \varepsilon_n < \frac{1}{99}$ and $1/(\varepsilon_n r_n) \in \mathbb{N}$, and $\varepsilon = \varepsilon_n$ satisfies (3.2) and (3.3); this is possible for all large enough $n, n \ge n_0$ say. In the sequel we assume that $n \ge n_0$ and often write just ε for ε_n .

Let \mathcal{L}_n be the set of centres of the squares in this partition (a finite lattice). Then $|\mathcal{L}_n| = \Theta(n/\log n)$. List the squares as Q_i , $1 \le i \le |\mathcal{L}_n|$, and the corresponding centres of squares (i.e. the elements of \mathcal{L}_n) as q_i , $1 \le i \le |\mathcal{L}_n|$.

Given a set $\mathfrak{X} \subset [0,1]^2$, define the *projection of* \mathfrak{X} *onto* \mathcal{L}_n to be the set of $q_i \in \mathcal{L}_n$ such that $\mathfrak{X} \cap Q_i \neq \emptyset$. Given also $\mathfrak{Y} \subset [0,1]^2$, define the projection of $(\mathfrak{X}, \mathfrak{Y})$ onto \mathcal{L}_n to be the pair $(\mathfrak{X}', \mathfrak{Y}')$, where \mathfrak{X}' is the projection of \mathfrak{X} onto \mathcal{L}_n and \mathfrak{Y}' is the projection of \mathfrak{Y} onto \mathcal{L}_n . We refer to $|\mathfrak{X}'| + |\mathfrak{Y}'|$ (respectively $|\mathfrak{X}'|, |\mathfrak{Y}'|$) as the *order* of the projection of $(\mathfrak{X}, \mathfrak{Y})$ (respectively of \mathfrak{X} , of \mathfrak{Y}) onto \mathcal{L}_n .

Lemma 3.3. Let $n \in \mathbb{N}$. Suppose that X and Y are finite subsets of $[0, 1]^2$ such that $G(X, Y, r_n)$ is connected. Let (X', Y') be the projection of (X, Y) onto \mathcal{L}_n . Then the bipartite geometric graph $G(X', Y', r_n(1 + 2\varepsilon_n))$ is connected.

Proof. If $q_i, q_j \in \mathcal{L}_n$, and $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ with $||X - Y|| \leq r_n$, then by the triangle inequality we have

$$||q_i - q_i|| \le ||X - q_i|| + ||X - Y|| + ||Y - q_i|| \le r_n(1 + 2\varepsilon),$$

and, therefore, since $G(X, Y, r_n)$ is connected, so is $G(X', Y', r_n(1 + 2\varepsilon))$.

Given $n, m \in \mathbb{N}$, let $\mathcal{A}_{n,m}$ denote the set of pairs (σ_1, σ_2) with each $\sigma_j \subset \mathcal{L}_n$, with $|\sigma_1| + |\sigma_2| = m$ and $|\sigma_1| \ge 1$, such that $G(\sigma_1, \sigma_2, r_n(1 + 2\varepsilon_n))$ is connected; these may be viewed as 'bipartite lattice animals'.

Let $\mathcal{A}_{n,m}^2$ be the set of $(\sigma_1, \sigma_2) \in \mathcal{A}_{n,m}$ such that all elements of $\sigma_1 \cup \sigma_2$ are distances at least $2r_n$ from the boundary of $[0, 1]^2$.

Let $\mathcal{A}_{n,m}^1$ be the set of $(\sigma_1, \sigma_2) \in \mathcal{A}_{n,m}$ such that $\sigma_1 \cup \sigma_2$ is a distance less than $2r_n$ from *just one edge* of $[0, 1]^2$.

Let $A_{n,m}^0 := A_{n,m} \setminus (A_{n,m}^2 \cup A_{n,m}^1)$, the set of $(\sigma_1, \sigma_2) \in A_{n,m}$ such that $\sigma_1 \cup \sigma_2$ is a distance less than $2r_n$ from *two edges* of $[0, 1]^2$ (i.e. near a corner of $[0, 1]^2$).

