P-ADIC INTERPOLATION OF DEDEKIND SUMS

C. Snyder

Abstract

In this article we give an explicit representátion of p-adic Dedekind sums and their reciprocity laws by using p-adic measure theory. We then study the consequences of the p-adic reciprocity law for particular positive integer values in which case we can recover a reciprocity law for Dedekind sums attached to particular Dirichlet characters. This gives a proof different from that of Nagasaka.

1. Introduction

In [4], the authors showed that by p-adically interpolating certain partial zeta functions, it is possible to interpolate the higher order Dedekind sums introduced by Apostol [1], thus obtaining p-adic Dedekind sums. The authors then showed that there is a reciprocity law for p-adic Dedekind sums, however they were not able to obtain an explicit representation of the reciprocity law for all p-adic integers. In this article, we obtain an explicit form for the reciprocity law for arbitrary p-adic integers. This is accomplished by the use of p-adic measure theory. We then study the consequences of this p-adic reciprocity law for particular integer values in which case we can recover a reciprocity law for Dedekind sums attached to particular types of Dirichlet characters. This gives a proof different from that of Nagasaka [3] for these special cases.

2. p-adic Interpolation of higher order Dedekind sums

The higher order Dedekind sums are defined as follows: let m, h and k be integers such that $m \geqslant 0$ and $k>0$, then

$$
s_{m}(h, k)=\sum_{\mu=0}^{k-1} \bar{B}_{1}\left(\frac{\mu}{k}\right) \bar{B}_{m}\left(\frac{h \mu}{k}\right)
$$

where $\bar{B}_{m}(x)$ denotes the m th periodic Bernoulli function defined by

$$
\sum_{m=0}^{\infty} B_{m}(x) \frac{z^{m}}{m!}=\frac{z e^{x z}}{e^{z}-1} \quad(|z|<2 \pi)
$$

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.
for all real x and $\bar{B}_{m}(x)=B_{m}(x-[x])$. It is well-known that $B_{m}(x)=$ $\sum_{j=0}^{m}\binom{m}{j} x^{m-j} B_{j}$ or, symbolically, $B_{m}(x)=(x+B)^{m}$ and $B_{m}(0)=B_{m}$, the m th Bernoulli number.

Throughout this section, let p denote a fixed prime which, for convenience, we assume to be odd. Let \mathbb{Z}_{p} and \mathbb{Q}_{p} denote the set of p-adic integers and p-adic rationals, respectively. Let $\|_{p}$ denote the p-adic norm, normalised so that $|p|_{p}=\frac{1}{p}$. Recall that the group of p-adic units $\mathbb{Z}_{p}^{*} \simeq V \times\left(1+p \mathbb{Z}_{p}\right)$ where V is the group of $(p-1)$ st roots of unity in \mathbb{Z}_{p} and $1+p \mathbb{Z}_{p}$ is the so called group of principal units. If $x \in \mathbb{Z}_{p}^{*}$, then we denote by $\omega(x)$ and $\langle x\rangle$ the projections of x onto V and $1+p \mathbf{Z}_{p}$, respectively. Furthermore let A_{p} denote the set

$$
\left\{f(z)=\sum_{m=0}^{\infty} a_{m} z^{m} \in K[[z]]: \lim _{m \rightarrow \infty} a_{m}=0\right\}
$$

where K is a finite extension of \mathbb{Q}_{p}. We define a linear functional $d \boldsymbol{\beta}$ from A_{p} to K by

$$
\int f(z) d \beta(z)=\int \sum_{m=0}^{\infty} a_{m} z^{m} d \beta(z)=\sum_{m=0}^{\infty} a_{m} B_{m}
$$

Notice that this series converges since $\left|B_{m}\right|_{p} \leqslant p$ by the von Staudt-Clausen theorem. We then have the following proposition.

