Derepression of F-lac in Salmonella typhimurium by a determinant for kanamycin resistance

By H. R. SMITH, JUNE N. GRINDLEY, N. D. F. GRINDLEY and E. S. ANDERSON

Enteric Reference Laboratory, Public Health Laboratory Service, Colindale Avenue, London, N.W. 9

(Received 29 July 1970)

SUMMARY

When a determinant for neomycin-kanamycin resistance (K) was transferred by an F-lac factor into Salmonella typhimurium, the resulting KF-lac strain was sensitive to the male-specific phage μ_2 and F-lac was derepressed. However, F-lac alone is repressed in S. typhimurium. When kanamycin resistance is spontaneously lost from S. typhimurium KF-lac an element persists which derepresses F-lac in S. typhimurium. The results are consistent with the hypothesis that a locus der, for derepression of F-lac in S. typhimurium, lies on the K plasmid. The R factor Rldrd19 is derepressed in K12 but is repressed in S. typhimurium. It also is derepressed by der. In contrast to F-lac and Rl, another R factor, R136drdH8, is derepressed in both K12 and S. typhimurium, so that the intervention of der is unnecessary for its derepression in the salmonella host.

A determinant for resistance to neomycin and kanamycin (K) was described recently by Anderson, Mayhew & Grindley (1969). This determinant was isolated from a strain of S. typhimurium phage type 29 in which it was associated with an fi^+ transfer factor. The association between K and the transfer factor is characteristic of the class of R factors first observed in S. typhimurium, in which the transfer factor and the resistance determinant regularly segregate in transfer, and are independent of each other in the host cell (Anderson & Lewis, 1965*a*, *b*; Smith, Anderson & Clowes, 1970).

For the experiments described in this paper, the K determinant, without its original transfer factor, was isolated in *Escherichia coli* K12F⁻ (= K12). It was then mobilized with an F-lac factor, using the triparental cross for determinant mobilization (Anderson, 1965), the final recipient being S. typhimurium, phage type 36 (= S. typhimurium). Except for the presence of lac, which was simply used as a marker for F transfer to S. typhimurium, the resulting R factor, KF-lac, was indistinguishable from the KF resistance factor described previously (Anderson et al. 1969; Grindley, Grindley & Anderson, 1970). The effects of K on F-lac, described below, are thus identical with its effects on the F factor alone.

Transfer of F-lac from S. typhimurium KF-lac and S. typhimurium F-lac to K12 and S. typhimurium is shown in Table 1.

This table shows that S. typhimurium KF-lac transfers F-lac to both K12 and S. typhimurium at a frequency a 100-fold higher than that from S. typhimurium F-lac to the same recipients. All of 148 S. typhimurium KF-lac recombinants tested were sensitive to the male-specific phage μ_2 (Dettori, Maccacaro & Piccinin, 1961). By contrast, 337 S. typhimurium clones that had received F-lac alone were resistant to μ_2 , although K12 carrying F-lac only is sensitive to μ_2 . Thus, the F-lac factor, which is derepressed in K12,

H. R. SMITH AND OTHERS

is ordinarily repressed in S. typhimurium, and its derepression in this system seems to be effected by the K determinant. The reactions of S. typhimurium and K12 lines with phage μ_2 are summarized in Table 2.

Table 1. Transfer of F-lac from Salmonella typhimurium KF-lacand S. typhimurium F-lac in 2 h crosses

Cross		Frequency of F- <i>lac</i>	Sensitivity of donor	Proportion of donor cells carrying
Donor	$\operatorname{Recipient}$	transfer	to phage μ_2	F fimbriae (electron microscopy)
S. typhimurium KF-lac	\times K12 \times S. typhimurium	1×10^{-3} 2×10^{-3}	+	18/28 = 64%
S. typhimurium F-lac	\times K12 \times S. typhimurium	$2 imes10^{-5}\ 2 imes10^{-5}$	-	1/36 = 2.8 %
S. typhimurium (K) ⁻ F-lac*	\times K12	1×10^{-2}	+	21/47 = 44.7 %

* Resulting from spontaneous loss of K from S. typhimurium KF-lac.

