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P-ADIC INTERPOLATION OF DEDEKIND SUMS

C. SNYDER

In this article we give an explicit representation of p-adic Dedekind sums and their reci-
procity laws by using p-adic measure theory. We then study the consequences of the
p-adic reciprocity law for particular positive integer values in which case we can recover a
reciprocity law for Dedekind sums attached to particular Dirichlet characters. This gives
a proof different from that of Nagasaka.

1. INTRODUCTION

In [4], the authors showed that by p-adically interpolating certain partial zeta
functions, it is possible to interpolate the higher order Dedekind sums introduced by
Apostol [1], thus obtaining p-adic Dedekind sums. The authors then showed that there
is a reciprocity law for p-adic Dedekind sums, however they were not able to obtain
an explicit representation of the reciprocity law for all p-adic integers. In this article,
we obtain an explicit form for the reciprocity law for arbitrary p-adic integers. This is
accomplished by the use of p-adic measure theory. We then study the consequences of
this p-adic reciprocity law for particular integer values in which case we can recover a
reciprocity law for Dedekind sums attached to particular types of Dirichlet characters.
This gives a proof different from that of Nagasaka [3] for these special cases.

2. P-ADIC INTERPOLATION OF HIGHER ORDER DEDEKIND SUMS

The higher order Dedekind sums are defined as follows: let m, h and k be integers
such that m > 0 and k > 0, then

k-l

sm(h,k) = Y^E
,1=0

where Bm(x) denotes the mth periodic Bernoulli function defined by

m = 0
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294 C. Snyder [2]

for all real x and Bm(x) = Bm(x — [x]). It is well-known that Bm(x) =
£ " i o {™)*m~iBi or> symbolically, Bm(x) = {x + B)m and Bm(0) = Bm, the m t h
Bernoulli number.

Throughout this section, let p denote a fixed prime which, for convenience, we

assume to be odd. Let Zp and Qp denote the set of p-adic integers and p-adic rationals,

respectively. Let ||p denote the p-adic norm, normalised so that |p|p — - . Recall that

the group of p-adic units Z* ~ V x (1 + pZp) where V is the group of (p — l )s t roots

of unity in Zp and 1 + pZp is the so called group of principal units. If x € Zp, then

we denote by u>(x) and < x > the projections of x onto V and 1 + p Z p , respectively.

Furthermore let Ap denote the set

oo

{/(z) = V ; amzm e K[[z}\: lim am = 0},
m=0

where K is a finite extension of Q p . We define a linear functional df3 from Ap to K

by

ff(z)d/3(z) = / £ amzmd(3(z) = f; amBm.
J J m=0 m=0

Notice that this series converges since |.Bm|p ^ p by the von Staudt-Clausen theorem.
We then have the following proposition.

PROPOSITION 1. For all integers m, a and k such that m > 0, k ^ 0

If in addition a ^ 0, then

PROOF:

f(a + kz)md/3(z) = f f ; (m)a
J J j=Q \ J 'j=Q \ J ' j=0

The second part is equally obvious. |

Now, if p | k but p f a, then it is easy to see how we can extend fcmBm(^) to

a continuous function for 'fc-adic m " ) namely, by < a >' / (l + ^f)'d/3(z) or more
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generally by w~n(a) < a >' J ( l + ^)*d/3(z) for some fixed integer n. Here s £ Zp

and (1 + £ ) ' = £ ~ = 0 C M ! ) " 1 * " 1 € AP since Q ) G Zp and fc/a G pZ p . From this

we see easily how to interpolate kmsm(h, k) when p | k , p \ a:

DEFINITION: Let h, k be integers such that k > 0, p \ k but p \ h. Then

Sp(s;h,k) = Y,k-J0 B,(f )W-1(/i/x) < (V)fc >' / (l + T j f e r ) ^ ) for aU s G Zp.

(a)k denotes the integer x G [0, k) such that a = x(modfc).
We introduced the factor w~1{h/j,) in the above definition in order to recover the

classical reciprocity law for higher order Dedekind sums, as we shall see later.

PROPOSITION 2. For any integers m, h and k such that m ^ 0, k > 0 and p | fc
but p \ h,

Sp(m; h,k)=

Moreover, if m + 1 = 0 (mod p — 1 ) ,

5p(m; fc, fc) = fcm5ra(fc, fc) - pm(k/p)msm(h, k/p).

P R O O F :

Sp(m; h,k) =

by Proposition 1 and the observation that u>~m((hfi)k) — u>~m(hfj.) since p \ k and
w~m has period dividing p. If TO + 1 = 0 (mod p — 1), then w~m~1(/i/x) = 1 for all

Thus
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We shall now define Sp(s;h,k) when p \ hk. We proceed as above by replacing k

by pk and appealing to Raabe's theorem:

i = 0 v Pk

Each term on the right-hand side may be interpolated p-adically provided h/j, + kj ^ 0
( mod p).

DEFINITION: Let h, k be integers such that k > 0 and p \ hk. Then

k-i _ ^ , p-i

; = 0

for all s 6 Zp.

PROPOSITION 3. For any integers m, h and k such that m ^ 0, k > 0 and

- i

Moreover, if m + 1 = 0 (mod p — 1),

wiiere (j)~1h) denotes the integer x 6 [0,fc) sucii tiiat px = h ( mod k).