Proposition 1. For all integers m, a and k such that $m \geqslant 0, k \neq 0$

$$
k^{m} B_{m}\left(\frac{a}{k}\right)=\int(a+k z)^{m} d \beta(z)
$$

If in addition $a \neq 0$, then

$$
k^{m} B_{m}\left(\frac{a}{k}\right)=a^{m} \int\left(1+\frac{k z}{a}\right)^{m} d \beta(z)
$$

Proof:

$$
\begin{aligned}
\int(a+k z)^{m} d \beta(z) & =\int \sum_{j=0}^{m}\binom{m}{j} a^{m-j} k^{j} z^{j} d \beta(z)=\sum_{j=0}^{m}\binom{m}{j} a^{m-j} k^{j} B_{j} \\
& =k^{m} \sum_{j=0}^{m}\binom{m}{j}\left(\frac{a}{k}\right)^{m-j} B_{j}=k^{m} B_{m}\left(\frac{a}{k}\right)
\end{aligned}
$$

The second part is equally obvious.
Now, if $p \mid k$ but $p \nmid a$, then it is easy to see how we can extend $k^{m} B_{m}\left(\frac{a}{k}\right)$ to a continuous function for "p-adic m^{\prime}, namely, by $\left\langle a>^{\prime} \int\left(1+\frac{k z}{z}\right)^{d} d \beta(z)\right.$ or more
generally by $\omega^{-n}(a)<a>^{0} \int\left(1+\frac{k z}{a}\right)^{s} d \beta(z)$ for some fixed integer n. Here $s \in \mathbf{Z}_{p}$ and $\left(1+\frac{k z}{a}\right)^{s}=\sum_{m=0}^{\infty}\binom{s}{m}\left(\frac{k}{a}\right)^{m} z^{m} \in A_{p}$ since $\binom{s}{m} \in \mathbf{Z}_{p}$ and $k / a \in p \mathbf{Z}_{p}$. From this we see easily how to interpolate $k^{m} s_{m}(h, k)$ when $p \mid k, p \nmid a$:

Definition: Let h, k be integers such that $k>0, p \mid k$ but $p \nmid h$. Then $S_{p}(s ; h, k)=\sum_{\substack{k=0 \\ p \neq \mu}}^{k-1} B_{1}\left(\frac{\mu}{k}\right) \omega^{-1}(h \mu)<(h \mu)_{k}>^{s} \int\left(1+\frac{k z}{(h \mu)_{k}}\right)^{s} d \beta(z)$ for all $s \in \mathbb{Z}_{p}$. $(a)_{k}$ denotes the integer $x \in[0, k)$ such that $a \equiv x(\bmod k)$.

We introduced the factor $\omega^{-1}(h \mu)$ in the above definition in order to recover the classical reciprocity law for higher order Dedekind sums, as we shall see later.

Proposition 2. For any integers m, h and k such that $m \geqslant 0, k>0$ and $p \mid k$ but $p \nmid h$,

$$
S_{p}(m ; h, k)=\sum_{\substack{\mu=0 \\ p \nmid \mu}}^{k-1} \bar{B}_{1}\left(\frac{\mu}{k}\right) \omega^{-m-1}(h \mu) k^{m} \bar{B}_{m}\left(\frac{h \mu}{k}\right) .
$$

Moreover, if $m+1 \equiv 0(\bmod p-1)$,

$$
S_{p}(m ; h, k)=k^{m} s_{m}(h, k)-p^{m}(k / p)^{m} s_{m}(h, k / p)
$$

Proof:

$$
\begin{aligned}
S_{p}(m ; h, k) & =\sum_{\substack{\mu=0 \\
p \nmid \mu}}^{k-1} \bar{B}_{1}\left(\frac{u}{k}\right) \omega^{-1}(h \mu)\left(\omega^{-1}\left((h \mu)_{k}\right)(h \mu)_{k}\right)^{m} \int\left(1+\frac{k z}{(h \mu)_{k}}\right)^{m} d \beta(z) \\
& =\sum_{\substack{\mu=0 \\
p \nmid \mu}}^{k-1} \bar{B}_{1}\left(\frac{\mu}{k}\right) \omega^{-m-1}(h \mu) k^{m} \bar{B}_{m}\left(\frac{h \mu}{k}\right)
\end{aligned}
$$

by Proposition 1 and the observation that $\omega^{-m}\left((h \mu)_{k}\right)=\omega^{-m}(h \mu)$ since $p \mid k$ and ω^{-m} has period dividing p. If $m+1 \equiv 0(\bmod p-1)$, then $\omega^{-m-1}(h \mu)=1$ for all μ.