+ = Visible lysis in spot tests with phage μ_2 on surface culture (Grindley et al. 1970);

- = No visible lysis with μ_2 .

Table 2. Reactions of S. typhimurium and K12 strains with male-specific phage μ_2

Strains	Reaction with μ_2	
S. typhimurium F-lac	-	
S. typhimurium KF-lac	+	
S. typhimurium (K) ⁻ F-lac*	+	
S. typhimurium (KF-lac) ^{-†}	_	
K12 F-lac	+	
S. typhimurium	-	
K12F-	-	

+ = Visible lysis with μ_2 ; - = No visible lysis with μ_2 . * Spontaneous loss of K.

† Spontaneous loss of both K and F-lac.

The state of repression of S. typhimurium KF-lac and S. typhimurium F-lac was also investigated by determining the degree of F fimbriation in the electron miscroscope (see Table 1). Specific adsorption of phage μ_2 , followed by negative staining with sodium silicotungstate, was used for the identification of sex fimbriae. Of 28 S. typhimurium KF-lac cells observed, 18 (64%) carried sex fimbriae, while S. typhimurium F-lac showed only one sex-fimbriated cell out of 36 examined (2.8%).

Other workers have also observed the repression of an F factor in S. typhimurium (Mäkelä, Lederberg & Lederberg, 1962; Easterling *et al.* 1969), although no explanation has been suggested and derepression does not seem to have been described.

Lines of *S. typhimurium* KF-*lac* were then examined for spontaneous loss of K, and it was found that when such loss occurred the derepression persisted, as shown in Table 1. This was also confirmed by observation of sex-fimbriation by electron microscopy.

Further experiments with S. typhimurium carrying the derepressed F-lac factor without K showed that, although the derepressed state was stable in that host strain,

https://doi.org/10.1017/S0016672300002627 Published online by Cambridge University Press

Short papers

subsequent transfer of this F-lac to S. typhimurium produced a majority of recombinants in which F-lac was repressed. However, about 4% of 220 recombinant clones tested retained the derepression. As F-lac in this experiment transferred at 2×10^{-1} in an overnight cross, the frequency of transfer of derepression was 4% of 2×10^{-1} , that is, 8×10^{-3} . This frequency is very similar to that of K transfer from S. typhimurium KF-lac in overnight crosses to S. typhimurium, about 10^{-2} .

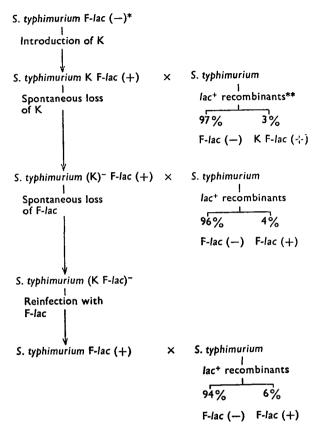


Fig. 1. Properties of F-lac and K in S. typhimurium. * (+); (-): reactions with male-specific phage μ_2 . ** F-lac was transferred at a frequency of c. 2×10^{-1} in overnight crosses in all cases.

It should be noted that whether F-lac is in the repressed or derepressed state in S. typhimurium, it is derepressed in K12.

An S. typhimurium line that had spontaneously lost both K and F-lac (see Table 2) was then investigated. When a (repressed) F-lac factor was transferred from S. typhimurium into this strain, sensitivity to μ_2 was regained. The recipient strain had therefore retained the element for derepression of the F-lac factor, in spite of the loss of K and F-lac. Crosses from the resultant derepressed S. typhimurium F-lac strain into S. typhimurium established that F-lac was transferred at the same frequency as before, that is, 1.8×10^{-1} , and that it was derepressed in 6.5 % of S. typhimurium F-lac recipients. Thus, the frequency of transfer of the derepression of F-lac was unchanged (c. 1×10^{-2}).