P R O O F : T h e f irs t f o r m u l a fo l lows j u s t as i n t h e p r o o f of P r o p o s i t i o n 2 . If m+1=0

( m o d p — 1 ) , t h e n

fc-i P-I

j=0

(f)i E

.-5 ((P-1^
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since hfi + kj = 0 (mod p) and hfj, + kj = h/j, (mod k) implies that hfj, + kj =

p(p~1/i)fc/x (mod pk). Thus the Proposition. I

We now review the reciprocity law for higher order Dedekind sums and then see
how to interpolate it. Recall that for all integers m, h and k such that m ^ 0, h > 0,
k > 0 and (h, k) = 1

hkmsm(h, k) + khmsm(k, h) = -^—Bm+1 + -^—(hB + kB)m+1

m -j-1 m -f-1

where (/iB + kB)m is written symbolically.
We would like to determine explicitly hSp(s;h,k) + kSp(s;k,h) when p \ hk. To

this end we have the following Proposition.

PROPOSITION 4. Let m, h and k be positive integers such that (h,k) = \, p \hk
and m + 1 = 0 (mod p — 1). Tien

hSp(m; h, k) + kSp(m; k, h) = - ^ — ( 1 - pm)Bm + ~^—{kB - hB)m+1

m +1 Tn + l

PROOF: By Proposition 3, we have for m + 1 = 0 (mod p — 1)

hSp{mh, k) + fcSp(m; fc, fe) = hkmsm(h, k) + khmsm{k, h)

The sum of the first two terms on the right-hand side is given by the reciprocity law
above.

We now consider the remaining terms. Notice that

>h

law:

Similarly, sm((p~1k)h,h) = si,m(p
h

fc) . But by [2] (5.6) we have the following reciprocity

- hs)m+1 (hk).
\P /

^) = ^PBm+1 hkBm +
h) m + 1 TO + 1
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Putt ing the two terms together we obtain

hSp(m; h, k) + kSp(m; k, h) = —^—(1 - pm)Bm+1

m + 1m +
(ks-hs)m+1(hk)+pm-i

1 \p /

P H-. i..\""ti| 1 , _m-lLj.mp
•Dm-

This yields the proposition since (kB + hB)m+1 = (kB - hB)m+1 - hkmBm and m is
odd since m + 1 = 0 (mod p — 1). |

We are now in a position to state and prove our main theorem.

THEOREM. Let h, k be positive integers such that (h,k) = 1 and p \ hk. For
any s e Zp, let

i p~1 t / \

^ E < " > < + 7 ! + -
p M = l J \ f1 /

p - i

i E

Then

s 1
hSp(s;h,k) + kSp(s;k,h) = ——Ip(s)+ ——-Kp(s).

PROOF: We show that for m + 1 = 0 ( mod p — 1), the theorem reduces to Propo-
sition 4. Thus by continuity and the fact that {ro € N | m + 1 = 0 ( mod p — 1)} is
dense in Zp , the theorem will follow.

Thus assume m is a positive integer such that m + 1 = 0 ( mod p — 1).
Then

) ^ )

p—i
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On the other hand,

itj—0

m + l

^ E
m+l /

i*j 1=0

X

m+l

m + l

1=0

m + l

1=0

Therefore hSp(m;h,k) + kSp(m;k,h) = TW"1/P(T7Z) -f- m
1

+1 Kp(m). This in turn estab-
lishes the theorem. |

In particular the theorem is true for any integer m. We obtain the following
Corollary to the Theorem.

COROLLARY. Let m be any nonnegative integer such that m+ 1 ^ 0 (mod p — 1)
and let h, k be positive integers such that (h,k) = 1 and p \ hk, then

fc-i p-i

>=o

)(J)
i/=0 i=0

l

+ ^

https://doi.org/10.1017/S0004972700026848 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700026848


300 C. Snyder [8]

where Bm+1<u)-m-i is the (m + 1) st generalised Bernoulli number associated with the
character co~m~1 , that is, BmiX is defined by

m'xm\ ~ ^ efz_1

m=0 a=0

where f is a modulus of x • The expression

PROOF: Let s = m be as in the statement of the Corollary. Then by Proposition 3,

hSp(m; h, k) + kSp(m; k, h)

(ft
j=0

i/=0 t=0

Moreover,

IP(m) = IJ2 < ̂  >m+1 (1 + -

The last equality follows from the definitions of Bm+lu-m-i and Bm +i(a;) in terms
of their generating functions.

By an argument similar to the one in the proof of the theorem we obtain

p

Kp(m) = £ a,-™"1 (k{hj)p - h(ki)p)
i J 0

m+1
x y^

1=0

m+1

https://doi.org/10.1017/S0004972700026848 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700026848


[9] Dedekind sums 301

The corollary now follows easily. I

The corollary to the theorem suggests a definition of Dedekind sums attached to

characters somewhat different (although equivalent) to that of Nagasaka [3].

DEFINITION: Let x be a numerical character on Z of modulus dividing / . For

any integer ro > 0, define

-FT / N j - m - i V ^ . , _ , ^ - o ( a + x
/ j A.V" ' " / " » ( 1 r

a=0 ^ '

for any rational number x with denominator relatively prime to / .

(Notice x extends without ambiguity to such x by multiplicativity).

DEFINITION: Let x be a numerical character of modulus / , let h, k be integers

such that k > 0 and (k, f) = 1. Then for any integer m ^ 0, define

It is easy to see that s* (/i,fc) is independent of the choice of representatives of

/tt(mod k). Then the corollary is equivalent to the following result for x — w~m~1 •

Let x be a primitive character of conductor / . Let m be any integer with m ^ 0

and h and k positive integers such that (h,k) = 1 and (hk,f) = 1. Then

m f ^-^ -

771 + 1 m 'x m + 1 /—^

We shall not prove this statement since an equivalent form may be found in [3].
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