Lemma 3.4. Given $m \in \mathbb{N}$, there exists a constant C = C(m) such that, for all $n \ge n_0$,

$$|\mathcal{A}_{n,m}| \le C\left(\frac{n}{\log n}\right), \qquad |\mathcal{A}_{n,m}^1| \le C\left(\frac{n}{\log n}\right)^{1/2}, \qquad |\mathcal{A}_{n,m}^0| \le C.$$

Proof. Fix m. Consider how many ways there are to choose $\sigma \in \mathcal{A}_{n,m}$.

For the first element of σ_1 in the lexicographic ordering, there are at most $|\mathcal{L}_n|$ choices, and, hence, $O(n/\log n)$ choices. Having chosen the first element of σ_1 , there are a bounded number of ways to choose the rest of σ .

We now consider how many ways there are to choose $\sigma \in \mathcal{A}_{n,m}^1$. There are $O(r_n^{-1}) = O((n/\log n)^{1/2})$ ways to choose the first element of σ_1 (a distance at most $2r_n$ from the boundary of $[0, 1]^2$), and then a bounded number of ways to choose the rest of σ .

Finally, consider how many ways there are to choose $\sigma \in \mathcal{A}_{n,m}^0$. There are O(1) ways to choose the first element of σ_1 , and then a bounded number of ways to choose the rest of σ .

For $n \in \mathbb{N}$, set $\nu(n) := n^{\lceil 4/\epsilon_0 \rceil}$. Note that $\nu(n+1) \sim \nu(n)$ and $r_{\nu(n+1)} \sim r_{\nu(n)}$ as $n \to \infty$, and that r_n is monotone decreasing in n for $n \ge 3$.

Given $n \in \mathbb{N}$ with $\nu(n) \geq n_0$, and given $\sigma_1 \subset \mathcal{L}_{\nu(n)}$ and $\sigma_2 \subset \mathcal{L}_{\nu(n)}$, let $E_{(\sigma_1,\sigma_2)}$ be the event that there exists some $n' \in \mathbb{N} \cap [\nu(n), \nu(n+1))$ such that there is a component (U, V) of $G(\mathcal{P}_{n'}^F, \mathcal{Q}_{\tau n'}^F, r_{n'})$ such that (σ_1, σ_2) is the projection of (U, V) onto $\mathcal{L}_{\nu(n)}$.

For $x \in \mathbb{R}^2$ and r > 0, let $B(x, r) := \{y \in \mathbb{R}^2 : ||y - x|| \le r\}$. Also, let $B_+(r)$ be the right half of B((0, 0), r), and let $B_-(r)$ be the left half of B((0, 0), r). Let $v_2(\cdot)$ denote the Lebesgue measure, defined on Borel subsets of \mathbb{R}^2 .

Lemma 3.5. There exists $n_1 \in \mathbb{N}$ such that, for all $m \in \mathbb{N}$ and $n \ge n_1$,

$$\sup_{\sigma \in \mathcal{A}^{2}_{\nu(n),m}} (\mathbb{P}[E_{\sigma}]) \le \nu(n)^{-(1+\varepsilon)},\tag{3.4}$$

$$\sup_{\sigma \in \mathcal{A}^{1}_{\nu(n),m}} (\mathbb{P}[E_{\sigma}]) \le \nu(n)^{-(1+\varepsilon)/2}, \tag{3.5}$$

$$\sup_{\sigma \in \mathcal{A}_{\nu(n),m}^0} (\mathbb{P}[E_{\sigma}]) \le \nu(n)^{-1/20}. \tag{3.6}$$

Proof. Choose n_1 so that $v(n_1) \ge n_0$ and also $(1 - \varepsilon_0)r_{v(n)} < r_{v(n+1)}$ for $n \ge n_1$. Assume from now on that $n \ge n_1$.

