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Turbulence and added drag over acoustic liners
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We present pore-resolved compressible direct numerical simulations of turbulent flows
grazing over perforated plates, that closely resemble the acoustic liners found on aircraft
engines. Our direct numerical simulations explore a large parameter space including the
effects of porosity, thickness and viscous-scaled diameter of the perforated plates, at
friction Reynolds numbers Reτ = 500–2000, which allows us to develop a robust theory
for estimating the added drag induced by acoustic liners. We find that acoustic liners
can be regarded as porous surfaces with a wall-normal permeability and that the relevant
length scale characterizing their added drag is the inverse of the wall-normal Forchheimer
coefficient. Unlike other types of porous surfaces featuring Darcian velocities inside the
pores, the flow inside the orifices of acoustic liners is fully turbulent, with a magnitude
of the wall-normal velocity fluctuations comparable to the peak in the near-wall cycle.
We provide clear evidence of a fully rough regime for acoustic liners, also confirmed
by the increasing relevance of pressure drag. Once the fully rough asymptote is reached,
canonical acoustic liners provide an added drag comparable to that of sand-grain roughness
with viscous-scaled height matching the inverse of the viscous-scaled Forchheimer
permeability of the plate.

Key words: compressible turbulence, turbulence simulation

1. Introduction

Aircraft engines are the primary source of noise during take-off and landing. In order to
meet noise regulations, the nacelle of modern engines is coated with acoustic liners, which
represent the state-of-the-art technology for engine noise abatement. Acoustic liners are
panels with a sandwich structure, consisting of a honeycomb core, bounded by a perforated
facesheet and a solid backplate (see figure 1a). They cover the nacelle inner surface, both
in front of the fan and in the by-pass duct (see figure 2), and can theoretically absorb all
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(a) (b)

Figure 1. (a) Turbofan engine of a civil aircraft with acoustic liners on the air intake. (b) The typical pore
size of acoustic liners used in turbofan engines.

Figure 2. Acoustic liners around the fan of a turbofan engine.

incoming sound if the resonant frequency of the liner is tuned to the frequency of the
incoming acoustic wave (Hughes & Dowling 1990; Dowling & Hughes 1992; Kirby &
Cummings 1998). In realistic conditions, several studies have shown that acoustic liners
reduce fan noise by as much as 3–6 dB (Casalino, Hazir & Mann 2018; Shur et al. 2020).
They are, therefore, an essential part of aircraft engines.

Although the sound attenuation mechanism is well understood, the aerodynamic
characteristics of these surfaces are less clear. Several authors agree that liners increase
aerodynamic drag as compared with a hydraulically smooth wall (Wilkinson 1983;
Howerton & Jones 2015; Jasinski & Corke 2020). However, an extensive literature study
summarized in table 1 shows that reported values for the actual drag increase caused by
acoustic liners vary between 2 % and 500 %. Hence, at present, we lack a theory for the
prediction of the aerodynamic drag over acoustic liners.

Wilkinson (1983) was among the first to perform experiments of turbulent boundary
layers over porous plates for different values of the viscous-scaled orifice diameter d+ :
= d/δv , viscous-scaled plate thickness t+ := t/δv and plate porosity (open-area ratio) σ .
Here, δv = νw/uτ is the viscous length scale, ν the kinematic viscosity of the fluid, uτ =√

τw/ρw the friction velocity, τw the drag per plane area and ρ the fluid density and the
subscript w denotes quantities evaluated at the wall.

More recently, several experiments have been conducted in the Grazing Flow Impedance
Tube (GFIT) facility at NASA (Jones et al. 2004a) and considerable effort has been
dedicated to estimating the added drag provided by acoustic liners using a static pressure
drop approach (Howerton & Jones 2015, 2016, 2017). These experimental campaigns
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considered several liner geometries, for both conventional and more exotic configurations
(Howerton & Jones 2015, 2017), and reported a drag increase of between 16 % and 350 %
compared with a smooth wall.

An important finding of the GFIT experiments is that the cavity depth has a negligible
contribution to the total drag in the absence of acoustic waves, which instead is largely
influenced by the orifice diameter, plate porosity and facesheet thickness. For instance,
Howerton & Jones (2015) noted that, for constant porosity, reducing the diameter of the
orifices reduced drag. Similarly, Howerton & Jones (2017) reported 50 % drag increase for
porosity σ = 0.08 and 400 % drag increase for σ = 0.3, for the same flow conditions and
approximately the same orifice diameter. Additionally, these experiments suggest that it is
possible to reduce the drag penalty without harming the noise attenuation.

Gustavsson et al. (2019) performed experiments over several acoustic liner geometries
and reported a drag increase of between 30 % and 50 %, without incoming acoustic waves,
arguing that the added drag might be even larger in the presence of incoming noise.

Numerical simulations of turbulent flows over acoustic liners are also available, but
very often they rely on simplified configurations or wall models because pore-resolved
simulations are computationally expensive. A common approach that has been pursued
for reducing the computational cost is to simulate a single cavity rather than an array of
resonators (Zhang & Bodony 2011, 2016; Avallone et al. 2019). Zhang & Bodony (2016)
performed direct numerical simulation (DNS) of turbulent grazing flow over a single
resonator with a cavity geometry similar to that studied by Howerton & Jones (2015) in
the GFIT (Jones et al. 2004b). However, the simulations were at a much lower friction
Reynolds number (see table 1). For a free-stream Mach number M∞ = 0.5, Zhang &
Bodony (2016) reported a minor drag increase of 4.2 % with respect to a smooth wall
in the absence of sound waves, whereas they found a drag increase of about 25 % when
including sound waves with an intensity of 140 dB. These results seem to contradict
experiments of Howerton & Jones (2015) who reported a drag increase of about 50 % both
with and without incoming sound waves, at matched Mach number and cavity geometry.
This discrepancy can probably be traced back to the simplified numerical set-up wherein
only one single orifice is simulated, resulting in a very low porosity σ = 0.0099, compared
with σ = 0.08 in the experiments.

Another common simplification in numerical simulation is to approximate the effect
of acoustic liners with an equivalent impedance boundary condition (Tam & Auriault
1996), which substantially reduces the computational cost. However, the accuracy with
which the impedance boundary condition represents the real acoustic liner geometry is
not well understood and discrepancies can be observed in the literature. For instance,
Olivetti, Sandberg & Tester (2015) performed DNS of turbulent pipe flow with impedance
boundary conditions and did not report changes in the structure of the near-wall
turbulence. On the contrary, Scalo, Bodart & Lele (2015) and Sebastian, Marx & Fortuné
(2019) performed large-eddy simulations of turbulent channel flow with a characteristic
impedance boundary condition (Fung, Ju & Tallapragada 2000; Fung & Ju 2004), and
noted significant changes in the structure of the near-wall cycle which could, in some
cases, be completely replaced by Kelvin–Helmholtz-like rollers, with drag increase up to
500 %.