Thus

$$
\begin{aligned}
S_{p}(m ; h, k) & =\sum_{\mu=0}^{k-1} \bar{B}_{1}\left(\frac{\mu}{k}\right) k^{m} \bar{B}_{m}\left(\frac{h \mu}{k}\right)-\sum_{\substack{\mu=0 \\
p \mid \mu}}^{k-1} \bar{B}_{1}\left(\frac{\mu}{k}\right) k^{m} \bar{B}_{m}\left(\frac{h \mu}{k}\right) . \\
& =k^{m} s_{m}(h, k)-\sum_{\mu=0}^{\frac{k}{p}-1} \bar{B}_{1}\left(\frac{\mu p}{k}\right) k^{m} \bar{B}_{m}\left(\frac{h \mu p}{k}\right) \\
& =k^{m} s_{m}(h, k)-k^{m} s_{m}(h, k / p)
\end{aligned}
$$

We shall now define $S_{p}(s ; h, k)$ when $p \nmid h k$. We proceed as above by replacing k by $p k$ and appealing to Raabe's theorem:

$$
k^{m} \bar{B}_{m}\left(\frac{h \mu}{k}\right)=p^{m-1} k^{m} \sum_{j=0}^{p-1} \bar{B}_{m}\left(\frac{h \mu+k j}{p k}\right)
$$

Each term on the right-hand side may be interpolated p-adically provided $h \mu+k j \not \equiv 0$ $(\bmod p)$.

Definition: Let h, k be integers such that $k>0$ and $p \nmid h k$. Then

$$
\begin{aligned}
S_{p}(s ; h, k) & =\sum_{\mu=0}^{k-1} \bar{B}_{1}\left(\frac{\mu}{k}\right) \frac{1}{p} \sum_{\substack{j=0 \\
p \nmid h \mu+k j}}^{p-1} \omega^{-1}(h \mu+k j) \\
& <(h \mu+k j)_{p k}>^{s} \int\left(1+\frac{p k z}{(h \mu+k j)_{p k}}\right)^{s} d \beta(z)
\end{aligned}
$$

for all $s \in \mathbb{Z}_{p}$.
Proposition 3. For any integers m, h and k such that $m \geqslant 0, k>0$ and $p \nmid h k$.

$$
S_{p}(m ; h, k)=\sum_{\mu=0}^{p-1} \bar{B}_{1}\left(\frac{\mu}{k}\right) \frac{1}{p} \sum_{\substack{j=0 \\ p \nmid h \mu+k j}}^{p-1} \omega^{-m-1}(h \mu+k j)(p k)^{m} \bar{B}_{m}\left(\frac{h \mu+k j}{p k}\right)
$$

Moreover, if $m+1 \equiv 0(\bmod p-1)$,

$$
S_{p}(m ; h, k)=k^{m} s_{m}(h, k)-p^{m-1} k^{m} s_{m}\left(\left(p^{-1} h\right)_{k}, k\right)
$$

where $\left(p^{-1} h\right)_{k}$ denotes the integer $x \in[0, k)$ such that $p x \equiv h(\bmod k)$.
Proof: The first formula follows just as in the proof of Proposition 2. If $m+1 \equiv 0$ $(\bmod p-1)$, then

$$
\begin{aligned}
S_{p}(m ; h, k)= & \sum_{\mu=0}^{k-1} B_{1}\left(\frac{\mu}{k}\right) p^{m-1} k^{m} \sum_{j=0}^{p-1} \bar{B}_{m}\left(\frac{h \mu+k j}{p k}\right) \\
& -\sum_{\mu=0}^{k-1} \bar{B}_{1}\left(\frac{\mu}{k}\right) \frac{1}{p} \sum_{\substack{j=0 \\
p \mid h \mu+k j}}^{p-1}(k p)^{m} \bar{B}_{m}\left(\frac{k \mu+k j}{p k}\right) \\
= & \sum_{\mu=0}^{k-1} \bar{B}_{1}\left(\frac{\mu}{k}\right) k^{m} \bar{B}_{m}\left(\frac{h \mu}{k}\right)-\sum_{\mu=0}^{k-1} \bar{B}_{1}\left(\frac{\mu}{k}\right) p^{m-1} k^{m} \bar{B}_{m}\left(\frac{\left(p^{-1} h\right)_{k} \mu}{k}\right)
\end{aligned}
$$

since $h \mu+k j \equiv 0(\bmod p)$ and $h \mu+k j \equiv h \mu(\bmod k)$ implies that $h \mu+k j \equiv$ $p\left(p^{-1} h\right)_{k} \mu(\bmod p k)$. Thus the Proposition.

