Vol. 72 (2005) [157-160]

A MULTIPLE CHARACTER SUM EVALUATION

Dae San Kim

We evaluate in a simple and direct manner a multiple character sum, a special case of which can also be derived from the Möbius inversion and a result of Hanlon.

1. INTRODUCTION

Let Γ be a finite Abelian group with operation written multiplicatively, and let $\chi: \Gamma \longrightarrow \mathbb{C}^{\times}$be a character of order m. Then we are interested in evaluating the following multiple character sum

$$
\begin{equation*}
S_{n, m}=\sum_{\substack{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \Gamma^{n} \\ \gamma_{i} \neq \gamma_{j}}} \chi\left(\gamma_{1} \cdots \gamma_{n}\right) \tag{1}
\end{equation*}
$$

where the sum is over all $\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \Gamma^{n}$ satisfying $\gamma_{i} \neq \gamma_{j}$ for all $i, j \quad(1 \leqslant i, j \leqslant n)$ with $i \neq j$.

A special case of the sum (1) with $n=m$ was introduced by Professor Fernando Rodriguez Villegas in the number theory seminar on February 5, 2004 of University of Texas at Austin. I would like to thank him for drawing my attention to this problem. He evaluated the sum (1) for $n=m$ by using Möbius inversion and a result of Hanlon in the early 1980's (see [2, Theorem 4, p. 338]). We shall briefly go over his method for the special case of $n=m$.

A partition β of $[n]=\{1,2, \ldots, n\}$ is a collection $\beta=B_{1}\left|B_{2}\right| \cdots \mid B_{k}$ of nonempty, disjoint subsets of $[n]$ whose union is $[n]$. The set of all partitions of $[n]$ is denoted by $\Pi_{n} . \Pi_{n}$ is partially ordered by the relation:

$$
\beta \leqslant \beta^{\prime} \Longleftrightarrow \beta \text { is a refinement of } \beta^{\prime} .
$$

Obviously, $\left(\Pi_{n}, \leqslant\right)$ has the unique maximal element $\beta_{1}=12 \cdots n$, and the unique minimal element $\beta_{0}=1|2| \cdots \mid n$. For $\beta=B_{1}\left|B_{2}\right| \cdots \mid B_{k} \in \Pi_{n}$, let

$$
\sum_{\beta}=\left\{\sigma|\sigma:[n] \longrightarrow \Gamma, \sigma|_{B_{\mathbf{i}}}=\text { constant }\right\}
$$

Received 19th April, 2005
This work was supported by the Basic Research Program of the Korea Science and Engineering Foundation under Grant R01-2002-000-00083-0(2004).
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.

$$
\begin{aligned}
& \sum_{\beta}^{\prime}=\sum_{\beta} \backslash \bigcup_{\beta<\beta^{\prime}} \sum_{\beta^{\prime}} \\
& f(\beta)=\sum_{\sigma \in \Sigma_{\beta}^{\prime}} \chi(\sigma(1) \cdots \sigma(n))
\end{aligned}
$$

Then

$$
\begin{equation*}
S_{n, n}=f\left(\beta_{0}\right) \tag{2}
\end{equation*}
$$

Put

$$
\begin{equation*}
g(\beta)=\sum_{\beta \leqslant \beta^{\prime}} f\left(\beta^{\prime}\right)=\sum_{\sigma \in \sum_{\beta}} \chi(\sigma(1) \cdots \sigma(n)) . \tag{3}
\end{equation*}
$$

Then we claim that

$$
g(\beta)= \begin{cases}|\Gamma|, & \text { for } \beta=\beta_{1} \tag{4}\\ 0, & \text { otherwise }\end{cases}
$$