Despite the very large discrepancies between results of previous studies, there seems to
be a consensus that the added drag depends on both the orifice diameter d and the porosity
of the facesheet σ . This type of functional dependency has been observed in turbulent
grazing flows over porous substrates, which is a hint that acoustic liners might be regarded
as porous surfaces, permeable only in the wall-normal direction. Porous surfaces differ
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from other types of impermeable surface textures such as roughness. Flows over rough
surfaces are characterized by the pressure drag induced by the topography (Leonardi et al.
2003; Leonardi & Castro 2010; Chung et al. 2021). When pressure drag dominates over
viscous drag, the skin-friction coefficient becomes independent of the Reynolds number, a
regime that we denote as ‘fully rough’ (Schlichting 1968; Leonardi et al. 2003; Chung et al.
2021). The flow through many common porous surfaces (such as metal foams, sedimentary
rocks, sandstone and conglomerates) can be characterized by the Darcy and Forchheimer
permeability tensors, K ij and αij, which represent the ease with which flow passes through
the porous surface. Our current understanding of porous surfaces is that pressure drag and
permeability are intrinsically coupled because the grazing flow perceives the pores as a
non-smooth surface texture (which provides pressure drag), but it is also able to penetrate
into the pores. Therefore the flow has a ‘roughness’ component (pressure drag) and a
‘porous’ component (permeability), which are inseparable.

Some authors attempted to separate these two concurring effects. For instance, Manes
et al. (2009) studied the similarities and differences between roughness and porous
surfaces by carrying out experiments of (impermeable) rough walls with the same surface
topography of porous substrates, in an attempt to isolate the effect of the permeability.
They found that permeability largely contributes to the total drag and a fully rough regime
did not emerge for the permeable substrate. Esteban et al. (2022) carried out experiments
of permeable surfaces and delineated the effects of roughness and permeability by
considering permeable surfaces with constant permeability but different thicknesses.
They found that changing the thickness altered the added drag and that such an effect
could be attributed to the ‘roughness’ component of the geometry. Unlike Manes et al.
(2009), Esteban et al. (2022) found that porous surfaces do indeed approach a fully rough
regime. Breugem, Boersma & Uittenbogaard (2006) carried out DNS of porous surfaces
by modelling the substrate with a Darcy boundary condition. Those authors pointed out
that the duality between ‘rough’ and ‘porous’ surface is reflected in the presence of three
concurring length scales, namely the boundary layer thickness δ, the pore diameter d
and the square root of the permeability

√
K ij. These length scales can be converted into

the friction Reynolds number Reτ = δ/δv , the viscous-scaled pore diameter d+ = d/δv

and the viscous-scaled square root of the permeability
√

K ij
+ = √

K ij/δv . The authors
reason that the effects of the ‘roughness’ and ‘porous’ components are separated if there
is enough separation between d+ and

√
K ij

+ while having d � δ. These conditions are
somehow always assumed by models such as Darcy’s boundary conditions (Breugem et al.
2006; Rosti, Cortelezzi & Quadrio 2015; Rosti, Brandt & Pinelli 2018) and by impedance
boundary conditions (Scalo et al. 2015). This essentially corresponds to a surface with
small pores d+ � 70, but very high porosity σ (i.e. open-area ratio) and therefore high
permeability,

√
K ij

+
> 1.

Acoustic liners do not satisfy these conditions. Figure 1(b) shows that the plate porosity
is relatively small, typically σ = 0.08–0.3 and the orifice diameter is about 2–3 mm. The
orifice diameter with respect to the boundary layer length scales can be estimated assuming
an aircraft at cruise condition with free-stream Mach Number M∞ ≈ 0.3–0.6, free-stream
velocity u∞ ≈ 90–180 m s−1 and kinematic viscosity ν ≈ 3.5 × 10−5 m2 s−1. In these
conditions, we can estimate a friction Reynolds number Reτ ≈ 3300–5400, with boundary
layer thickness δ ≈ 30 mm, and viscous length scale δv = 5–10 µm. Therefore, acoustic
liners in operating conditions have d/δ ≈ 0.07 and d+ ≈ 200–400. The depth of a cavity
is typically h = 40 mm, corresponding to h/δ ≈ 1.3.
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Hence, acoustic liners have low porosity, but relatively large orifices, which is the
opposite of canonical porous surfaces, which can reach σ > 0.8 (Breugem et al. 2006;
Rosti et al. 2015). Furthermore, acoustic liners differ from canonical porous surfaces
because they exhibit non-zero permeability only in the wall-normal direction, thus only
one component of the Darcy (K ij) and Forchheimer (αij) permeability tensors is non-zero,
namely K 22 = K y and α22 = αy. Therefore, the operating regime of acoustic liners
would exclude them from the canonical definition of porous surfaces, although the drag
dependence on the porosity would suggest the opposite.

This literature survey shows that there have been several attempts to measure the added
drag caused by acoustic liners, both experimentally and numerically, suggesting a large
interest of the community in this topic. However, the discrepancies between previous
studies are too large to be acceptable. This large uncertainty can be associated with the
critical modelling assumptions that have been used in numerical simulations and the
difficulty in measuring drag in experiments. From a more fundamental perspective, it is
not clear if acoustic liners can be regarded as porous surfaces or as surface roughness,
because their geometry does not fall in either of these canonical classifications.

In this work, we aim at developing a rigorous theoretical framework to characterize
acoustic liners within the larger body of non-smooth surface textures. We believe that this
can only be achieved by performing pore-resolved DNS, which allows us to have access
to the three-dimensional flow field and to accurately measure the drag without relying on
additional modelling assumptions.

2. Methodology

We solve the compressible Navier–Stokes equations for a calorically perfect gas:

∂ρ

∂t
+ ∂ρui

∂xi
= 0, (2.1)

∂ρui

∂t
+ ∂ρuiuj

∂xi
= − ∂p

∂xi
+ ∂σij

∂xj
+ Πδi1, (2.2)

∂ρE
∂t

+ ∂ρuiH
∂xi

= −∂qi

∂xi
+ ∂σijui

∂xj
+ Πu1 + ΠT , (2.3)

where ui = {u1, u2, u3} are the velocity components, xi = {x1, x2, x3} = {x, y, z} are the
streamwise, wall-normal and spanwise spatial coordinates, ρ is the density, p is the
pressure, E = cvT + uiui/2 is the total energy per unit mass, T is the temperature,
H = E + p/ρ is the total enthalpy, cp and cv are the heat capacities at constant pressure
and constant volume and qj and σij are the heat flux vector and viscous stress tensor:

σij = μ

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
, (2.4)

qj = −k
∂T
∂xj

, (2.5)

where k = cpμ/Pr is the thermal conductivity. The Prandtl number is Pr = 0.72. The
viscosity dependence on the temperature is accounted for using a power law with exponent
0.75. We consider the plane channel flow configuration wherein the fully developed flow
between two plates is driven in the streamwise direction by a uniform body force, Π , which
is adjusted every time step to maintain a constant mass flow rate and the power spent is
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Lx

Ly

Lz

x
z

No-slip

σ = 0.0357

σ = 0.143

σ = 0.322

Flow
2δ

y

(b)

(c)

(d )

(a)

d = 0.08δ

λ = 0.375δ

λ = 0.375δ

Figure 3. (a) Sketch of the computational domain. Turbulent channel flow configuration with box dimensions
Lx × Ly × Lz. Different porosities are considered by increasing the number of holes per cavity. (b–d) The three
different porosities, σ .

added to the total energy equation. A uniform bulk cooling term, ΠT , is also added to
the total energy equation to maintain a constant bulk flow temperature. The bulk velocity,
temperature and density are defined as

ub = 1
ρbV

∫
V

ρu1 dV, Tb = 1
ρbubV

∫
V

ρu1T dV, ρb = 1
V

∫
V

ρ dV, (2.6a–c)

where V = Lx × 2δ × Lz is the fluid volume between the top and bottom perforated plates
(see figure 3). The volume of fluid within the cavities is, therefore, not considered while
calculating the driving pressure gradient.