We now review the reciprocity law for higher order Dedekind sums and then see how to interpolate it. Recall that for all integers m, h and k such that $m \geqslant 0, h>0$, $k>0$ and $(h, k)=1$

$$
h k^{m} s_{m}(h, k)+k h^{m} s_{m}(k, h)=\frac{m}{m+1} B_{m+1}+\frac{1}{m+1}(h B+k B)^{m+1}
$$

where $(h B+k B)^{m+1}$ is written symbolically.
We would like to determine explicitly $h S_{p}(s ; h, k)+k S_{p}(s ; k, h)$ when $p \nmid h k$. To this end we have the following Proposition.

Proposition 4. Let m, h and k be positive integers such that $(h, k)=1, p \nmid h k$ and $m+1 \equiv 0(\bmod p-1)$. Then

$$
\begin{aligned}
h S_{p}(m ; h, k)+k S_{p}(m ; k, h) & =\frac{m}{m+1}\left(1-p^{m}\right) B_{m}+\frac{1}{m+1}(k B-h B)^{m+1} \\
& -\frac{1}{m+1} p^{m-1}(k s-h s)^{m+1}\binom{h k}{p}
\end{aligned}
$$

where $(k s-h s)^{m+1}\binom{h k}{p}=\sum_{j=0}^{m+1}\binom{m+1}{j}(-h)^{m+1-j} k^{j} s_{j, m+1-j}\binom{h k}{p}$ with $s_{m, n}\binom{h k}{p}$ $=\sum_{\lambda=0}^{p-1} \bar{B}_{m}\left(\frac{h \lambda}{p}\right) \bar{B}_{n}\left(\frac{k \lambda}{p}\right)$, see $[2]$.

Proof: By Proposition 3, we have for $m+1 \equiv 0(\bmod p-1)$

$$
\begin{aligned}
h S_{p}(m h, k)+k S_{p}(m ; k, h) & =h k^{m} s_{m}(h, k)+k h^{m} s_{m}(k, h) \\
& -p^{m-1}\left(h k^{m} s_{m}\left(\left(p^{-1} h\right)_{k}, k\right)+k h^{m} s_{m}\left(\left(p^{-1} k\right)_{h}, h\right)\right) .
\end{aligned}
$$

The sum of the first two terms on the right-hand side is given by the reciprocity law above.

We now consider the remaining terms. Notice that

$$
\begin{aligned}
s_{m}\left(\left(p^{-1} h\right)_{k}, k\right) & =\sum_{\mu=0}^{k-1} \bar{B}_{1}\left(\frac{\mu}{k}\right) \bar{B}_{m}\left(\frac{\left(p^{-1} h\right)_{k} \mu}{k}\right) \\
& =\sum_{\mu=0}^{k-1} \bar{B}_{1}\left(\frac{p \mu}{k}\right) \bar{B}_{m}\left(\frac{h \mu}{k}\right)=s_{1, m}\binom{p h}{k}
\end{aligned}
$$

Similarly, $s_{m}\left(\left(p^{-1} k\right)_{h}, h\right)=s_{1, m}\binom{p k}{h}$. But by [2] (5.6) we have the following reciprocity law:
$h k^{m} s_{1, m}\binom{p h}{k}+k h^{m} s_{1, m}\binom{p k}{h}=\frac{m}{m+1} p B_{m+1}-h k^{m} B_{m}+\frac{1}{m+1}(k s-h s)^{m+1}\binom{h k}{p}$.