Given $\sigma=(\sigma_1,\sigma_2)\in \mathcal{A}_{\nu(n),m}$, let q_i and q_j respectively be the lexicographically first and last elements of σ_1 . Let σ_2^- be the set of $q_k\in\sigma_2\cap B(q_i,r_{\nu(n)}(1-4\varepsilon))$ lying strictly to the left of q_i (in this proof, $\varepsilon:=\varepsilon_{\nu(n)}$). Let σ_2^+ be the set of $q_k\in\sigma_2\cap B(q_j,r_{\nu(n)}(1-4\varepsilon))$ lying strictly to the right of q_j . Let $\tilde{\sigma}_2^+:=\sigma_2^+\oplus [-\varepsilon r_{\nu(n)}/2,\varepsilon r_{\nu(n)}/2]^2$ and $\tilde{\sigma}_2^-:=\sigma_2^-\oplus [-\varepsilon r_{\nu(n)}/2,\varepsilon r_{\nu(n)}/2]^2$ (see Figure 1).

Let B_{σ}^- be the part of $B(q_i, r_{\nu(n)}(1-5\varepsilon))$ lying strictly to the left of Q_i . Let B_{σ}^+ be the part of $B(q_i, r_{\nu(n)}(1-5\varepsilon))$ lying strictly to the right of Q_i .

Given σ , define the events A_{σ}^{+} and A_{σ}^{-} by

$$A_{\sigma}^{+} := \{ \mathcal{Q}_{\tau\nu(n+1)}^{F}(B_{\sigma}^{+} \setminus \tilde{\sigma}_{2}^{+}) = 0 \} \cap \{ \mathcal{P}_{\nu(n+1)}^{F}(\tilde{\sigma}_{2}^{+} \oplus B_{+}(r_{\nu(n)}(1 - 3\varepsilon))) = 0 \},$$

$$A_{\sigma}^{-} := \{ \mathcal{Q}_{\tau\nu(n+1)}^{F}(B_{\sigma}^{-} \setminus \tilde{\sigma}_{2}^{-}) = 0 \} \cap \{ \mathcal{P}_{\nu(n+1)}^{F}(\tilde{\sigma}_{2}^{-} \oplus B_{-}(r_{\nu(n)}(1 - 3\varepsilon))) = 0 \}.$$

See Figure 1 for an illustration of the event A_{σ}^+ . Note that the events A_{σ}^+ and A_{σ}^- are independent. Suppose that k is such that $Q_k \cap B_{\sigma}^+ \neq \emptyset$. Then, by the triangle equality,

$$||q_k - q_j|| \le r_{\nu(n)}(1 - 5\varepsilon) + \varepsilon r_{\nu(n)} = r_{\nu(n)}(1 - 4\varepsilon). \tag{3.7}$$

Similarly, if $Q_k \cap B_{\sigma}^- \neq \emptyset$ then $||q_k - q_i|| \le r_{\nu(n)}(1 - 4\varepsilon)$.

By our coupling of Poisson processes, for $v(n) \leq n' < v(n+1)$, we have $\mathcal{P}_{v(n)} \subset \mathcal{P}_{n'} \subset \mathcal{P}_{v(n+1)}$. Also, if $x \in Q_k$ and $y \in Q_i$ with $\|q_i - q_k\| \leq r_{v(n)}(1 - 3\varepsilon)$, then, by the triangle inequality and our condition on n_1 , we have $\|x - y\| \leq r_{v(n)}(1 - \varepsilon) \leq r_{n'}$ for all $n' \in [v(n), v(n+1))$. Hence, by the argument at (3.7), for any $\sigma \in \mathcal{A}_{n,m}$, we have $E_{\sigma} \subset A_{\sigma}^+ \cap A_{\sigma}^-$.