The Navier–Stokes equations are solved using the solver STREAmS (Bernardini et al.
2021). The nonlinear terms in the Navier–Stokes equations are discretized using an
energy-conservative scheme in locally conservative form (Pirozzoli 2010). The viscous
terms are expanded into a Laplacian form and approximated with sixth-order central
finite-difference formulas to avoid odd–even decoupling phenomena. Time stepping is
carried out using Wray’s three-stage third-order Runge–Kutta scheme (Spalart, Moser &
Rogers 1991).

The complexity of the roughness geometry is handled using a ghost-point-forcing
immersed boundary method to treat arbitrarily complex geometries (Piquet, Roussel &
Hadjadj 2016; Vanna, Picano & Benini 2020). The geometry of the solid body is provided
in OFF format for three-dimensional objects, and the computational geometry library
CGAL (Project 2022) is used to perform the ray-tracing algorithm. This allows us to
define the grid nodes belonging to the fluid and the solid, and to compute the distance
of each point from the interface. To retain the same computational stencil close to the
boundaries, the first three layers of interface points inside the body are tagged as ghost
nodes. For each ghost node, we identify a reflected point along the wall-normal, laying
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inside the fluid domain. We interpolate the solution at the reflected point using a trilinear
interpolation and use the values at the reflected points to fill the ghost nodes inside the
body to apply the desired boundary condition. An extensive description of the algorithm is
available in the work by Vanna et al. (2020), and validation of the present implementation
is available in Appendix A and in the paper by Modesti et al. (2022).

The simulations are carried out in a rectangular box of size Lx × Ly × Lz = 3δ × 2(δ +
h) × 1.5δ, where δ is the channel half-width and h the cavity depth. This box size is
smaller than is usually recommended for DNS (Lozano-Durán & Jiménez 2014). However,
similar and even smaller box sizes have been used previously to aid parametric analysis of
rough-wall turbulent flows (Chung et al. 2015; MacDonald et al. 2017; Di Giorgio et al.
2020; Yang et al. 2022) through comparison with smooth-wall simulations with the same
box size. We use uniform mesh spacing in the streamwise and spanwise directions. In the
wall-normal direction, the mesh is clustered towards the facesheet walls and coarsened
towards the backplate and the channel centre. The simulations are performed at bulk Mach
number Mb = ub/cw = 0.3, where cw is the speed of sound at the wall. This value of
Mach number is representative of the values encountered inside aircraft air intakes, where
the flow is decelerated before reaching the fan. We also note that at this Mach number and
in the absence of incoming acoustic waves, we do not expect significant compressibility
effects, as the friction Mach number does not exceed Mτ = uτ /cw < 0.02 for any of the
flow cases. The bulk-to-wall temperature ratio is fixed at Tb/Tw = 1, which corresponds to
an isothermal cold wall with Tw/Taw = 0.984, where Taw is the adiabatic wall temperature
based on the bulk Mach number.

We choose the liner geometry to match as closely as possible the orifice size of acoustic
liners in operating conditions. The acoustic liner comprises a total of 64 cavities: an array
of 8 × 4 in the streamwise and spanwise directions on the upper and lower walls. Each
cavity has a square cross-section with a side length λc = 0.335δ and depth h = 0.5δ. The
orifices have a diameter of d = 0.08δ and the cavity walls have a thickness of 0.02δ.

We carry out simulations at three friction Reynolds numbers Reτ = 500, 1000, 2000,
corresponding to viscous-scaled diameters d+ = 40, 80, 160. Additionally, we increase
the liner porosity between σ ≈ 0.036 and 0.32 by varying the number of orifices per
cavity between 1 and 9. We also vary the facesheet thickness. The dataset is complemented
by smooth-wall simulations at matching Reynolds numbers. Flow cases are named
with the letter S-Re or L-Reσ(%), depending on if they are smooth wall (S) or liner
configurations (L), followed by the Reynolds number: low (L) for Reτ ≈ 500, medium
(M) for Reτ ≈ 1000 and high (H) for Reτ ≈ 1000. For liner cases, σ(%) is the facesheet
porosity, expressed as a percentage. The naming convention of the liner cases also
contains information about the thickness of the facesheet. Cases L-Reσ(%) have a facesheet
thickness of t = d and cases Lt-Reσ(%) have a facesheet thickness of t = d/2. For example,
flow case L-M32 indicates a liner flow case at Reτ ≈ 1000 with facesheet thickness
t/d = 1 and a porosity of 32 %. Details of all flow cases are reported in table 2. The
same wall-normal mesh is employed for cases with thickness t = d and t = d/2. This
ensures that, at a minimum, 25 grid points are used to resolve the facesheet thickness
at Reτ = 500 and t = d/2. Note that whereas 40 points are used to resolve the orifice
diameter in the streamwise and spanwise direction for cases with t = d, t = d/2 and 26
points are used for flow cases with t = d/2. This resolution is well within the viscous
spacing typically accepted in DNS, and it does not affect the results, as we show in the
mesh refinement study detailed in Appendix B. The orifice configurations within a cavity,
along with a sketch of the entire domain, are shown in figure 3. We compare the results
of the liner simulations with smooth-wall simulations at approximately matching friction
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Reynolds numbers. Quantities that are non-dimensionalized by δv and uτ are denoted by a
‘+’ superscript.

The near-wall flow is spatially inhomogeneous due to the acoustic liner. Therefore,
flow statistics are calculated by averaging in time and over the cavity phase λ = 0.375δ

in the streamwise and spanwise directions, using both Favre (·̃) and Reynolds (·̄) ensemble
averages:

f (x, y, z, t) = f̃ (x, y, z) + f ′′(x, y, z, t), f (x, y, z, t) = f̄ (x, y, z) + f ′(x, y, z, t). (2.7a,b)

Additionally, we use angle brackets 〈·〉 to denote intrinsic averages (average over the fluid
only) in the wall-parallel directions. With this notation, the ensemble-averaged Reynolds
stress tensor is τij(x, y, z) = ρ̄ũ′′

i u′′
j . The wall-normal coordinate is measured upwards from

the surface of the facesheet such that y/δ = −h corresponds to the bottom surface of the
cavity. For comparing the smooth-wall and the liner cases, a virtual origin shift �T is also
introduced. The virtual origin is measured positively downwards from the surface of the
facesheet. More details about the virtual origin are provided in § 3.3.

3. Results

3.1. Instantaneous flow
We begin our analysis by inspecting an instantaneous visualization of flow case L-H32
at friction Reynolds number Reτ = 2000. Figure 4 shows the streamwise velocity in the
wall-normal planes and vortical structures visualized using the Q-criterion. The near-wall
region is populated by small-scale structures indicating intense turbulence activity close
to the wall, whereas the flow below the cavities is more quiescent, although some vortices
penetrate below the facesheet.