Putting the two terms together we obtain

$$
\begin{aligned}
h S_{p}(m ; h, k) & +k S_{p}(m ; k, h)=\frac{m}{m+1}\left(1-p^{m}\right) B_{m+1} \\
& +\frac{1}{m+1}(k B+h B)^{m+1}-\frac{p^{m-1}}{m+1}(k s-h s)^{m+1}\binom{h k}{p}+p^{m-1} h k^{m} B_{m}
\end{aligned}
$$

This yields the proposition since $(k B+h B)^{m+1}=(k B-h B)^{m+1}-h k^{m} B_{m}$ and m is odd since $m+1 \equiv 0(\bmod p-1)$.

We are now in a position to state and prove our main theorem.
Theorem. Let h, k be positive integers such that $(h, k)=1$ and $p \nmid h k$. For any $s \in \mathbb{Z}_{\boldsymbol{p}}$, let

$$
\begin{aligned}
I_{p}(s) & =\frac{1}{p} \sum_{\mu=1}^{p-1}<\mu>^{s+1} \int\left(1+\frac{p z}{\mu}\right)^{s+1} d \beta(z) \\
K_{p}(s) & =\frac{1}{p^{2}} \sum_{\substack{i, j=0 \\
i \neq j}}^{p-1}<k(h j)_{p}-h(k i)_{p}>^{s+1} \\
& \times \iint\left(1+\frac{p(k z-h w)}{k(h j)_{p}-h(k i)_{p}}\right)^{s+1} d \beta(z) d \beta(w)
\end{aligned}
$$

Then

$$
h S_{p}(s ; h, k)+k S_{p}(s ; k, h)=\frac{s}{s+1} I_{p}(s)+\frac{1}{s+1} K_{p}(s) .
$$

Proof: We show that for $m+1 \equiv 0(\bmod p-1)$, the theorem reduces to Proposition 4. Thus by continuity and the fact that $\{m \in N \mid m+1 \equiv 0(\bmod p-1)\}$ is dense in $\mathbb{Z}_{\boldsymbol{p}}$, the theorem will follow.

Thus assume m is a positive integer such that $m+1 \equiv 0(\bmod p-1)$. Then

$$
\begin{aligned}
I_{p}(m) & =\frac{1}{p} \sum_{\mu=1}^{p-1} \mu^{m+1} \int\left(1+\frac{p z}{\mu}\right)^{m+1} d \beta(z)=\frac{1}{p} \sum_{\mu=1}^{p-1} p^{m+1} \bar{B}_{m+1}\left(\frac{\mu}{p}\right) \\
& =p^{m} \sum_{\mu=0}^{p-1} \bar{B}_{m+1}\left(\frac{\mu}{p}\right)-p^{m} B_{m+1}=\left(1-p^{m}\right) B_{m+1}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
K_{p}(m) & =\frac{1}{p^{2}} \sum_{i, j=0}^{p-1}\left(k(h j)_{p}-h(k i)_{p}\right)^{m+1} \iint\left(1+\frac{p(k z-h w)}{k(h j)_{p}-h(k i)_{p}}\right)^{m+1} d \beta(z) d \beta(w) \\
& =\frac{1}{p^{2}} \sum_{i \neq j} \iint\left(k(h j)_{p}-h(k i)_{p}+p(k z-h w)\right)^{m+1} d \beta(z) d \beta(w) \\
& =\frac{1}{p^{2}} \sum_{i \neq j} \sum_{l=0}^{m+1}\binom{m+1}{l} \\
& \times \iint\left(k\left[(h j)_{p}+p z\right]\right)^{m+1-l}\left(-h\left[(k i)_{p}+p w\right]\right)^{l} d \beta(z) d \beta(w) \\
& =\sum_{l=0}^{m+1}\binom{m+1}{l} k^{m+1-l}(-h)^{l} p^{m-1} \sum_{i \neq j} \bar{B}_{m+1-l}\left(\frac{h j}{p}\right) \bar{B}_{l}\left(\frac{k i}{p}\right) \\
& =\sum_{l=0}^{m+1}\binom{m+1}{l} k^{m+1-l}(-h)^{l} \\
& \times\left(\sum_{i, j=0}^{p-1} p^{m-l} \bar{B}_{m+1-l}\left(\frac{h i}{p}\right)^{l-1} \bar{B}_{l}\left(\frac{k j}{p}\right)-p^{m-1} \sum_{i=0}^{p-1} \bar{B}_{m+1-l}\left(\frac{h i}{p}\right) \bar{B}_{l}\left(\frac{k i}{p}\right)\right) \\
& =\sum_{l=0}^{m+1}\binom{m+1}{l} k^{m+1-l}(-h)^{l} B_{m+1-l} B_{l}-p^{m-1}(k s-h s)^{m+1}\binom{h k}{p}
\end{aligned}
$$

