Vol. 65 (2002) [55-57]

FUNCTIONS INVARIANT UNDER THE BOCHNER-MARTINELLI INTEGRAL

Jaesung Lee

We give an elementary proof of the statement that a function f on the closed unit ball of \mathbf{C}^{n}, integrable on the unit sphere, is holomorphic if it is invariant under the Bochner-Martinelli integral transform.

The classical Bochner-Martinelli integral formula can be written explicitly in the unit ball B_{n} of \mathbf{C}^{n}. Indeed (see, for example, $[2,16.5 .8]$) if $f \in C^{1}\left(\overline{B_{n}}\right)$ and $z \in B_{n}$, then

$$
\begin{equation*}
f(z)=\int_{S} \frac{1-\langle\xi, z\rangle}{|\xi-z|^{2 n}} f(\xi) d \sigma(\xi)-\frac{1}{n} \sum_{k=1}^{n} \int_{B_{n}} \frac{\bar{D}_{k} f(w)\left(\bar{w}_{k}-\bar{z}_{k}\right)}{|w-z|^{2 n}} d \nu(w) \tag{1}
\end{equation*}
$$

where S is the unit sphere, σ is the rotation invariant, positive Borel measure on S with $\sigma(S)=1$ and $\langle\xi, z\rangle=\sum \xi_{k} \bar{z}_{k}$ denotes the inner product in \mathbf{C}^{n} as we follow standard notations of [2]. From the formula (1), we see that if f is, in addition, holomorphic in B_{n} then for $z \in B_{n}$

$$
f(z)=\int_{S} \frac{1-\langle\xi, z\rangle}{|\xi-z|^{2 n}} f(\xi) d \sigma(\xi)
$$

Now, for $f \in L^{1}(S)$, we define an integral transform $B f$ on B_{n} by

$$
\begin{equation*}
(B f)(z)=\int_{S} \frac{1-\langle\xi, z\rangle}{|\xi-z|^{2 n}} f(\xi) d \sigma(\xi) \quad \text { for } z \in B_{n} \tag{2}
\end{equation*}
$$

We call $B f$ the Bochner-Martinelli transform of f. For $n=1, B f$ is the Cauchy integral (thus it is holomorphic), but in general not holomorphic when $n \geqslant 2$ although it is harmonic in B_{n} for every $f \in L^{1}(S)$.

In 1978 Romanov [1] showed, by using the iterates of the operator B, that a function $f \in C\left(B_{n}\right) \cap L^{2}(S)$ satisfies $B f=f$ on B_{n}, then it is holomorphic. Here we prove, by an elementary method, a function on the closed unit ball, integrable on S, which is invariant under the Bochner-Martinelli transform is holomorphic.

Theorem 1. If a function f on $\overline{B_{n}}$ which is integrable on S satisfies

$$
\begin{equation*}
f(z)=(B f)(z) \quad \text { for all } z \in B_{n} \tag{3}
\end{equation*}
$$

then f is holomorphic in B_{n}.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 \$A2.00+0.00.

Proof: It is trivial for $n=1$, thus we assume that $n \geqslant 2$. Since f is harmonic in B_{n} by (3), $f(z)=P f(z)$ for all $z \in B_{n}$ where

$$
(P f)(z)=\int_{S} \frac{1-|z|^{2}}{|\xi-z|^{2 n}} f(\xi) d \sigma(\xi)
$$

is the Poisson integral of f. Thus for each $z \in B_{n}$, we have

$$
\begin{align*}
0 & =P f(z)-B f(z) \\
& =\int_{S} \frac{\langle\xi, z\rangle-|z|^{2}}{|\xi-z|^{2 n}} f(\xi) d \sigma(\xi) \\
& =\sum_{k} \bar{z}_{k} \int_{S} \frac{\xi_{k}-z_{k}}{|\xi-z|^{2 n}} f(\xi) d \sigma(\xi) \tag{4}\\
& =\sum_{k} \bar{z}_{k} \frac{\partial}{\partial \bar{z}_{k}} h(z)
\end{align*}
$$

where

$$
h(z)=\frac{1}{n-1} \int_{S} \frac{f(\xi)}{|\xi-z|^{2 n-2}} d \sigma(\xi)
$$

(it is the single layer potential with movement f).
Since h is real analytic (indeed it is harmonic) in B_{n}, the power series expression of h at the origin shows that (4) implies that h is holomorphic.

Hence the function

$$
g(z)=\sum z_{k} \frac{\partial}{\partial z_{k}} h(z)
$$

is also holomorphic.
Once again by the same calculation as (4), we can see that

$$
g(z)=\int_{S} \frac{\langle z, \xi\rangle-|z|^{2}}{|\xi-z|^{2 n}} f(\xi) d \sigma(\xi)
$$

Therefore

$$
\begin{aligned}
B f(z) & =\int_{S} \frac{1-\langle\xi, z\rangle}{|\xi-z|^{2 n}} f(\xi) d \sigma(\xi) \\
& =\int_{S}\left(\frac{\langle z, \xi\rangle-|z|^{2}}{|\xi-z|^{2 n}}+\frac{|\xi-z|^{2}}{|\xi-z|^{2 n}}\right) f(\xi) d \sigma(\xi) \\
& =g(z)+(n-1) h(z)
\end{aligned}
$$

The holomorphicity of g and h implies that $B f$ is holomorphic.
Since $f=B f, f$ is also holomorphic and this proves the theorem.

References

[1] A. Romanov, 'Spectral analysis of the Martinelli-Bochner operator for the ball in C^{n} and its application', Funct. Anal. Appl. 12 (1978), 232-234.
[2] W. Rudin, Function theory in the unit ball of \mathbf{C}^{n} (Springer-Verlag, Berlin, Heidelberg, New York, 1980).

Department of Mathematics
Sogang University
Seoul 121-742
Korea
e-mail: jalee@sogang.ac.kr

[^0]: Received 26th April, 2001