Figure 5 shows contours of the instantaneous streamwise (figure 5a,b) and wall-normal
(figure 5c,d) velocity in a wall-parallel plane above the facesheet for flow case L-H32.
The streamwise velocity is significantly altered as compared with the smooth wall and
near-wall streaks are shorter over the liner. A similar break-up of the streaks was also
observed by Orlandi & Leonardi (2006) for different roughness geometries. Here, the
streaky structures can still be discerned, suggesting a modification rather than a complete
replacement of the near-wall cycle.

These observations are in line with previous studies of permeable walls, which reported
shorter streaks caused by the higher wall-normal velocity fluctuations (Kuwata & Suga
2019). We also observe higher wall-normal velocity fluctuations as compared with the
smooth wall, mainly concentrated at the orifices (figure 5). The wall-normal velocity
fluctuations seem reminiscent of the underlying surface pattern, as the position of the
orifices can easily be discerned in the contours of u′

2, suggesting that turbulence in the
near-wall region is modulated by the surface topography (Abderrahaman-Elena, Fairhall
& García-Mayoral 2019).

Figure 6 shows a snapshot of the wall-normal velocity in an x–y plane, where we observe
that the effect of the liner on the flow is concentrated near the wall and inside the cavities.
Inside the orifices, high wall-normal velocity fluctuations are visible, and they are notably
higher at the downstream edge. Wall-normal velocity fluctuations penetrate inside the
cavities forming a jet-like flow which extends down to 0.2δ below the facesheet, indicating
important inertial effects inside the orifices.
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Flow dire
ctio

n

Figure 4. Instantaneous flow field from DNS of turbulent channel flow at Reτ = 2000 and bulk Mach number
Mb = 0.3. The streamwise velocity is shown in an x–y plane and a y–z plane. Vortical structures are visualized
using the Q-criterion.
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Figure 5. Instantaneous streamwise (a,b) and wall-normal (c,d) velocity fluctuations in an x–z plane at y+ +
�+

T = 12 for flow case S-H (a,c) and flow case L-H32 (b,d) at Reτ ≈ 2000. The position of the orifices is shown
at the bottom-left corner, for one cavity only. The virtual origin �T is defined in § 3.3.
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Figure 6. Wall-normal velocity fluctuations in an x–y plane for flow case S-H (a) and flow case L-H32 (b) at
Reτ ≈ 2000. Grey patches represent solid wall regions.

3.2. Mean flow
In order to quantify the flow penetration and inertial effects inside the orifices, we report
the mean wall-normal velocity and wall-normal Reynolds stress component for liner flow
cases with t = d in figure 7. Away from the facesheet, the flow is homogeneous in the
wall-parallel directions, indicating that the effect of the liner is primarily contained in
the near-wall region. The mean flow is highly three-dimensional close to the liner. The
wall-normal velocity is negative at the downstream edge of the orifice, suggesting that
flow penetrates inside the orifices, and positive at the upstream edge due to the mean
flow recirculation inside the pore, separating the region above and below the facesheet.
The vortex is asymmetric, and the negative values of ũ2 are always higher than the
positive ones. Moreover, we note that the intensity of ũ2 is, primarily, a function of the
viscous-scaled orifice diameter, whereas it seems less dependent on the porosity of the
plate.

For sufficiently large d+, we observe high values of the wall-normal velocity extending
down into the cavity, resembling a jet-like flow also observed in the instantaneous flow in
figure 6. This jet-like mean flow is accompanied by high wall-normal velocity fluctuations
inside the orifice, as shown in figure 7(g–l). Also the wall-normal velocity fluctuations
τ22 are higher at the downstream edge of the orifice, where they reach values comparable
to, or even higher than, the peak in the near-wall cycle. This is particularly true for liner
cases L-M32 and L-H32 (figure 7k,l) where τ22 is higher below the facesheet than in the
near-wall cycle above the facesheet. These high wall-normal velocity fluctuations are a
symptom of inertial effects inside the orifices. A comparison between liner flow cases
with t = d indicates that τ22 seems to depend on both σ and d+.

We also investigate the effect of the plate thickness, using flow cases Lt-L14, Lt-M14
and Lt-M32, which have t = 0.5d. Reducing the thickness causes an increase of the mean
wall-normal velocity (compare figures 7e and 8c) and its fluctuations (compare figures 7k
and 8f ) within the orifice. Wall-normal velocity fluctuations have been correlated with
drag increase over rough surfaces (Orlandi & Leonardi 2006) as they are indicative of
momentum transfer between the the crest and the trough in the case of roughness, and
the regions above and below the facesheet for acoustic liners. Therefore, this qualitative
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Figure 7. Mean wall-normal velocity ũ2 (a–f ) and wall-normal Reynolds stress τ22 (g–l) over a liner cavity
for flow cases L-L3 (a,g), L-L14 (b,h), L-L32 (c,i), L-M14 (d,j), L-M32 (e,k) and L-H32 ( f,l).

analysis suggests that the added drag over acoustic liners might depend on d+, σ and t/d,
as we discuss further in the following section.

3.3. Virtual origin and drag increase
On smooth walls, there is no ambiguity on the wall-normal origin of the flow, which is
always at the wall, where both the mean velocity and Reynolds stresses are zero. The
presence of complex surface patterns introduces uncertainty on the wall-normal origin
location, which can be relevant when comparing rough wall results with the solution for a
corresponding smooth wall.

This virtual origin is a flow property, and it can be interpreted as the wall-normal
location where the outer flow perceives the wall. Several methods to estimate the virtual
origin have been proposed (Jackson 1981; Choi, Moin & Kim 1993; Modesti et al. 2021).
In the present work, we calculate the origin of turbulence �T following the approach of
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ũ2/uτ

0 0.375

x/δ

y/δ

–0.2

0

0.2

–0.2

0

0.2

–0.2

0

0.2

–0.2

0

0.2

–0.2

0

0.2

y/δ

x/δ x/δ
0 0.375 0 0.375

0 0.375 0 0.375 0 0.375

τ22/τw
(e)

(b)(a) (c)

(d ) ( f )

Figure 8. Mean wall-normal velocity ũ2 (a–c) and wall-normal Reynolds stress τ22 (d–f ) over a liner cavity
for flow cases Lt-L14 (a,d), Lt-M14 (b,e) and Lt-M32 (c, f ).

y y

�T

z z

Figure 9. Schematic depicting the virtual origin of the flow configuration.

Ibrahim et al. (2021), namely we shift the Reynolds shear stress profile of the liner cases
to match the smooth wall one. The virtual origin is located �T below the surface of the
facesheet (figure 9), meaning that the near-wall cycle tends to penetrate inside the orifices,
as is also clear from the high values of the Reynolds shear stress in figure 10(a), and
from instantaneous flow visualizations. The virtual origin shift is limited to a few wall
units �+

T � 5 for all flow cases, but accounting for this displacement allows us to restore
a very good match with the smooth-wall data down to the viscous sublayer (figure 10b),
confirming that at least part of the effect of the liner can be accounted for by an origin
shift.