Therefore $h S_{p}(m ; h, k)+k S_{p}(m ; k, h)=\frac{m}{m+1} I_{p}(m)+\frac{1}{m+1} K_{p}(m)$. This in turn establishes the theorem.

In particular the theorem is true for any integer m. We obtain the following Corollary to the Theorem.

Corollary. Let m be any nonnegative integer such that $m+1 \not \equiv 0(\bmod p-1)$ and let h, k be positive integers such that $(h, k)=1$ and $p \nmid h k$, then

$$
\begin{aligned}
& h k^{m} \sum_{\mu=0}^{k-1} \bar{B}_{1}\left(\frac{\mu}{k}\right) p^{m-1} \sum_{j=0}^{p-1} \omega^{-m-1}(h \mu+k j) \bar{B}_{m}\left(\frac{h \mu+k j}{p k}\right) \\
& +k h^{m} \sum_{\nu=0}^{h-1} \bar{B}_{1}\left(\frac{\nu}{h}\right) p^{m-1} \sum_{i=0}^{p-1} \omega^{-m-1}(k \nu+h i) \bar{B}_{m}\left(\frac{k \nu+h i}{p h}\right) \\
& =\frac{m}{m+1} B_{m+1, \omega^{-m-1}} \\
& +\frac{p^{m-1}}{m+1} \omega^{-m-1}(h k) \sum_{i, j=0}^{p-1} \omega^{-m-1}(j-i)\left(k \bar{B}\left(\frac{h j}{p}\right)-h \bar{B}\left(\frac{k i}{p}\right)\right)^{m+1}
\end{aligned}
$$

where $B_{m+1, \omega^{-m-1}}$ is the $(m+1)$ st generalised Bernoulli number associated with the character ω^{-m-1}, that is, $B_{m, x}$ is defined by

$$
\sum_{m=0}^{\infty} B_{m, \chi} \frac{z^{m}}{m!}=\sum_{a=0}^{f-1} \frac{\chi(a) z e^{a z}}{e^{f z}-1}
$$

where f is a modulus of χ. The expression

$$
\left(k \bar{B}\left(\frac{h j}{p}\right)-h \bar{B}\left(\frac{k i}{p}\right)\right)^{m+1}=\sum_{l=0}^{m+1}\binom{m+1}{l} k^{m+1-l}(-h)^{l} \bar{B}_{m+1-l}\left(\frac{h j}{p}\right) \bar{B}_{l}\left(\frac{k i}{p}\right)
$$

Proof: Let $s=m$ be as in the statement of the Corollary. Then by Proposition 3,

$$
\begin{aligned}
& h S_{p}(m ; h, k)+k S_{p}(m ; k, h) \\
& =h k^{m} \sum_{\mu=0}^{k-1} \bar{B}_{1}\left(\frac{\mu}{k}\right) p^{m-1} \sum_{j=0}^{p-1} \omega^{-m-1}(h \mu+k j) \bar{B}_{m}\left(\frac{h \mu+k j}{p k}\right) \\
& +k h^{m} \sum_{\nu=0}^{h-1} \bar{B}_{1}\left(\frac{\nu}{h}\right) p^{m-1} \sum_{i=0}^{p-1} \omega^{-m-1}(k \nu+h i) \bar{B}_{m}\left(\frac{k \nu+h i}{p h}\right) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
I_{p}(m) & =\frac{1}{p} \sum_{\mu=0}^{p-1}<\mu>^{m+1} \int\left(1+\frac{p z}{\mu}\right)^{m+1} d \beta(z) \\
& =\frac{1}{p} \sum_{\mu=1}^{p-1} \omega^{-m-1}(\mu) \mu^{m+1} \int\left(1+\frac{p z}{\mu}\right)^{m+1} d \beta(z) \\
& =\frac{1}{p} \sum_{\mu=1}^{p-1} \omega^{-m-1}(\mu) p^{m+1} \bar{B}_{m+1}\left(\frac{\mu}{p}\right) \\
& =p^{m} \sum_{\mu=1}^{p-1} \omega^{-m-1}(\mu) \bar{B}_{m+1}\left(\frac{\mu}{p}\right)=B_{m+1, \omega^{-m-1}}
\end{aligned}
$$