These observations are summarized in Fig. 1.

23

The results suggest that a derepressor locus, which we designate der, is associated with the K plasmid. This hypothesis is supported by the fact that the transfer frequency of *der* by *S. typhimurium der* F-*lac* is the same as that of the original K plasmid. Spontaneous loss of kanamycin resistance may result from mutation in, or deletion of, the resistance locus, and retention of *der* may indicate that the remainder of the plasmid is intact. This residuum, carrying *der*, would be transferable by F-*lac* in the same way as the original K plasmid.

Alternatively, *der* could be on a separate plasmid from K, in which case the plasmids should be lost independently of each other. However, if this hypothesis is correct the two plasmids must be postulated to be very closely associated during transfer in spite of their independence, as we have been unable to separate the kanamycin resistance from the derepression property by conjugation.

If der is effectively part of the K plasmid, the properties of derepression and kanamycin resistance should be readily co-transduced, whereas if the two markers are on independent plasmids, co-transduction should be a very rare event. Bacteriophage P22 was grown on S. typhimurium KF-lac. The resulting phage preparation (titre c. 8×10^{10} p.f.u./ml) was sterilized with toluene, and 1 ml was mixed with an equal quantity of a culture of S. typhimurium F-lac (c. 5×10^8 organisms/ml). After 30 min at 37 °C the bacteria were washed and plated with selection for kanamycin resistance. Of 150 kanamycin-resistant transductant colonies tested, 16 (10.7 %) were sensitive to the male-specific phage μ_2 . This co-transduction supports the suggestion that K and der are closely linked.

The possibility that der might affect derepressed factors other than F was explored. Two derepressed f_i^+ R factors, R1drd19 and R136drdH8 (Meynell & Datta, 1967) were investigated. These will be referred to as R1 and R136 hereafter. R1 carries resistance to ampicillin, kanamycin, streptomycin and sulphonamides, and R136 resistance to tetracyclines only. R1 and R136 were originally identified in strains of S. paratyphi B phage type 3a var 4 and S. typhimurium phage type 29 respectively (E. S. Anderson & N. Datta, unpublished).

K12 carrying R1 or R136 is sensitive to μ_2 . K12 R1 was crossed with S. typhimurium and S. typhimurium der, to yield S. typhimurium R1 and S. typhimurium der R1 progeny respectively. Forty-nine of 50 colonies of S. typhimurium R1 gave no visible lysis with μ_2 , while all of 40 S. typhimurium der R1 colonies gave good lysis with the phage. In the colony of S. typhimurium R1 which gave lysis with μ_2 , this lysis was more turbid than that on S. typhimurium der R1.

Transfer of R1 from μ_2 -insensitive *S. typhimurium* R1 to *S. typhimurium* occurred at a repressed frequency of 2.5×10^{-4} in 2 h, and 1.6×10^{-2} overnight. The μ_2 -sensitive line of *S. typhimurium* R1, in contrast, transferred R1 at a derepressed frequency of 10^{-1} in 2 h and 4.5×10^{-1} overnight. The derepression was not transferred, however, since all of 100 progeny tested from the overnight cross were insensitive to μ_2 .

S. typhimurium der R1 transferred R1 to S. typhimurium at a frequency of 1.5×10^{-1} in a 2 h cross, and 3×10^{-1} overnight. Ten of 100 colonies from the overnight cross were sensitive to μ_2 . Thus, der was transferred by R1 at a frequency of about 10^{-2} , similar to that of its transfer by F-lac.

When R136 was transferred from K12 to S. typhimurium and S. typhimurium der, all the S. typhimurium R136 and S. typhimurium der R136 progeny tested (20 of each) gave good lysis with μ_2 .