Having estimated the virtual origin, we can now draw meaningful comparisons between
the smooth-wall and liner statistics. Figure 11 shows the mean velocity profiles in viscous
units for all flow cases. The mean velocity profiles over the liner show a downward shift
�U+ with the respect to the baseline smooth wall, indicating that the flow experiences
higher drag. Despite the shift, velocity profiles are parallel to each other, which supports
outer-layer similarity, as is typical of many rough surfaces (Chung et al. 2021). The von
Kármán constant is κ ≈ 0.39 for both liner and smooth-wall cases.
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Figure 10. Intrinsic averaged Reynolds shear stress 〈τ12〉 as a function of the wall-normal distance for smooth
wall flow cases with t = d (dashed) and liner flow cases (solid with symbols), before virtual origin correction
(a) and after virtual origin correction (b). Symbols indicate different porosities: σ = 0.0357 (blue circles),
σ = 0.143 (green squares) and σ = 0.322 (red triangles).
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Figure 11. Intrinsic averaged mean streamwise velocity for smooth-wall flow cases (dashed lines) and liner
flow cases with t = d (a) and t = d/2 (b) as a function of the wall-normal distance. Symbols indicate different
porosities: σ = 0.0357 (blue circles), σ = 0.143 (green squares) and σ = 0.322 (red triangles).

This is in contrast to the work of Breugem et al. (2006) and Kuwata & Suga (2016b), who
reported different values of κ over permeable surfaces. The discrepancy could be due to the
low Reynolds number of previous studies (maximum Reτ ≈ 350 for smooth impermeable
cases), or perhaps to the use of Darcy-type boundary conditions, as compared with
pore-resolved simulations. The flow cases with low porosity, σ = 0.0357 and d+ = 40
(circles), show a smooth-wall-like behaviour with very minor changes in the mean velocity
profile. However, a departure from the smooth-wall velocity profile becomes evident as
either σ or d+ is increased or t/d is decreased.

A fundamental question is whether acoustic liners exhibit a fully rough regime, namely
whether the Hama roughness function follows a logarithmic law:

�U+ = 1
κ

log(�+) + B(�+), (3.1)

where � is a suitable length scale of the liner geometry. In canonical k-type roughness, �

is simply the roughness height; however, for acoustic liners different choices are possible.
Unlike canonical roughness, there is no protrusion into the flow and therefore the definition
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Figure 12. Plots of �U+ as a function of the viscous-scaled orifice diameter d+ (a) and the Darcy
permeability (b). Different line types indicate different facesheet thicknesses: solid (t = d) and dashed
(t = d/2). Symbols indicate different porosities: σ = 0.0357 (blue circles), σ = 0.143 (green squares) and
σ = 0.322 (red triangles).

of a suitable length scale is not straightforward. It is clear that it depends upon the
geometrical parameters of the orifice, namely the porosity, orifice diameter and plate
thickness. However, as is apparent in figure 12(a), none of these parameters can account
for the effect of the liner on their own. For instance, flow cases L-L14 and L-L32 have the
same t/d and approximately the same d+, but different porosity and therefore a different
�U+. Similarly, cases L-L32 and L-M32 have the same porosity and t/d, but case L-M32
has a larger viscous-scaled diameter, leading to a larger �U+ (see table 2). An increase in
�U+ is also noted if the thickness is decreased and the other two parameters are constant.

Other candidate length scales can be inferred by regarding acoustic liners as porous
surfaces. The flow normal to a porous plate is characterized by the pressure drop through
the facesheet �P, which can be expressed as the sum of two contributions (Lee & Yang
1997; Bae & Kim 2016):

�P
t

d2

ρνUt
= d2

K y
+ σαydRep, (3.2)

where Rep = dUp/ν is the pore Reynolds number, Up is the volume-averaged wall-normal
velocity inside the orifice, Ut = σUp is the superficial velocity, K y is the wall-normal
Darcy permeability coefficient and αy is the wall-normal Forchheimer coefficient.

The Darcy permeability has the physical dimension of an area whereas the Forchheimer
coefficient is the inverse of a length scale, and they are both related to the ease with
which the flow passes through the plate because both contribute to the pressure drop.
Their relative importance depends on Rep: Darcy permeability dominates at low pore
Reynolds number (Rep � O(1)) whereas the Forchheimer permeability becomes relevant
from Rep � 5. The permeability coefficients are measured by simulating a laminar flow in
the direction perpendicular to the facesheet for a single cavity and measuring the pressure
drop as a function of the mass flow rate through the porous medium. Different mass
flow rates have been simulated, which allows us to estimate the permeability coefficients
of the Darcy–Forchheimer law. More details and an extensive discussion of Darcy and
Forchheimer drag is available in our recent work (Shahzad, Hickel & Modesti 2022), where
we calculate the Darcy permeability and the Forchheimer coefficient of perforated plates
that match the present DNS dataset and compare the results with available engineering
formulas.
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Figure 13. Plots of �U+ (a) and the roughness sublayer height (b) as a function of the inverse of the
Forchheimer coefficient, 1/α+

y . Different line types indicate different facesheet thicknesses: solid (t = d) and
thick dashed (t = d/2). The thin dashed line in (a) indicates �U+ = κ−1 log(1/α+

y ) − 3.5. Symbols indicate
different porosities: σ = 0.0357 (blue circles), σ = 0.143 (green squares) and σ = 0.322 (red triangles). The
black filled circles indicate Nikuradse’s data (Nikuradse 1933).

If we regard acoustic liners as porous surfaces, two relevant length scales for the flow
are the square root of the Darcy permeability

√
K y and the inverse of the Forchheimer

coefficient 1/αy, besides the orifice diameter. We show �U+ as a function of the
viscous-scaled orifice diameter and the square root of the wall-normal Darcy permeability
in figure 12. Data show that neither the orifice diameter nor the square root of the Darcy
permeability is a suitable length scale for predicting the drag increase, as we find a clear
non-monotonic trend (see figure 12). Instead, we find that �U+ shows a very promising
trend when reported as a function of the inverse of the viscous-scaled Forchheimer
coefficient, suggesting that 1/α+

y is the most appropriate length scale for characterizing
the additional drag (figure 13).

This is consistent with the importance of inertia due to the very high wall-normal
velocity fluctuations experienced inside the orifice, as observed in figure 7. Hence,
the Darcy permeability, which is commonly associated with the pressure drop in the
limit case of Stokes flow, is no longer the dominant term. This is further elaborated
upon in § 3.4. Additional supportive evidence that 1/αy is the relevant length scale is
provided by figure 13(b), showing a nearly linear relation between the inverse of the
Forchheimer coefficient and the roughness sublayer. The roughness sublayer is defined
as the wall-normal location, measured upwards from the virtual origin, where the
time-averaged flow becomes homogeneous in the wall-parallel directions (Chung et al.
2021). It is a measure of the wall-normal extension of the liner influence, and has
been correlated often with the relevant roughness length scale (Raupach, Antonia &
Rajagopalan 1991; Chan et al. 2018; Modesti et al. 2021).