For $\beta=B_{1}\left|B_{2}\right| \cdots \mid B_{k}$ and $\sigma \in \sum_{\beta}$, let $n_{i}=\left|B_{i}\right|,\left.\sigma\right|_{B_{i}}=\sigma_{i}$, for $i=1, \ldots, k$. As χ has order $n, \sigma \mapsto \chi(\sigma(1) \cdots \sigma(n))=\prod_{i=1}^{k} \chi^{n_{i}}\left(\sigma_{i}\right): \sum_{\beta} \longrightarrow \mathbb{C}^{\times}$is trivial $\Leftrightarrow n=n_{i}$, for all $i \Leftrightarrow k=1 \Leftrightarrow \beta=\beta_{1}$. This shows the claim in (4). Now, by (2), (3), (4), and Möbius inversion,

$$
\begin{equation*}
S_{n, n}=f\left(\beta_{0}\right)=\sum_{\beta \in \Pi_{n}} \mu(\beta) g(\beta)=\mu\left(\beta_{1}\right)|\Gamma| \tag{5}
\end{equation*}
$$

where μ is the Möbius function of the poset $\left(\Pi_{n}, \leqslant\right)$. The following is a special case of a result of Hanlon (see [2, Theorem 4, p. 338]) which had been used repeatedly in subsequent papers (see [1, Theorem 4.3, p. 293], [3, Theorem 2.4, p. 447], [4, Theorem 2.1.12, p. 7]).

Theorem 1. (Hanlon) $\mu\left(\beta_{1}\right)=(-1)^{n-1}(n-1)$!.
From (5) and Theorem 1, we get the following corollary.
Corollary 2. $\quad S_{n, n}=(-1)^{n-1}(n-1)!|\Gamma|$.
In the present paper, we show the following more general theorem in a direct and simple manner.

Theorem 3. Let Γ be a finite Abelian group with operation written multiplicatively, and let $\chi: \Gamma \longrightarrow \mathbb{C}^{\times}$be a character of order m. Then the multiple character sum in (1)

$$
S_{n, m}=\sum_{\substack{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \Gamma^{n} \\ \gamma_{i} \neq \gamma_{j}}} \chi\left(\gamma_{1} \cdots \gamma_{n}\right),
$$

summing over all $\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \Gamma^{n}$ satisfying $\gamma_{i} \neq \gamma_{j}$ for all $i, j(1 \leqslant i, j \leqslant n)$ with $i \neq j$, is given by

$$
S_{n, m}= \begin{cases}\frac{(-1)^{(n / m)(m-1)}(n-1)!\prod_{j=1}^{n / m}(|\Gamma|-(j-1) m)}{m^{(n / m)-1}((n / m)-1)!}, & \text { if } m \mid n \tag{6}\\ 0, & \text { otherwise }\end{cases}
$$

2. Proof of the theorem

The following lemma is elementary but will be useful.
Lemma 4. For an integer $n>1$, and $\gamma \in \Gamma$, let

$$
S_{n, m}^{\prime}(\gamma)=\sum_{\substack{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \Gamma^{n} \\ \gamma_{i} \neq \gamma_{j}, \gamma_{i} \neq \gamma}} \chi\left(\gamma_{1} \cdots \gamma_{n}\right)
$$

Here the sum is over all $\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \Gamma^{n}$ satisfying $\gamma_{i} \neq \gamma_{j}$ for all $i, j(1 \leqslant i, j \leqslant n)$ with $i \neq j$ and all $\gamma_{i} \neq \gamma$. Then
(a) $S_{n, m}^{\prime}(\gamma)=S_{n, m}-n \chi(\gamma) S_{n-1, m}^{\prime}(\gamma)$,
(b) $S_{n, m}=\sum_{\gamma \in \Gamma} \chi(\gamma) S_{n-1, m}^{\prime}(\gamma)$.