First we prove (3.5). Take $\sigma \in \mathcal{A}^1_{\nu(n),m}$. Consider just the case where σ is near to the left edge of $[0, 1]^2$ (the other three cases are treated similarly). If $\sigma_2^+ = \emptyset$ then $A_\sigma^+ = \{\mathcal{Q}^F_{\tau\nu(n+1)}(B_\sigma^+) = 0\}$,

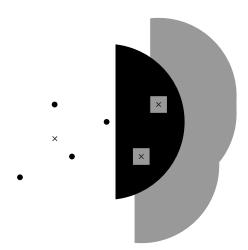


FIGURE 1: The dots are the points of σ_1 , and the crosses are the points of σ_2 . The grey squares are the set $\tilde{\sigma}_2^+$ (since $\varepsilon = \varepsilon_n < \frac{1}{99}$, they should really be smaller). The event A_{σ}^+ says that the black region contains no points of $\mathfrak{Q}_{\tau\nu(n+1)}^{\mathsf{F}}$ and the grey region (partly obscured by the black region) contains no points of $\mathcal{P}_{\nu(n+1)}^{\mathsf{F}}$.

and in this case we have

$$\mathbb{P}[A_{\sigma}^{+}] \leq \exp\left(\frac{1}{2} - \tau \nu(n)(\pi(r_{\nu(n)}(1 - 5\varepsilon))^{2} - 2\varepsilon r_{\nu(n)}^{2})\right)
\leq \exp\left(\frac{1}{2} - \tau \alpha(\log \nu(n))(1 - 12\varepsilon)\right)
\leq \nu(n)^{-(1+\varepsilon)/2},$$
(3.8)

where the last inequality comes from (3.2). This proves (3.5) for this case.

Suppose instead that $\sigma_2^+ \neq \emptyset$. Then $\tilde{\sigma}_2^+ \subset \{q_j\} \oplus B_+(r_{v(n)}(1-3\varepsilon))$, so that $v_2(\tilde{\sigma}_2^+) \leq \pi r_{v(n)}^2(1-3\varepsilon)^2/2$. Let $s \in [0,1]$ be chosen such that $v_2(\tilde{\sigma}_2^+) = s^2\pi r_{v(n)}^2(1-3\varepsilon)^2/2$. Then, by the Brunn–Minkowski inequality (see, e.g. [6]),

$$v_2(\tilde{\sigma}_2^+ \oplus B_+(r_{\nu(n)}(1-3\varepsilon))) \ge \frac{\pi r_{\nu(n)}^2}{2} (1-3\varepsilon)^2 (1+s)^2,$$

and also $v_2(B_{\sigma}^+) \ge \pi r_{\nu(n)}^2((1-5\varepsilon)^2 - 2\varepsilon)/2$, so that

$$\begin{split} \mathbb{P}[A_{\sigma}^{+}] &\leq \exp(-\tau \nu(n) \nu_{2}(B_{\sigma}^{+} \setminus \tilde{\sigma}_{2}^{+}) - \nu(n) \nu_{2}(\tilde{\sigma}_{2}^{+} \oplus B_{+}(r_{\nu(n)}(1-3\varepsilon)))) \\ &\leq \exp\left(-\frac{1}{2}\nu(n)\pi r_{\nu(n)}^{2}[\tau((1-5\varepsilon)^{2}-2\varepsilon-s^{2}(1-3\varepsilon)^{2}) + (1+s)^{2}(1-3\varepsilon)^{2}]\right) \\ &\leq \exp\left(-\frac{1}{2}\alpha(\log \nu(n))g_{\tau}(s)\right), \end{split}$$