The last equality follows from the definitions of $B_{m+1, \omega^{-m-1}}$ and $B_{m+1}(x)$ in terms of their generating functions.

By an argument similar to the one in the proof of the theorem we obtain

$$
\begin{aligned}
K_{p}(m) & =\sum_{i, j=0}^{p-1} \omega^{-m-1}\left(k(h j)_{p}-h(k i)_{p}\right) \\
& \times \sum_{l=0}^{m+1}\binom{m+1}{l} k^{m+1-l}(-h)^{l} p^{m-1} \bar{B}_{m+1-l}\left(\frac{h j}{p}\right) \bar{B}_{l}\left(\frac{k i}{p}\right) \\
& =p^{m-1} \omega^{-m-1}(h k) \sum_{i, j=0}^{p-1} \omega^{-m-1}(j-i)\left(k \bar{B}\left(\frac{h j}{p}\right)-h \bar{B}\left(\frac{k i}{p}\right)\right)^{m+1}
\end{aligned}
$$

The corollary now follows easily.
The corollary to the theorem suggests a definition of Dedekind sums attached to characters somewhat different (although equivalent) to that of Nagasaka [3].

DEfinition: Let χ be a numerical character on \mathbb{Z} of modulus dividing f. For any integer $m \geqslant 0$, define

$$
\bar{B}_{m, \chi}(x)=f^{m-1} \sum_{a=0}^{f-1} \chi(a+x) \bar{B}_{m}\left(\frac{a+x}{f}\right)
$$

for any rational number x with denominator relatively prime to f. (Notice χ extends without ambiguity to such x by multiplicativity).

Definition: Let χ be a numerical character of modulus f, let h, k be integers such that $k>0$ and $(k, f)=1$. Then for any integer $m \geqslant 0$, define

$$
s_{n, m}^{\chi}(h, k)=\sum_{\mu=0}^{k-1} \bar{B}_{n}\left(\frac{\mu}{k}\right) \bar{B}_{m, \chi}\left(\frac{h \mu}{k}\right) .
$$

It is easy to see that $s_{n, m}^{\chi}(h, k)$ is independent of the choice of representatives of $\mu(\bmod k)$. Then the corollary is equivalent to the following result for $\chi=\omega^{-m-1}$.

Let χ be a primitive character of conductor f. Let m be any integer with $m \geqslant 0$ and h and k positive integers such that $(h, k)=1$ and $(h k, f)=1$. Then

$$
\begin{aligned}
& h k^{m} \chi(k) s_{1, m}^{\chi}(h, k)+k h^{m} \chi(h) s_{1, m}^{\chi}(k, h) \\
& =\frac{m}{m+1} B_{m+1, \chi}+\frac{f^{m-1}}{m+1} \sum_{i, j=0}^{f-1} \chi(h i+k j)\left(h \bar{B}\left(\frac{i}{f}\right)+k \bar{B}\left(\frac{j}{f}\right)\right)^{m+1} .
\end{aligned}
$$

We shall not prove this statement since an equivalent form may be found in [3].

References

[1] T. Apostol, 'Generalized Dedekind sums and transformation formulae of certain Lambert series', Duke Math. J. 17 (1950), 147-157.
[2] M. Mikolas, 'On certain sums generating the Dedekind sums and their reciprocity laws', Pacific J. Math. 6 (1956), 1167-1178.
[3] C. Nagasaka, 'On generalized Dedekind sums attached to Dirichlet characters', J. Number Theory 19 (1984), 374-383.
[4] K. Rosen and W. Snyder, ' p-adic Dedekind sums','J. Reine Angew. Math. 361 (1985), 23-26.

[^0]: Received 11 June 1987