Moreover, the data in figure 13(a) show good agreement with data for classical
sand-grain roughness of Nikuradse (1933), supporting the emergence of a fully rough
regime:

�U+(1/α+
y ) = 1

κ
log (1/α+

y ) + C, (3.3)

with C ≈ −3.5.
For t/d = 1, our data match very well the sand-grain roughness of Nikuradse (1933)

with k+
s ≈ 1/α+

y being the equivalent sand-grain roughness height. For flow cases with
a lower plate thickness t/d = 0.5, we observe a similar trend, although the fully rough
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1/α+
y Cf × 103 Cf ,v × 103 Cf ,p × 103 Cf ,v/Cf (%) Cf ,p/Cf (%)

S-L 0 4.578 4.578 0 100 0
S-M 0 3.791 3.791 0 100 0
S-H 0 3.201 3.201 0 100 0
L-L3 0.0528 4.598 4.492 0.106 97.7 2.3
L-L14 0.859 4.855 4.389 0.466 90.4 9.6
L-M14 1.73 4.527 3.988 0.539 88.1 11.9
L-L32 5.14 5.539 4.149 1.390 74.9 25.1
L-M32 10.4 5.082 3.608 1.474 71.0 29.0
L-H32 20.8 5.267 3.029 2.238 57.5 42.5

Lt-L3 0.0287 4.738 4.620 0.118 97.5 2.5
Lt-L14 0.552 4.856 4.382 0.476 90.2 9.8
Lt-M14 1.12 4.475 3.889 0.586 86.9 13.1
Lt-M32 6.69 5.317 3.637 1.680 68.4 31.6

Table 3. Contribution of pressure (Cf ,p) and viscous (Cf ,v) drag to the skin-friction coefficient of acoustic
liners.

regime is not reached, and flow cases at higher 1/α+
y would be necessary to determine k+

s
more accurately.

The existence of a fully rough regime is in line with the observations of Esteban et al.
(2022), who note a fully rough regime in their experiments over porous foams. However,
in their case, the relevant length scale is the square root of the Darcy permeability.

The fully rough regime is usually associated with the dominance of pressure drag over
viscous drag, and the same appears to hold for acoustic liners. In table 3 we report the
skin-friction coefficient, decomposed into its viscous and pressure contributions, which
shows that pressure drag is nearly negligible for flow case L-L3, whereas it becomes
comparable to viscous drag for flow case L-H32. The same trend is also observed for cases
with lower plate thickness. Even though pressure drag is still contributing for less than
50 % for flow case L-H32, we believe that the trend is rather clear and it supports the
emergence of a fully rough regime for acoustic liners.

The relevance of pressure drag can also be demonstrated by analysing the mean
momentum balance in the streamwise direction:

∂ρ̄ũ1ũj

∂xj
+

∂ρ̄ũ′′
1u′′

j

∂xj
= − ∂ p̄

∂x1
+ ∂σ̃1j

∂xj
+ Π̄. (3.4)

Figure 14 shows the contribution of the different terms in (3.4), close to the orifice.
Viscous diffusion becomes less relevant as the Reynolds number increases, whereas the
intensity of turbulent convection increases, although the maximum value is confined very
close to the wall, and inside the orifices. The magnitude of the pressure gradient term is
constant for all considered Reynolds numbers, and its maximum location shifts downward
into the orifices as the Reynolds number increases. The figure shows that the contribution
of the pressure gradient is significant and its relative importance grows as the viscous
sublayer becomes thinner. We also note that increasing the number of holes (porosity)
increases the pressure drag, as each orifice seems to contribute approximately the same,
independently of its location.

The values of the friction coefficient reported in table 3 only apply to the Reynolds
number of the present DNS, which is much lower than in a realistic configuration.
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Figure 14. Contours of viscous diffusion (a,d,g,j,m,p), turbulent convection (b,e,h,k,n,q) and pressure gradient
(c, f,i,l,o,r) normalized by τw/δv for cases L-L3 (a–c), L-L14 (d–f ), L-L32 (g–i), L-M14 ( j–l), L-M32 (m–o) and
L-H32 (p–r).
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Fortunately, the existence of a fully rough regime simplifies the modelling of acoustic
liners and makes it easy to estimate the drag increase they induce in operating conditions.
As discussed in § 1, the friction Reynolds number over acoustic liners is Reτ ≈ 5400, and
the viscous-scaled inverse of the Forchhemeir coefficient for a geometry with d/δ ≈ 0.08,
t/d ≈ 1 and σ ≈ 0.3 is 1/α+

y ≈ 55 (Shahzad et al. 2022). Assuming that a fully rough
regime exists, then (3.3) returns �U+ ≈ 6.5, which can be converted into drag variation
(Modesti et al. 2021):

�Drag (%) = 1(
1 − �U+

u+∞,s

)2 − 1, (3.5)

where u∞,s is the free-stream velocity over the smooth wall. Hence, acoustic liners are
expected to provide about 70 % drag increase per plane area with respect to a smooth wall.
Of course, this value might slightly change depending on the specific geometry considered,
and the presence of incoming acoustic waves could also alter this result.

3.4. Permeability and velocity fluctuations
We further analyse the effect of acoustic liners on the Reynolds stresses (see figure 15).
Differences with respect to the smooth wall are primarily observed near the wall and
increase as the permeability increases. The relaxed impermeability condition gives rise to
non-zero Reynolds stresses at the liner wall, thus enhancing momentum transfer between
the flow above and below the plate. The peak of the Reynolds stresses is also modified. The
maximum of 〈τ33〉 increases slightly, whereas the maximum of 〈τ11〉 decreases, compared
with the smooth wall, which has also been reported for other types of porous surfaces
(Kuwata & Suga 2016a, 2019).

In the outer layer, the Reynolds stresses of the liner cases approximately match the
smooth-wall ones, as also typical of flows over rough walls. Small differences in the outer
layer are visible for cases L-M32 and L-H32, hinting at a possible departure from outer-layer
similarity as the viscous-scaled Forchheimer permeability decreases. This is in contrast to
what was observed for the mean streamwise velocity, whose outer layer seems to be more
resilient to changes in the underlying surface pattern.

Different authors noted a correlation between wall-normal velocity fluctuations and
drag variation over roughness (Orlandi, Leonardi & Antonia 2006; Orlandi & Leonardi
2006), riblets (Di Giorgio et al. 2020) and perforated plates (Wilkinson 1983). Wilkinson
(1983) studied surfaces similar to acoustic liner geometries, and proposed the increase of
wall-normal velocity fluctuations as the root cause behind the added drag. Orlandi et al.
(2006) and Orlandi & Leonardi (2006) noted that the Hama roughness function of different
two- and three-dimensional roughness geometries followed the same trend when reported
as a function of the wall-normal velocity fluctuations, suggesting a correlation with the
drag increase. The present simulations appear to confirm this trend. First, we note that
acoustic liners exhibit high wall-normal velocity fluctuations inside the orifice, as shown
in figure 16(a) for flow case L-H32. The peak of 〈τ22〉 corresponds to the wall-normal
location of the most intense wall-normal velocity fluctuations at the downstream edge in
figure 7.