where we set $g_{\tau}(s) := (\tau + 1 + 2s)(1 - 12\varepsilon) + s^2(1 - 3\varepsilon)^2(1 - \tau)$. If $\tau \le 1$ then $g_{\tau}(s)$ is minimised over $s \in [0, 1]$ at s = 0. If $\tau > 1$ then $g_{\tau}(\cdot)$ is concave, so its minimum over [0, 1] is achieved at s = 0 or s = 1; also in this case $g_{\tau}(1) \ge (3 + \tau)(1 - 12\varepsilon) + 1 - \tau$. Hence, using (3.2) and (3.3), we obtain

$$\mathbb{P}[A_{\sigma}^{+}] \leq \exp\left(-\frac{1}{2}\alpha(\log \nu(n))\min\{(1+\tau)(1-12\varepsilon), 4-12\varepsilon(3+\tau)\}\right)$$

$$\leq \nu(n)^{-(1+\varepsilon)/2},$$
(3.9)

completing the proof of (3.5).

Now we prove (3.4). If $\sigma \in \mathcal{A}_{n,m}^2$ then $\mathbb{P}[A_{\sigma}^+] \leq \nu(n)^{-(1+\varepsilon)/2}$ by (3.8) and (3.9), and $\mathbb{P}[A_{\sigma}^-] \leq \nu(n)^{-(1+\varepsilon)/2}$ similarly. Therefore, $\mathbb{P}[E_{\sigma}] \leq \mathbb{P}[A_{\sigma}^+ \cap A_{\sigma}^-] \leq \nu(n)^{-1-\varepsilon}$, completing the proof of (3.4).

Finally, to prove (3.6), let $\sigma \in \mathcal{A}_{n,m}^0$. Assume that σ is near the lower-left corner of $[0,1]^2$ (the other cases are treated similarly). First suppose that $\sigma_2^+ = \varnothing$. Then $\mathbb{P}[E_\sigma] \leq \mathbb{P}[\mathcal{Q}_{\tau\nu(n+1)}^F(B_\sigma^+) = 0]$ and since the upper half of B_σ^+ is contained in $[0,1]^2$, in this case

$$\mathbb{P}[E_{\sigma}] \leq \exp\left(-\tau \nu(n)\pi r_{\nu(n)}^{2} \left[\frac{1}{4}(1-5\varepsilon)^{2} - \frac{1}{2}\varepsilon\right]\right)$$

$$\leq \nu(n)^{-\alpha\tau(1-12\varepsilon)/4}$$

$$\leq \nu(n)^{-(1+\varepsilon)/4}.$$
(3.10)

Now suppose that $\sigma_2^+ \neq \varnothing$. Let q_ℓ be the last element (in the lexicographic order) of σ_2^+ . Then

$$\mathbb{P}[E_{\sigma}] \leq \mathbb{P}[\mathcal{P}_{\nu(n+1)}^{F}(\{q_{\ell}\} \oplus B_{+}(r_{\nu(n)}(1-3\varepsilon))) = 0]$$

$$\leq \exp\left(\frac{1}{4} - \nu(n)\pi r_{\nu(n)}^{2}(1-3\varepsilon)^{2}\right)$$

$$\leq \nu(n)^{-\alpha(1-6\varepsilon)/4}$$

$$\leq \nu(n)^{-1/20}.$$

where, for the last inequality, we used the facts that $\alpha > \frac{1}{4}$ and $\varepsilon < \frac{1}{99}$. Together with (3.10) this demonstrates (3.6).

For $m, n \in \mathbb{N}$ and r > 0, let $\mathcal{K}_{n,m}(r)$ be the class of bipartite point sets $(\mathcal{X}, \mathcal{Y})$ in $[0, 1]^2$ such that $G(\mathcal{X}, \mathcal{Y}, r)$ has at least one component, the vertex set of which has projection onto \mathcal{L}_n of order m and contains at least one element of \mathcal{X} .

Lemma 3.6. Let $m \in \mathbb{N}$. Almost surely, for all but finitely many $n \in \mathbb{N}$, we have $(\mathcal{P}_{n'}^F, \mathcal{Q}_{\tau n'}^F) \notin \mathcal{K}_{\nu(n),m}(r_{n'})$ for all $n' \in \mathbb{N} \cap [\nu(n),\nu(n+1))$.