The presence of der in S. typhimurium therefore potentiated derepression of R1drd19, as it did of F-lac in that host. Since R136drdH8 is already derepressed in S. typhimurium, there was no evidence that its state of derepression was affected by der.

It may be significant that F and Rldrdl9 are i^- mutants which do not synthesize repressor, but are sensitive to repressor in K12, while Rl36drdH8 is an o^c mutant which

is insensitive to repressor in K12 (Frydman & Meynell, 1969; Meynell & Cooke, 1969). The possibility that S. typhimurium actively represses both F and R1drd19 must therefore be explored.

Alternatively, S. typhimurium may be (passively) unable to express the derepressed state of F-lac and Rldrd19 without the intervention of an element such as der. In any case, it is reasonable to suppose that the derepressing effect of der is the same in S. typhimurium Rldrd19 as it is in S. typhimurium F-lac.

On the basis of the above evidence we conclude that the K plasmid, which apparently possesses no transfer factor, carries a locus *der*, which derepresses F-*lac* and R1drd19 in *S. typhimurium*.

These phenomena are under further examination and our findings will be reported later.

[Note added in proof.] Recent experiments support the hypothesis that S. typhimurium represses i^- but not o^c mutants of F-like plasmids. This work is being prepared for publication.

We thank Dr Anne M. Field for carrying out the electron microscopy, and Dr Naomi Datta for providing derepressed mutants of R1 and R136. Requests for reprints should be addressed to Dr E. S. Anderson.

REFERENCES

- ANDERSON, E. S. (1965). A rapid screening test for transfer factors in drug sensitive Enterobacteriaceae. *Nature*, *London* 208, 1016-1017.
- ANDERSON, E. S. & LEWIS, M. J. (1965a). Drug resistance and its transfer in Salmonella typhimurium. Nature, London 206, 579-583.
- ANDERSON, E. S. & LEWIS, M. J. (1965b). Characterization of a transfer factor associated with drug resistance in Salmonella typhimurium. Nature, London 208, 843-849.
- ANDERSON, E. S., MAYHEW, J. N. & GRINDLEY, N. D. F. (1969). Transfer of a neomycinkanamycin resistance determinant by the F factor of *Escherichia coli* K-12. Nature, London 222, 349–351.
- DETTORI, R., MACCACARO, G. A. & PICCININ, G. L. (1961). Sex specific bacteriophages of Escherichia coli K-12. Giornale di Microbiologia 9, 141–150.
- EASTERLING, S. B., JOHNSON, E. M., WOHLHIETER, J. A. & BARON, L. S. (1969). Nature of lactose-fermenting Salmonella strains obtained from clinical sources. Journal of Bacteriology 100, 35-41.
- FRYDMAN, A. & MEYNELL, E. (1969). Interactions between de-repressed F-like R factors and wild type Colicin B factors: superinfection immunity and repressor susceptibility. *Genetical Research* 14, 315–322.
- GRINDLEY, J. N., GRINDLEY, N. D. F. & ANDERSON, E. S. (1970). Acridine treatment of F+ and Hfr strains of *Escherichia coli* K12 carrying a neomycin-kanamycin resistance determinant. *Genetical Research* 15, 327-334.
- MÄKELÄ, P. H., LEDERBERG, J. & LEDERBERG, E. M. (1962). Patterns of sexual recombination in enteric bacteria. *Genetics* 47, 1427–1439.
- MENYELL, E. & COOKE, M. (1969). Repressor-minus and operator-constitutive de-repressed mutants of F-like R factors: their effects on chromosomal transfer by HfrC. *Genetical Research* 14, 309-313.
- MEYNELL, E. & DATTA, N. (1967). Mutant drug resistant factors of high transmissibility. Nature, London 214, 885-887.
- SMITH, C., ANDERSON, E. S. & CLOWES, R. C. (1970). Stable composite molecular forms of an R factor. *Bacteriological Proceedings* 60–61.