Figure 16 shows �U+ as a function of the maximum wall-normal Reynolds stress
inside the liner orifice. Note that the latter has been weighted with the square of the
porosity, following the idea that the reference velocity seen by the porous plate is the
fluctuating superficial velocity, i.e. σu′

2 (Bae & Kim 2016). All flow cases, irrespective of
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Figure 15. Intrinsic averaged Reynolds stresses as a function of the viscous-scaled wall-normal distance above
the virtual origin for flow case L-L14 with 1/α+

y = 0.859 (a), L-L32 with 1/α+
y = 5.14 (b), L-M32 with 1/α+

y =
10.4 (c) and L-H32 with 1/α+

y = 20.8 (d). Lines without symbols indicate the smooth-wall cases and the
triangles indicate the liner case. Solid lines indicate 〈τ11/τw〉, dashed lines indicate 〈τ22/τw〉 and dash-dotted
lines indicate 〈τ33/τw〉.
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Figure 16. Intrinsic averaged wall-normal velocity fluctuations (a) as a function of the wall-normal distance
for flow case L-H32 with 1/α+

y = 20.8 and �U+ (b) as a function of the maximum of the wall-normal velocity
fluctuations below the wall. The dashed line in (a) indicates the smooth-wall case. Different symbols indicate
different facesheet thickness: open (t = d) and filled (t = d/2). Symbols indicate different porosities: σ =
0.0357 (blue circles), σ = 0.143 (green squares) and σ = 0.322 (red triangles).
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the thickness of the facesheet, follow the same trend, pointing to a correlation between
velocity fluctuations and �U+, as suggested by previous studies of rough surfaces. Large
values of the wall-normal velocity fluctuations inside the orifices are clear symptoms of
dominant inertial effects in this region of the flow.

This observation further supports the use of the Forchheimer permeability as the
relevant length scale for the flow. Although there is no clear line demarcating where
non-Darcy effects become dominant over the Darcy ones, Tanner, Gorman & Sparrow
(2019) note that already beyond pore Reynolds number Rep ≈ 10, it is necessary to account
for non-Darcy effects. Using the maximum of the wall-normal velocity variance inside the
orifice (weighted with σ ), the pore Reynolds numbers for the present flow cases are in the
range Rep ≈ 50–500, which is well into the nonlinear regime of permeability.

To further investigate what these wall-normal velocity fluctuations arise from, we look
at the budget of the wall-normal velocity variance:

∂

∂xi

(
ρ̄ũ′′

2u′′
2 ũi

)
= Pk + Tk + Πk + Παα − ε, (3.6)

where

Pk = −2ρ̄ũ′′
2u′′

i
∂ ũ2

∂xi
, ε = −2σi2

∂u′′
2

∂xi
,

Tk = − ∂

∂xi

(
ρ̄ ˜u′′

2u′′
2u′′

i − 2σi2u′′
2 + 2p′u′

2δ2i

)
,

Πk = −2u′′
2
∂ p̄
∂y

, Παα = 2p′ ∂u′
2

∂y
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

Figure 17 shows the budget of the wall-normal component of the Reynolds stress
tensor for flow cases L-M32 and L-H32 above the wall. The two dominant terms in
the budget appear to be the pressure–strain correlation Παα and the transport term Tk.
Furthermore, Tk consists primarily of the transport of wall-normal velocity fluctuations
via pressure fluctuations. Energy is redistributed into the wall-normal fluctuations via
the pressure–velocity correlation and then also transported with the aid of pressure
fluctuations. A better insight into the wall-normal component of the Reynolds stress
tensor can be obtained with the help of figure 18, which shows a subset of the terms
of (3.6). Other than a small region towards the downstream edge of the orifice, which
corresponds approximately with the strip of high wall-normal velocity fluctuations seen
at the downstream edge in figure 7, production of wall-normal velocity fluctuations inside
the cavity plays a relatively minor role, paling in comparison with the redistribution of
energy into u′2

2 . Pressure fluctuations at the downstream edge redistribute energy into
the wall-normal component of the Reynolds stress tensor and this effect appears to be
stronger as d+ increases. The location of maximum turbulent kinetic energy redistribution
corresponds to the location of the peak in wall-normal Reynolds stress inside the orifice,
shown in figures 7 and 16.

Production plays a minor role and energy is not extracted from the mean flow
for the wall-normal velocity fluctuations. The enhanced transfer of energy into the
wall-normal component matches the findings of Yuan & Piomelli (2014), who noted in
their simulation of sand-grain roughness that energy is redistributed into the wall-normal
velocity fluctuations, particularly below the roughness crest as is also observed for acoustic
liners, that then distort the near-wall streamwise structures.
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Figure 17. Intrinsically averaged budget of the wall-normal component of the Reynolds stress tensor for flow
case L-M32 (a) and L-H32 (b). Symbols represent different terms: Tk (blue circles), ε (green squares), Παα (red
triangles) and Pk (black pluses). The dashed line with circles represents the transport of wall-normal velocity
fluctuations due to pressure fluctuations.

3.5. Spectral densities
The spectral analysis of velocity fluctuations provides additional insight into the
organization of turbulence. Figure 19 shows the premultiplied spectral densities of the
streamwise and wall-normal velocity components as a function of the wall-normal distance
from the virtual origin and the spanwise wavelength λz, for flow cases L-L32, L-M32 and
L-H32.

Spectrograms of the smooth-wall cases (isolines) show the typical organization that
characterizes wall turbulence. At low Reynolds numbers a near-wall energy peak is
evident, at wavelength λ+z ≈ 100, corresponding to the near-wall cycle. The smooth-wall
flow case at Reτ = 2000 shows a secondary energy peak in the outer layer for the
streamwise velocity fluctuations, which is associated with the emergence of large-scale
energy-containing structures in the outer layer (Hutchins & Marusic 2007).

At the lowest Reynolds number, the spectra for the acoustic liners (coloured contour)
match very well the smooth-wall results, with minor differences only visible around the
near-wall peak. An obvious difference from the smooth wall is the presence of a distinct
energy peak in the spanwise velocity spectrogram at a wavelength corresponding to the
spacing of the orifices. This energy maximum is accompanied by a decrease in the inner
energy peak, which was also observed in the streamwise velocity variance in figure 15,
and it becomes more prominent for increasing Reynolds number.

The same trend is also visible for the wall-normal velocity fluctuations. However, in this
case, the near-wall energy peak is visible primarily for the high-Reynolds-number case
L-H32 and is spread out over a larger band of wavelengths. We further note that the peak
of the near-wall cycle is slightly biased towards the length scale corresponding to orifice
spacing. This wavelength bias was also observed by Chu et al. (2021) for porous beds
formed by cylindrical elements.

The picture that emerges is that acoustic liners drain energy from the near-wall cycle,
and tend to rearrange it at length scales typical of the underlying surface pattern, such
as the orifice spacing. This behaviour has also been reported for other types of surface
patterns, such as plant canopies (Finnigan 2000).