Proof. By Lemmas 3.3 and 3.5, for $n \ge n_1$, we have

$$\begin{split} & \mathbb{P}\bigg[\bigcup_{\nu(n) \leq n' < \nu(n+1)} \{(\mathcal{P}_n^{\mathrm{F}}, \mathcal{Q}_{\tau n}^{\mathrm{F}}) \in \mathcal{K}_{\nu(n),m}(r_{n'})\}\bigg] \\ & \leq \sum_{\sigma \in \mathcal{A}_{\nu(n),m}} \mathbb{P}[E_{\sigma}] \\ & \leq |\mathcal{A}_{\nu(n),m}^2| \times \nu(n)^{-(1+\varepsilon)} + |\mathcal{A}_{\nu(n),m}^1| \times \nu(n)^{-(1+\varepsilon)/2} + |\mathcal{A}_{\nu(n),m}^0| \times \nu(n)^{-1/20}. \end{split}$$

Using Lemma 3.4 and the definition $v(n) := n^{\lceil 4/\varepsilon_0 \rceil}$, and recalling that $\varepsilon = \varepsilon_n \ge \varepsilon_0$ as described just after (3.3), this probability is $O(n^{-2})$, so it is summable in n. Then the result follows by the Borel–Cantelli lemma.

Lemma 3.7. (See [6, Lemma 9.1].) For any two closed connected subsets A and B of $[0, 1]^2$ with union $A \cup B = [0, 1]^2$, the intersection $A \cap B$ is connected.

Given $n \in \mathbb{N}$, let k(n) be the choice of $k \in \mathbb{N}$ satisfying $v(k) \leq n < v(k+1)$. Also, given $K \in \mathbb{N}$, let $F_K(n)$ be the event that $G(\mathcal{P}_n^F, \mathcal{Q}_{\tau n}^F, r_n)$ has two or more components with projections onto $\mathcal{L}_{v(k(n))}$ of order greater than K.

Lemma 3.8. There exists $K \in \mathbb{N}$ such that, with probability 1, the event $F_K(n)$ occurs for only finitely many n.

Proof. Suppose that $F_K(n)$ occurs. Then there exist distinct components $U = (U_1, U_2)$ and $V = (V_1, V_2)$ in $G(\mathcal{P}_n^F, \mathcal{Q}_{\tau n}^F, r_n)$, both with projections onto $\mathcal{L}_{\nu(k(n))}$ of order greater than K. Let U' be the union of closed Voronoi cells in $[0, 1]^2$ (relative to $\mathcal{P}_n \cup \mathcal{Q}_{\tau n}$) of vertices of U, and let V' be the union of closed Voronoi cells in $[0, 1]^2$ of vertices of V.

The interior of U' and the interior of V' are disjoint subsets of $[0, 1]^2$, and we now show that they are connected sets. Suppose that $X \in U_1$ and $Y \in U_2$ with $||X - Y|| \le r_n$; then we claim that the entire line segment [X, Y] is contained in the interior of U'. Indeed, let $z \in [X, Y]$, and suppose that z lies in the closed Voronoi cell of some $W \in \mathcal{P}_n^F \cup \mathcal{Q}_{Tn}^F$. If $W \in \mathcal{P}_n^F$ then

$$||W - Y|| \le ||W - z|| + ||z - Y|| \le ||X - z|| + ||z - Y|| = ||X - Y|| \le r_n$$

so $W \in U$. Similarly, if $W \in \mathcal{Q}_{\tau n}^{\mathrm{F}}$ then $\|W - X\| \leq r_n$, so again $W \in U$. Hence, the interior of U' is connected, and likewise for V'.