As the result (6) in Theorem 3 for $m=1$ is trivial, we may assume that $m>1$. Using (a), (b) of Lemma 4, the sum in (1) can be written as:

$$
\begin{equation*}
S_{n, m}=\sum_{\gamma \in \Gamma} \chi(\gamma)\left\{S_{n-1, m}-(n-1) \chi(\gamma) S_{n-2, m}^{\prime}(\gamma)\right\}=-(n-1) \sum_{\gamma \in \Gamma} \chi^{2}(\gamma) S_{n-2, m}^{\prime}(\gamma) \tag{7}
\end{equation*}
$$

since χ has order $m>1$ and hence is nontrivial.
CASE 1. $m>n$. Applying (7) $n-2$ times with (a) of Lemma 4 in mind, we have:

$$
\begin{aligned}
S_{n, m} & =(-1)^{n-2}(n-1)!\sum_{\gamma \in \Gamma} \chi^{n-1}(\gamma) S_{1, m}^{\prime}(\gamma) \\
& =(-1)^{n-1}(n-1)!\sum_{\gamma \in \Gamma} \chi^{n}(\gamma) \\
& =0
\end{aligned}
$$

as $S_{1, m}^{\prime}(\gamma)=\sum_{\gamma^{\prime} \neq \gamma} \chi\left(\gamma^{\prime}\right)=-\chi(\gamma)$ and χ^{n} is nontrivial.
Case 2. $m=n$.

$$
S_{n, m}=(-1)^{n-1}(n-1)!\sum_{\gamma \in \Gamma} \chi^{n}(\gamma)=(-1)^{n-1}(n-1)!|\Gamma|,
$$

as χ has order $n=m$. This agrees with Corollary 2.

Case 3. $m<n$. Write $n=l m+r, 0 \leqslant r<m$. Applying (7) $m-1$ times, we get:

$$
\begin{aligned}
S_{n, m} & =(-1)^{m-1}(n-1) \cdots(n-(m-1)) \sum_{\gamma \in \Gamma} \chi^{m}(\gamma) S_{n-m, m}^{\prime}(\gamma) \\
& =(-1)^{m-1}(n-1) \cdots(n-(m-1)) \times \sum_{\gamma \in \Gamma}\left\{S_{n-m, m}-(n-m) \chi(\gamma) S_{n-m-1, m}^{\prime}(\gamma)\right\} \\
8) \quad & (-1)^{m-1}(n-1) \cdots(n-(m-1))(|\Gamma|-(n-m)) S_{n-m, m}
\end{aligned}
$$

by using (a), (b) in Lemma 4.
Case 3(a). $r=0$ Applying (8) $l-1$ times, we obtain:

$$
\begin{aligned}
& S_{n, m}= \prod_{j=1}^{l-1}\left\{(-1)^{m-1}(n-(j-1) m-1)\right. \\
& \cdots(n-(j-1) m-(m-1)) \\
&\times(|\Gamma|-(l-j) m)\} S_{m, m} \\
&= \prod_{j=1}^{l}\left\{(-1)^{m-1}(n-(j-1) m-1) \cdots(n-(j-1) m-(m-1))\right. \\
&\times(|\Gamma|-(l-j) m)\} \\
&= \frac{(-1)^{l(m-1)}(n-1)!\prod_{j=1}^{l}(|\Gamma|-(j-1) m)}{m^{l-1}(l-1)!}
\end{aligned}
$$

in view of Corollary 2.
Case 3(b). $r>0$ Applying (8) l times, we have:

$$
\begin{aligned}
& S_{n, m}=\prod_{j=1}^{l}\left\{(-1)^{m-1}(n-(j-1) m-1) \cdots(n-(j-1) m-(m-1))\right. \\
&=0
\end{aligned}
$$

by Case 1 above. This completes the proof of Theorem 3.

References

[1] A.R. Calderbank, P. Hanlon and R.W. Robinson, 'Partitions into even and odd block size and some unusual characters of the symmetric groups', Proc. London Math. Soc. 53 (1986), 288-320.
[2] P. Hanlon, 'The fixed-point partition lattices', Pacific J. Math. 96 (1981), 319-341.
[3] P. Hanlon, 'The characters of the wreath product group acting on the homology groups of the Dowling lattices', J. Algebra 91 (1984), 430-463.
[4] P. Hanlon, 'The generalized Dowling lattices', Trans. Amer. Math. Soc. 325 (1991), 1-37.

[^0]
[^0]: Department of Mathematics
 Sogang University
 Seoul 121 - 742, South Korea
 e-mail: dskim@sogang.ac.kr