Notable differences are visible for flow case L-H32, where the streamwise velocity
spectrum tends to deviate from the smooth-wall case away from the wall, exhibiting
greater energy at higher wavelengths. Furthermore, unlike cases L-L32 and L-M32,
higher wavelengths also exhibit energy closer to the wall. Therefore, near-wall energy
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Figure 18. Contours of 2ρ̄ũ′′
2u′′

2∂ ũ2/∂y (a,d,g,j,m,p), 2p′∂u′
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normalized by (τwuτ )/δv for cases L-L3 (a–c), L-L14 (d–f ), L-L32 (g–i), L-M14 ( j–l), L-M32 (m–o) and
L-H32 (p–r).
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Figure 19. Premultiplied streamwise velocity (a–c) and wall-normal velocity (d–f ) spectra, normalized by u2
τ .

Filled contours represent flow case L-L32 (a,d), flow case L-M32 (b,e) and flow case L-H32 (c, f ). Contour
lines represent smooth-wall flow cases at matching Reτ . The dotted line indicates the spacing of the orifices,
normalized by the viscous length scale. Contour levels [1.0, 2.0, 3.0, 4.0, 5.0, 6.0] are shown for the streamwise
velocity spectra and [0.25, 0.50, 0.75, 1.00] are shown for the wall-normal velocity spectra.

is concentrated in two distinct regions for case L-H32: a sharp tonal peak at the orifice
spacing (λz ≈ 250) and a range of higher wavelengths (λz � 1000). Given the scale
separation between the two wavelength bands, and the existence of a distinct outer-layer
energy peak, the energy at higher wavelengths in the near-wall region may be associated
with the footprint of large-scale structures interacting with the near-wall turbulence. This
behaviour is also typical of flows over smooth walls, although it emerges at much higher
Reynolds numbers (Mathis, Hutchins & Marusic 2009). Modification of inner/outer layer
interaction due to surface roughness has been observed in many other studies, in different
forms. Efstathiou & Luhar (2018) observed an enhancement of the interaction over porous
surfaces, as compared with the smooth wall, and associated it with the appearance of
spanwise-elongated structures close to the wall. Kim et al. (2020) also observed stronger
inner/outer layer interaction over porous surfaces, and they associated it with the enhanced
wall-normal turbulent mixing caused the relaxation of the impermeability condition. A
similar effect was also reported over rough walls (Wu, Christensen & Pantano 2019).

It seems that acoustic liners promote inner/outer layer interaction at lower Reynolds
number, probably because the flow is approaching the fully rough regime; thus the viscous
effects which would normally mask this interaction are less prominent and we observe
flow features of high-Reynolds-number turbulence already at Reτ ≈ 2000. A different
interpretation of the same mechanism can be that the near-wall cycle penetrates deeper
into the porous media, thus effectively reducing the viscous sublayer perceived by the
large-scale eddies, which therefore scrapes the surface of the liner at a lower friction
Reynolds number than on a smooth wall, which is also consistent with the interpretation
of Kim et al. (2020).
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4. Final comments

We performed pore-resolved DNS of turbulent flows over perforated plates, which closely
resemble the geometry of acoustic liners in aircraft engines. This numerical methodology
provided us with unprecedented high-fidelity data, allowing us to address several aspects
of the flow physics towards a fundamental understanding of turbulent flows over porous
surfaces.

Porous surfaces have been studied considerably less than rough surfaces, and the present
data constitute one of the few examples of pore-resolved simulations at high Reynolds
numbers. Acoustic liners induce an increase in drag compared with a smooth wall;
however, outer-layer similarity for the mean velocity is preserved. We find convincing
evidence of a fully rough regime over porous surfaces, and that the Forchheimer
permeability is the characteristic length scale for acoustic liners because inertia dominates
the flow inside the orifices. This aspect is particularly interesting and novel. Most previous
studies of porous surfaces assume that the Darcy law is valid, but this might not be the case
for moderate pore sizes. Darcy-type models have been used extensively to avoid solving
the porous surface geometry, whereas the present findings reveal that this modelling
assumption might be inaccurate if the viscous-scaled pore size is large, and nonlinear
corrections for the pressure drop might be needed. We also believe that the existence of
a fully rough regime should not be taken for granted for all porous surfaces, as several
different geometries fall into this classification, and not all of them might give rise to the
same flow physics.

As for the effect of acoustic liners on turbulence, we observed very high velocity
fluctuations inside the orifices. We find a very strong correlation between the Hama
roughness function and the maximum vertical velocity fluctuations for all considered liner
geometries. Even though this correlation has little relevance from a practical perspective
because in general τ22 is not known, it shows that flow inside the orifices is well mixed,
which explains the success of the Forchheimer permeability.

From an engineering perspective, the existence of a fully rough regime together with
outer-layer similarity is good news; together, they form a solid background for wall models
and, in principle, we can give up the detailed representation of the surface pattern because
the mean velocity profile presents universal features that can be modelled. Moreover, these
results tell us that it is possible to use simulations and experiments to estimate the drag
variation at higher Reynolds numbers, typical of practical configurations. Our estimate,
based on the present DNS, is that a typical acoustic liner produces about 70 % higher drag
per plane area as compared with a hydraulically smooth wall. However, this figure does
not account for incoming sound waves, whose effects on drag are yet to be understood.
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Figure 20. Comparison of the average streamwise velocity (a) and Reynolds stresses (b) between STREAmS
(Bernardini et al. 2021, triangles) and the DNS of spanwise-aligned bars of MacDonald et al. (2018, circles)
with streamwise spacing s+ = 200 and height k+ = 50. In (b), different lines represent different components
of the Reynolds stress tensor: 〈τ11〉 (solid), 〈τ22〉 (dashed), 〈τ33〉 (dash-dotted) and 〈τ12〉 (dotted).
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Figure 21. Mesh refinement study for flow case L-L32: mean streamwise velocity (a) and Reynolds stresses
(b) for the fine mesh (triangles; 40 points per orifice) and the coarse mesh (circles; 26 points per orifice). In
(b), different lines represent different components of the Reynolds stress tensor: 〈τ11〉 (solid), 〈τ22〉 (dashed),
〈τ33〉 (dash-dotted) and 〈τ12〉 (dotted).

Appendix A. Verification of numerical set-up

The immersed boundary method has been validated by reproducing the results of
MacDonald et al. (2018), who performed DNS of open channel flow over spanwise-aligned
bars using a body-fitted solver. We reproduced this configuration by simulating the
flow over the same roughness geometry, matching the viscous-scaled spacing in the
streamwise direction s+ = 200, the roughness height k+ = 50 and the friction Reynolds
number Reτ ≈ 395, using grid size Nx × Ny × Nz = 800 × 250 × 68. Figure 20 shows a
comparison of the mean streamwise velocity and the Reynolds stresses. Perfect agreement
is observed between the DNS of MacDonald et al. (2018) and the present data, confirming
the accuracy of our immersed boundary method.

Appendix B. Grid convergence

We performed a grid convergence study to ascertain that the liner geometry is sufficiently
resolved. The grid used for flow cases with t/d = 1 has 40 points per orifice in the
streamwise and spanwise directions. Flow case L-L32 has also been simulated using a
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coarser mesh with 26 grid points per orifice in the wall-parallel directions. Figure 21
shows a comparison of the mean streamwise velocity and the Reynolds stresses for the
two different grid spacings. The results between the two grids are identical, indicating that
26 mesh points per orifice are already sufficient to achieve grid independence. For this
reason, flow cases with t/d = 0.5 have been performed using 26 mesh points per orifice.
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