Let \tilde{V} be the closure of the component of $[0, 1]^2 \setminus U'$, containing the interior of V', and let \tilde{U} be the closure of $[0, 1]^2 \setminus \tilde{V}$ (essentially, this is the set obtained by filling in the holes of U' that are not connected to V').

Then \tilde{U} and \tilde{V} are closed connected sets, whose union is $[0, 1]^2$. Therefore, by Lemma 3.7, the set $\partial U := \tilde{U} \cap \tilde{V}$ is connected. Note that ∂U is part of the boundary of U' (it is the 'exterior boundary' of U' relative to V').

Let T be the set of cube centres $q_i \in \mathcal{L}_{\nu(k(n))}$ such that $Q_i \cap (\partial U) \neq \emptyset$. Then T is *-connected in $\mathcal{L}_{\nu(k(n))}$, i.e. for any $x, y \in T$, there is a path (x_0, x_1, \dots, x_k) with $x_0 = x$, $x_k = y, x_i \in \mathcal{L}_{\nu(k(n))}$, and $||x_i - x_{i-1}||_{\infty} = \varepsilon r_{\nu(k(n))}$ for $1 \le i \le k$ (here $\varepsilon = \varepsilon_{\nu(k(n))}$).

Also, for each $q_i \in T$, we claim that $\mathcal{P}_n(Q_i)\mathcal{Q}_{\tau n}(Q_i) = 0$. Indeed, suppose on the contrary that $\mathcal{P}_n(Q_i)\mathcal{Q}_{\tau n}(Q_i) > 0$. Then all points of $(\mathcal{P}_n \cup \mathcal{Q}_{\tau n}) \cap Q_i$ lie in the same component of $G(\mathcal{P}_n^F, \mathcal{Q}_{\tau n}^F, r_n)$. If they are all in U then Q_i and all neighbouring Q_j (including diagonal neighbours) are contained in U'. If all points of $(\mathcal{P}_n \cup \mathcal{Q}_{\tau n}) \cap Q_i$ are not in U then Q_i and all neighbouring Q_j (including diagonal neighbours) are disjoint from U'. Therefore, $(\partial U) \cap Q_i = \emptyset$.

We now prove the isoperimetric inequality

$$|T| \ge \left(\frac{K}{2}\right)^{1/2}.\tag{3.11}$$

To see this, define the *width* of a nonempty closed set $A \subset [0, 1]^2$ to be the maximum difference between x-coordinates of points in A, and the *height* of A to be the maximum difference between y-coordinates of points in A.

We claim that either the height or the width of ∂U is at least $(K/2)^{1/2} \varepsilon r_{\nu(k(n))}$. Indeed, if not then ∂U is contained in some square of side $(K/2)^{1/2} \varepsilon r_{\nu(k(n))}$, and then either U' or V' is contained in that square, so either U or V is contained in that square, contradicting the assumption that the projections of U and of V onto $\mathcal{L}_{\nu(k(n))}$ have order greater than K. For example, if the projection of U has order greater than K then at least one of U_1 and U_2 , say U_1 , has projection of order greater than K/2, and then the union of squares of side $\varepsilon r_{\nu(k(n))}$ centred at vertices in the projection of U_1 has total area greater than $(K/2)\varepsilon^2 r_{\nu(k(n))}^2$, so is not contained in any square of side $(K/2)^{1/2}\varepsilon r_{\nu(k(n))}$. Thus, the claim holds, and so (3.11) follows by the *-connectivity of T.

For $\nu, m \in \mathbb{N}$, let $\mathcal{A}'_{\nu,m}$ be the set of *-connected subsets of \mathcal{L}_{ν} with m elements. By a similar argument as used in the proof of Lemma 3.4 (see also [6, Lemma 9.3]), there are finite

constants γ and C such that, for all ν , $m \in \mathbb{N}$,

$$|\mathcal{A}'_{\nu,m}| \le C \left(\frac{\nu}{\log \nu}\right) \gamma^m. \tag{3.12}$$

Set $\phi_n := \mathbb{P}[\mathcal{P}_n(Q_i)\mathcal{Q}_{\tau n}(Q_i) = 0]$; this does not depend on *i*. By the union bound and (3.1),

$$\begin{aligned} \phi_n &\leq \exp(-n(\varepsilon r_{\nu(k(n))})^2) + \exp(-\tau n(\varepsilon r_{\nu(k(n))})^2) \\ &\leq 2 \exp\left(-(\tau \wedge 1)\varepsilon^2 \frac{\alpha}{\pi} \frac{n \log \nu(k(n))}{\nu(k(n))}\right) \\ &\leq 2\nu(k(n))^{-(\tau \wedge 1)\varepsilon^2 \alpha/\pi} \\ &\leq 3n^{-(\tau \wedge 1)\varepsilon^2 \alpha/\pi} \,, \end{aligned}$$

where the last inequality holds for all large enough n. Using (3.11) and (3.12), we obtain

$$\mathbb{P}[F_K(n)] \leq \sum_{m > (K/2)^{1/2}} C\left(\frac{\nu(k(n))}{\log \nu(k(n))}\right) \gamma^m \phi_n^m \leq 2C n (3\gamma n^{-\varepsilon^2 \alpha(\tau \wedge 1)/\pi})^{(K/2)^{1/2}},$$

which is summable in n provided K is chosen so that $\varepsilon^2 \pi^{-1} \alpha(\tau \wedge 1)(K/2)^{1/2} > 3$. The result then follows by the Borel–Cantelli lemma.

Proof of Theorem 3.1. Choose $K \in \mathbb{N}$ as in Lemma 3.8. Writing 'i.o.' for 'for infinitely many n' (i.e. infinitely often), we have

$$\mathbb{P}[\mathcal{G}^{1}(n,\tau,r_{n}) \notin \mathcal{K} \text{ i.o.}] \leq \left(\sum_{m=1}^{K} \mathbb{P}[(\mathcal{P}_{n}^{F},\mathcal{Q}_{\tau n}^{F}) \in \mathcal{K}_{\nu(k(n)),m}(r_{n}) \text{ i.o.}]\right) + \mathbb{P}[F_{K}(n) \text{ i.o.}].$$

By Lemmas 3.6 and 3.8, this is 0.

References

- CHAYES, L. AND SCHONMANN, R. H. (2000). Mixed percolation as a bridge between site and bond percolation. Ann. Appl. Prob. 10, 1182–1196.
- [2] GRIMMETT, G. (1999). Percolation, 2nd edn. Springer, Berlin.
- [3] IYER, S. K. AND YOGESHWARAN, D. (2012). Percolation and connectivity in AB random geometric graphs. Adv. Appl. Prob. 44, 21–41.
- [4] LORENZ, C. D. AND ZIFF, R. M. (2000). Precise determination of the critical percolation threshold for the threedimensional "Swiss cheese" model using a growth algorithm. J. Chem. Phys. 114, 3659–3661.
- [5] MEESTER, R. AND ROY, R. (1996). Continuum Percolation. Cambridge University Press.
- [6] Penrose, M. (2003). Random Geometric Graphs. Oxford University Press.
- [7] PINTO, P. C. AND WIN, Z. (2012). Percolation and connectivity in the intrinsically secure communications graph. IEEE Trans. Inform. Theory 58, 1716–1730.
- [8] QUINTANILLA, J. A. AND ZIFF, R. M. (2007). Asymmetry of percolation thresholds of fully penetrable disks with two different radii. *Phys. Rev. E* 76, 051115, 6pp.
- [9] SARKAR, A. AND HAENGGI, M. (2013). Percolation in the secrecy graph. Discrete Appl. Math. 161, 2120–2132.

MATHEW D. PENROSE, University of Bath

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK.

Email address: m.d.penrose@bath.ac.uk